lunes, 29 de diciembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR



RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Materia Oscura… ¿Dónde?
Hace años que lo vengo diciendo ¡No hay materia oscura”. Resulta que los cosmólogos no sabían explicare como se pudieron formar las galaxias, estando presente la Expansión de Hubble. ¿Cómo la materia pudo escapar de dicha expansión? En el trabajo “Son muchas las cosas que no sabemos”, decía:
El bueno de Martinus Veltman (Premio Nobel de Física), respecto a la “materia oscura” decía:
“La materia oscura es la alfombra, bajo la cual, los cosmólogos barren su ignorancia”.
Daban por cierto algo que nadie ha podido ver, que no se sabe de qué clase de “partículas” estaría constituida, no explicaban por qué era invisible, tampoco han explicado el motivo de que no emita radiación pero sí genere Gravedad.
Un prestigioso Premio Nobel de Física de Holanda, decía:
Los cosmólogos no saben el por qué las galaxias se alejan las unas de las otras, y, para poder contestar a las preguntas que le planteaban, se el tal Fritz  Zwicky, se inventó la “materia oscura” que, en realidad… ¡Es la alfombra, bajo la cual, barren su ignorancia!
En el video se explican algunas cosas más.
https://youtu.be/GeXlCCu5vpU
https://youtu.be/mAAPmJDwtUg

Estrellas de Quarks! Materia extraña : Blog de Emilio Silvera V.Agujero negro - Wikipedia, la enciclopedia libre

Según algunos estudios realizados es posible que, además, puedan existir estrellas Quarks-Gluones

Lo que realmente sucede en las estrellas normales y según su masa, es que tienen un proceso evolutivo que las estrellas normales como el Sol, al agotar su combustible nuclear de fusión, se convierten en Gigantes roja primero y en enanas blancas después, y, si la estrella tiene más de 8 masas solares se convertirán en estrella de neutrones, y, si son hiper-gigantes  (hipotéticamente serían estrellas de Quarks-Gluones de materia extraña), y, muy masivas, tendríamos un Agujero Negro.

 

Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas : Blog de Emilio Silvera V.

Equilibrio, estabilidad:

Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas : Blog de Emilio Silvera V.

El resultado de dos fuerzas contrapuestas. Protón y Electrón, hombre y mujer, el día y la noche, blanco y negro, siempre dos extremos que conforman un todo equilibrado.

 

Todos los objetos del Universo son el resulta de fuerzas antagónicas que, al ser iguales, se equilibran y consiguen la estabilidad. Las estrellas son el mejor ejemplo: La Gravedad trata de comprimir a la estrella que, mediante la fusión tiende a expandirse y, la lucha de esas dos fuerzas crea la estabilidad.

 

Dos siluetas de un hombre y una mujer mirándose el uno al otro mostrando conexión y amor | Imagen Premium generada con IA

¡Es la Unidad de la desigualdad! Dos son uno, y, todos sabemos que, un hombre solo…

¡Está en mala compañía!

 

El Yin y el Yang. Símbolo Taoísta. – Viajes en Chancletas

 

El Yin y el Yang son conceptos fundamentales de la filosofía china que representan dos fuerzas opuestas pero complementarias e independientes, presentes en todo el Universo, como la noche (Yin) y el día (Yang). El Yin es lo femenino, pasivo, oscuro, frío y de la Tierra, mientras que el Yang es lo masculino, activo, luminoso, cálido y del Cielo, y el equilibrio dinámico entre ambos es esencial para la armonía, influenciando la medicina tradicional, el Feng Shui y la vida diaria. 

 

Características Clave:
    • Oposición y Complementariedad: No son entidades separadas, sino que se necesitan mutuamente para existir (no hay día sin noche).
    • Interdependencia: Uno no puede existir sin el otro; son polos de una misma totalidad.
  • Dualidad en Todo: Se manifiestan en fenómenos naturales (calor/frío, sol/luna), aspectos humanos (hombre/mujer) y en la energía misma.
  • Equilibrio Dinámico: Están en constante flujo; cuando uno aumenta, el otro disminuye, buscando un balance natural.
  • Transformación: Pueden transformarse uno en el otro (el invierno en verano) y en cada uno reside una parte del otro (el punto negro en la parte blanca, y viceversa). 
Aplicaciones Prácticas:
  • Medicina China: Busca el equilibrio entre las energías Yin y Yang en el cuerpo para mantener la salud y curar enfermedades.
  • Feng Shui: Organiza espacios para armonizar estas energías.
  • Filosofía de Vida: Entenderlos ayuda a aceptar los ciclos naturales, buscar el balance entre actividad (Yang) y descanso (Yin), y ver oportunidades dentro de los problemas. 
En resumen, Yin y Yang no son solo opuestos, sino dos caras de una misma moneda cósmica, cuya interacción crea la realidad y busca un equilibrio constante. 

Equilibrio, estabilidad: el resultado de dos fuerzas contrapuestas : Blog de Emilio Silvera V.

 

No-dualidad Artículos | El ying y el yang en el taoísmo, por Naser Gazi

 

 

Equilibrio = a dos fuerzas contrapuestas

Estas estructuras, podemos decir que son entidades estables que existen en el Universo. Existen porque son malabarismos estables entre fuerzas competidoras de atracción y repulsión. Por ejemplo, en el caso de un planeta, como la Tierra, hay un equilibrio entre la fuerza atractiva de la Gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e (electrón), h (constante de Planck), G (constante de gravitación) y mp (masa del protón), c (la velocidad de la luz en el vacío). Pero, ¿Qué es el Tiempo de Planck?

Tiempo de Planck:

Big Bang models back to Planck time

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck. Está dado por  segundos, donde G es la constante gravitacional (6’672 59 (85) ×10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2π = 1’054589 × 10-34 Julios segundo) y c es la velocidad de la luz (299.792.458 m/s).

El valor del tiempo del Planck es del orden de 10-43 segundos. En la cosmología del Big Bang, hasta un tiempo (Tp) después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del universo. Expresado en números corrientes que todos podamos entender, su valor es:

En forma decimal (aproximada):

0.0000005391s (con 43 ceros después del punto decimal antes del 5). Que es el tiempo que necesita el fotón para recorrer la longitud de Planck, de 10-35 metros (veinte órdenes de magnitud menor que el tamaño de del protón de 10-15 metros). el límite de Planck es: Lp = √(Għ/c3 ≈ 1’61624 x 10-35 m.

Todo, desde Einstein, es relativo. Depende de la pregunta que se formule y de quién nos de la respuesta.

 

El tiempo es la escalera con peldaños infinitos que nos llevan hasta el fin de la eternidad…

 

Por qué avanza el tiempo? Una nueva teoría apunta al Big Bang

 

Científicos descubren que el tiempo pasaba cinco veces más despacio en el Universo inmediatamente tras el Big Bang. Los científicos han observado por primera vez el universo primitivo funcionando a cámara extremadamente lenta, desvelando uno de los misterios del universo en expansión de Einstein.

Si preguntamos ¿Qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio-133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc, etc. Cada una de estas versiones del tiempo tiene una respuesta diferente, ya que no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo universal. Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.

Lo cierto es que nos hemos esforzado en medir, lo que entendemos por tiempo, con una precisión cada vez mayor.

Lp curioso del caso es , ¡Qué no hemos conseguido saber lo que el Tiempo es!

 

En 2030, la definición del segundo podría cambiar

 

Un acuerdo internacional sobre la definición de un segundo es de fundamental importancia en la medición del tiempo”. La duración de un segundo, (por acuerdo internacional) es la frecuencia de transición entre dos subniveles de un átomo de cesio 133.  Para medir esta frecuencia, los relojes de cesio fuente miden dos veces los átomos de cesio enfriados por láser en su viaje a través de la cavidad de microondas del reloj, una vez en su camino hacia arriba y de nuevo en su camino hacia abajo.

 

Reloj Atómico - Areaciencias

Su error se estima en un 1 segundo en 32.000 años

El reloj de Cesio cuyo funcionamiento se basa en la diferencia de energía entre dos estados del núcleo de Cesio-133 cuando se sitúa en un campo magnético. En un tipo, los átomos de cesio-133 son irradiados con radiación de radiofrecuencia, cuya frecuencia es elegida para corresponder a la diferencia de energía entre los dos estados. Es decir, nos valemos de un sistema complejo para determinar lo que el tiempo es basado en lo que de él nos indica la Naturaleza.

En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas; los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es sólo uno; ese que comenzó cuando nació el universo y que finalizará cuando éste llegue a su final.

 

Las estrellas super-masivas:

  • Masa Gigante: Su masa determina una intensa gravedad que influye sobre su entorno.
  • Vida Efímera: A pesar de su tamaño, tienen una vida relativamente corta debido a la rapidez con la que consumen su combustible nuclear.
  • Luminosidad Extrema: Al ser tan masivas, su emisión de luz y energía es colosal.
  • Muerte Explosiva: Al final de su ciclo de vida, suelen terminar en espectaculares supernovas, dejando tras de sí un agujero negro o una estrella de neutrones.

Lo cierto es que para las estrellas supermasivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.

 

Agujeros negros: qué son y cómo encontrarlos | National Geographic

 

Según todos los indicios, la Física nos dice que al llegar a la singularidad de un agujero negro, no podremos encontrar ni tiempo ni espacio. Es una región que estando en este mundo, es como si estuviera en otro, al que sólo se podrá llegar a través de la teoría tan esperada de la gravedad cuántica. Aquí, en la Singularidad, la Relatividad de Einstein llega y hace mutis por el foro.

El tiempo, de esta manera, deja de existir en estas regiones del universo que conocemos como singularidad. El mismo Big Bang (según algunos),  surgió de una singularidad de energía y densidad infinitas que explotó y se expandió para crear el tiempo, el espacio y la materia. Nosotros llegamos algunos miles de millones de años más tarde, cuando la materia evolucionó hacia los pensamientos.

 

Vacíos cósmicos, una herramienta para desentrañar los misterios del universo | Explora | Univision

El universo está formado por grandes redes de galaxias que se entrelazan de manera aleatoria. Sin embargo, hay un aspecto de este conglomerado que apenas fue descubierto a fines de los 70. Les hablo de los vacíos cósmicos, estructuras en forma de burbujas que no contienen nada en su interior y se esparcen por todo el espacio. Las mismas, al parecer, constituyen valiosas herramientas para desentrañar los misterios del universo. Te cuento cómo pueden ser útiles estos vacíos para la ciencia.

 

 

Esta imagen del vacío de Boötes es real de verdad? No encuentro ninguna fuente que la confirme (referencias del archivo Hubble, por ejemplo). : r/cosmology

El Vacío de Boötes es una región cósmica gigantesca, con una extensión que ronda los  330 millones de años luz de diámetro, lo que lo convierte en uno de los mayores vacíos conocidos, un espacio casi desprovisto de galaxias, salvo por unas pocas docenas en una especie de filamento central, ocupando cerca del 2% del universo observable y con un origen que desafía los modelos actuales de formación del cosmos. 

Esa dimensión de superficie la estudiamos y la comprobamos, hablamos de ella pero ¿La entendemos y la escenificamos en nuestras Mentes?

De ninguna manera nos hacemos una idea exacta de lo que eso supone en distancia a recorrer, y, como antes hemos hablado del equilibrio de las cosas opuestas:

 

Las estrellas! ¿Qué haríamos sin ellas? : Blog de Emilio Silvera V.

 

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y agujeros negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado (imagen de arriba) fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

Muchos son los misterios que nos quedan por resolver y muchos también los objetos que, estando ahí fuera aún no han sido localizados. La vastedad del inmenso Universo, hace difícil saber la realidad de todo su contenido y, necesitaremos siglos de estudio y observación para poder desvelar todos sus secretos. Creo que nunca podremos saberlo todo y que, la Naturaleza, siempre tendrá enigmas que resolver para que estemos ocupados y no podamos caer en el tedio y quedarnos sin curiosidad, ese motor que siempre nos ha movido.

Así que pudimos descubrir que existen vacíos espaciales enormes. Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 Kg/m3; los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del universo. Bueno, hasta que se descubran (si ocurre), la estrellas de Quarks.

 

Curvatura del espacio-tiempo - Wikipedia, la enciclopedia libreExplorando la forma del espacio-tiempo

En presencia de grandes masas el Espacio-tiempo se curva

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del universo. Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

Arthur C. Clarke nos decía: “Magia es cualquier tecnología suficientemente avanzada”

 

 

Pero también es magia el hecho de que en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver estructuras complejas matemáticas que hacen posible que la humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.

 

 

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: la teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Göttingen en Alemania. Aquello fue como abrir de golpe todas las ventanas cerradas durante 2.000 años de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante. Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Superficie de Riemann - Wikipedia, la enciclopedia libreGeometría de Riemann - Wikipedia, la enciclopedia libreLa negación dialéctica y el espacio curvo de Riemann

            La nueva geometría de Riemann nos dijo como era la realidad del espacio, del Universo

Su ensayo, de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios. La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas. La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias. En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la literatura en toda Europa. Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del universo y su evolución mediante su asombrosa teoría de la relatividad general. Ciento treinta años después de su conferencia, los físicos utilizarían la geometría deca-dimensional para intentar unir todas las leyes del universo. El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

Recordemos a un personaje, unos hechos. : Blog de Emilio Silvera V.

El niño (Riemann), le dijo al profesor que se aburría y aprendía poco. Este le dio el libro más avanzado de matemáticas de aquellos tiempos.

A los pocos días, el profesor le preguntó:

  • ¿Cómo vas con el libro?
  • Ya me lo se todo, no tiene algo más avanzado.

El profesor extrañado le llevó ante el director, le contó el episodio y le hicieron un examen con los problemas más complejos.

Riemann los resolvió en muy poco tiempo y  les dejo claro que había “nacido” un genio.

 

Personajes ilustres : Blog de Emilio Silvera V.

Todavía no sabemos el por qué, en algunas personas, las neuronas funcionan de maneta diferente, y, ven el mundo con más claridad.

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico. Era huraño, solitario y sufría crisis nerviosas. De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis. Al igual que aquel otro genio, Ramanujan, murió muy joven.

Emilio Silvera Vázquez

Conjeturar… ¡Tratando de saber!

Autor por Emilio Silvera    ~    Archivo Clasificado en Teorías ¿Imposibles?    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El principio antrópico y otras cuestiones

Resultado de imagen de El Principio Antrópico

El Universo! ¿Sabría que íbamos a venir? : Blog de Emilio Silvera V.

¡El Universo! ¿Sabría que nosotros íbamos a venir? Debe ser así, ya que, en caso contrario, habría que preguntarse: ¿Si no lo sabía por qué hizo que las estrellas fabricaran los elementos de la vida?

Parece conveniente hacer una pequeña reseña que nos explique que es un principio en virtud del cual la presencia de la vida humana está relacionada con las propiedades del Universo.  Como antes hemos comentado de pasada, existen varias versiones del principio antrópico.  La menos controvertida es el principio antrópico débil, de acuerdo con el cual la vida humana ocupa un lugar especial en el Universo porque puede evolucionar solamente donde y cuando se den las condiciones ademadas para ello.  Este efecto de selección debe tenerse en cuenta cuando se estudian las propiedades del Universo.

 

Resultado de imagen de El Principio Antrópico

 

¿Controlados por entidades superiores… ¡Creo que no! El único control existente sobre nosotros es la propia Naturaleza, el UNiverso en fin. Independientemente de que cada uno de nosotros tengamos una pequeña parcela en la que podemos decidir, lo cierto es que, estamos a merced de grandes fuerzas y acontecimientos que no podemos evitar. Simplemente formamos parte (una pequeña parte) de un algo mucho mayor.

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida.  La implicación de que el Universo fue de alguna manera diseñado para hacer posible la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que, nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida. Sin embargo, algunos han tratado de hacer ver lo imposible.

 

 

“Basado en las propuestas del premio Nobel de física Paul Dirac sobre los ajustados, sincronizados y muy precisos valores de las constantes de la naturaleza, los físicos actuales comienzan a valorar aquello que han denominado el “principio antrópico¨, es decir, poco a poco, a lo largo de los años han entendido que siempre quedará un espacio de información faltante cuando intentamos teorizar o conceptualizar los inicios del universo supeditados exclusivamente sobre la capacidad contenida en las leyes de la física para explicar dichos inicios.”

 

El principio antrópico y el lugar del hombre en el universo. ¿Providencia, azar o multiuniverso? (1.ª parte) - Por Alfonso Ropero

 

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la Naturaleza y entrar en el juego virtual de ¿Qué hubiera pasado si…? Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal a cual manera para ocurrir de ésta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para la Humanidad y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual, solo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto.  Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza ¿Quién sabe lo que pasará mañana?

 

Precisan el número misterioso que da forma al universo • Tendencias21Será la G variable? ¿Será la vida un Principio de la dinámica del Universo? : Blog de Emilio Silvera V.

Si un físico extraterrestre buscara el valor de la Constante de estructura fina (α), sin importar qué guarismos pudiera utilizar, el resultado siempre sería…  número natural sin dimensiones.

El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que este postulado es bastante razonable.

 

Resultado de imagen de El Destino del Universo

 

Lo que ocurra en la naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema Solar y la galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual, es decir, esa parcial disposición que tenemo0s  del “libre albedrío”.

 

Consecuencias biológicas si las constantes variaran con el paso del tiempo : Blog de Emilio Silvera V.

            ¿Cómo sería nuestro mundo si las constantes universales fueran diferentes?

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser  si….,  lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de Hidrógeno, Helio, Carbono, etc.,  para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras  que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la Gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro.  Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

 

               El Sol será una Gigante roja y, cuando eso llegue, la Tierra…

Pero el problema no es tan fácil y, se extiende a la totalidad del Universo que, aunque mucho más tarde, también está abocado a la muerte térmica,  el frío absoluto si se expande para siempre como un Universo abierto y eterno. A estas alturas se ha descartado el Big Chunch y se saber que la expansión del Universo es imparable y que con el paso del tiempo las galaxias estarán más alejadas las unas de las otras hasta que, la energía, las temperaturas sean -273 ºC, un ámbito de muerte, allí nada -ni siguiera los átomos-, absolutamente nada se mueve.

 

 

 Nuevos cálculos sugieren que el cosmos puede estar un poco más cerca a una muerte térmica. Si resulta que finalmente, todo será así, el frío se apoderará de todo y, a -273 ºC, ni los átomos tendrán el menos movimiento, todo quedará como petrificado y yerto… ¡Nuestro Universo habrá llegado a su fin!

Para tener todo ese tumulto — estrellas en erupción, galaxias chocantes, agujeros negros que colapsan – el cosmos es un lugar sorprendentemente ordenado. Los cálculos teóricos han demostrado desde hace mucho que la entropía del universo – una medida de su desorden – no es más que una diminuta fracción de la cantidad máxima permitida.

 

Resultado de imagen de Entropia del UniversoResultado de imagen de Entropia del UniversoResultado de imagen de Entropia del Universo

             Como sistema cerrado, todo el Universo tiende al aumento de su Entropía

Un nuevo cálculo de la entropía mantiene este resultado general pero sugiere que el universo está más desordenador de lo que los científicos habían pensado — y ha llegado ligeramente más lejos en su gradual camino hacia la muerte, según concluyen dos cosmólogos australianos.

Un análisis de Chas Egan de la Universidad Nacional Australiana en Canberra y Charles Lineweaver de la Universidad de Nueva Gales del Sur en Sydney indica que la entropía colectiva de todos los agujeros negros supermasivos en el centro de las galaxias es unas 100 veces mayor de lo anteriormente calculado. Debido a que los agujeros negros supermasivos son los mayores contribuyentes a la entropía cósmica, el hallazgo sugiere que la entropía del universo también es 100 veces mayor que la anterior estimación, según informaban los científicos el 23 de septiembre en ArXiv.org.

Resultado de imagen de Muerte térmica del Universo

Destino final del universo - Wikipedia, la enciclopedia libre

La Densidad Crítica (Omega negro), la cantidad de materia del universo, determinará su final y como es (cerrado, abierto, plano).

Omega, la Densidad Critica del Universo (la cantidad de materia que contiene), determinará si estamos en un universo plano, abierto o cerrado, y, de eso, dependerá su final.

El irreversible final está entre los tres modelos que se han podido construir para el futuro del Universo, de todas las formas  que lo miremos es negativo para la Humanidad -si es que puede llegar tan lejos-.  En tal situación, algunos ya están buscando la manera de escapar. Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multi-universo. Como algunos otros él dice que existen múltiples universos conectados los unos a los otros.  Unos tienen constantes de la Naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

 

 

Este sistema de inflación autorreproductora nos viene a decir que cuando el Universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible.  Cada burbuja será un nuevo Universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

El escenario que describe la imagen, ha sido explorado y el resultado hallado es que en cada uno de esos universos, como hemos dicho ya, pueden haber muchas cosas diferentes, pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la Naturaleza, pudiendo unos albergar la vida y otros no. Claro que, sólo son pensamientos y conjeturas de lo que podría ser.

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferentes universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista.  Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la Gravedad-Cosmos y la Mecánica Cuántica-Átomo, no será posible  contestar a ciertas preguntas.

El estado actual de la teoría M - La Ciencia de la Mula Francis

¿Existen en realidad, en nuestro Universo las cuerdas vibrantes de la Teoría M, o, simplemente se trata de un ejercicio mental complejo?

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, solo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10 ó 26 dimensiones, allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida  a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del Universo y de las fuerzas que en el actúan.

 

 

Conseguir abrir puertas que nos lleven a otras estrellas, más rápido que la velocidad de la luz pero, sin violar la supremacía de c, que es la que obstenta ese primer puesto que, nuestro universo le dio y nada le podrá quitar nunca, ya que, el universo es así: Los fotones sin masa los más rápidos. Otra cosa será encontrar otros caminos como abrir puertas al Hiperespacio o saber activar Agujeros de Gusano.

Científicamente, la teoría del Hiperespacio lleva los nombres de teoría de Kaluza-Klein y súper gravedad.  Pero en su formulación más avanzada se denomina teoría de supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo, diez dimensiones.  Así pues, trabajando en dimensiones más altas, esta teoría del Hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas.  Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.

 

Resultado de imagen de La Gravedad cuánticaLa teoría cuántica y la Gravedad, dentro de las cuerdas : Blog de Emilio Silvera V.

 

Parece que algo no va, algunos parámetros se presentan difusos, la Gravedad no acabamos de entenderla, el mundo infinitesimal… es raro. Dicen que dentro de la Teoría de cuerdas subyace una teoría cuántica de la Gravedad, es decir, que por fín pueden estar allí juntas ambas teorías sin que surjan infinitos indeseables que no pueden ser renormalizados.

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al al Universo: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil.  Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado.  Sin embargo, la teoría del Hiperespacio permite la posibilidad de explicar todas las fuerzas de la Naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del Hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo.  De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del Hiperespacio.

 

    ¿Veremos por fin, lo grande y lo pequeño unidos por una misma teoría?

No, no será fácil llegar a las respuestas de éstas difíciles preguntas que la física tiene planteadas. Y, sin embargo, ¿cómo podríamos describir lo que en estas teorías han llegado a causar tanta pasión en esos físicos que llevan años luchando con ellas? Recuerdo haber leído aquella conferencia apasionante que dio E. Witten en el Fermilab. Su pasión y forma de encausar los problemas, sus explicaciones, llevaron a todos los presentes a hacerse fervientes y apasionados fans de aquella maravillosa teoría, la que llaman M. Todos hablaban subyugados mucho después de que el evento hubiera terminado. Según contó León Lederman, que asistió a aquella conferencia: “Yo nunca había visto nada igual, cuando Witten concluyó su charla, hubo muchos segundos de silencio, antes de los aplausos y, tal hecho, es muy significativo.

 

Resultado de imagen de La teoría M

La teoría de cuerdas se presenta en diez o en 11 dimensiones,, y, como no las hemos encontrado, ni sabemos como serán esas dimensiones, la representamos de muchas maneras. Ninguna satisfactoria

Claro que, a medida que la teoría ha ido topándose con unas matemáticas cada vez más difíciles y una proliferación de direcciones posibles, el progreso y la intensidad que rodeaban a las supercuerdas disminuyeron hasta un nivel más sensato, y ahora, sólo podemos seguir insistiendo y esperar para observar que nos puede traer el futuro de esta teoría que, es posible (y digo sólo posible) que se pueda beneficiar, de alguna manera, de las actividades del LHC que, en algunas de sus incursiones a ese mundo fantasmagórico de lo infinitesimal, podría -y digo podría- atisbar las sombras que puedan producir las supercuerdas.

 

Dibujo20160630 some formulae from edward witten physics today

“búsqueda de una teoría cuántica de la gravedad en 4D (un espacio-tiempo 3+1) usando las herramientas de la teoría cuántica de campos presenta ciertos problemas sin solución. Para ilustrarlos, Witten nos propone usar dichas herramientas para buscar una teoría cuántica de la gravedad en 1D (un espacio-tiempo 0+1). Más sencillo imposible. La geometría del espacio-tiempo será una curva abierta o una curva cerrada, en ambos casos parametrizada por el tiempo propio.” (según la ciencia de la Mula Francís)

No son pocos los físicos capaces que están empeñados en demostrar esa teoría. Por ejemplo, Físicos de SLAC desarrollan una prueba de marco de trabajo dependiente para la Teoría de Cuerdas Crítica. La Teoría de Cuerdas resuelve muchas de las cuestiones que arruinan la mente de los físicos, pero tiene un problema importante — no hay actualmente ningún método conocido para comprobarla y, si las energías requeridas para ello, es la de Planck  (1019 GeV), la cosa se pone fea.

 

 

Está claro que, al tratar todas estas hipotéticas teorías, no pocos, han pensado que, algún día, se podría realizar el sueño de viajar por el Hiperespacio y, de esa manera, se habría logrado el medio para escapar de la Tierra cuando el momento fatídico, en el cual el Sol se convierta en gigante roja, no podamos seguir aquí.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el Hiperespacio (El Hiperespacio en ciencia ficción es una especie de región conectada con nuestro universo gracias a los agujeros de gusano, y a menudo sirve como atajo en los viajes interestelares para viajar más rápido que la luz), si llegara a ser posible, podría proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos de la muerte de este Universo cuando al final llegue el frío o el calor.

 

GRAVEDAD CUANTICA

        También en la teoría de supercuerdas está incluida ¡la Gravedad-Cuántica! Otra Ilusión

“La gravedad cuántica es el campo de la física teórica que procura unificar la teoría cuántica de campos, que describe tres de las fuerzas fundamentales de la naturaleza, con la relatividad general, la teoría de la cuarta fuerza fundamental: la gravedad.”

Esta nueva teoría de supercuerdas, tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas, podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de Gusano que unan partes distantes de nuestro Universo.  Por desgracia, los resultados son desalentadores.  La energía requerida excede con mucho cualquier cosa que pueda  existir en nuestro planeta.  De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos.  Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el Hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Qué aún tardará mucho? Sí, pero el tiempo es inexorable y….,  la debacle llegará.

 

Magnetar? Un objeto espacial ha emitido pulsaciones cada 22 minutos por 30 años | WIRED

Se repite la potente emisión de radio cerca de la Tierra

No todos los magnetares producen ondas de radio, aunque sí emiten cantidades extraordinarias de radiación gamma y X.

“Un objeto descubierto por el ICRAR, al que nombraron GPM J1839−10, emite un pulso de radio transitorio de 22 minutos cuyas señales varían en brillo y magnitud. De acuerdo con los datos obtenidos, lleva activo de manera ininterrumpida por tres décadas y su origen se encuentra a 15 mil años luz de distancia, en la constelación de Scutum (el escudo).”

No existen dudas al respecto, la tarea que nos hemos impuesto es descomunal, imposible para nuestra civilización de hoy pero, ¿y la de mañana, no habrá vencido todas las barreras? Creo que, el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, solo necesita tiempo y, como nos ha demostrado DA14 en el presente, ese tiempo que necesitamos, está en manos de la Naturaleza y, nosotros, nada podemos hacer si ella, no nos lo concede. Y, si por desventura es así, todo habrá podido ser, un inmenso sueño ilusionante de lo que podría haber sido si…

¿Dónde estará el límite? ¡No hay límites!

Emilio Silvera Vázquez

Preguntamos pero, ¿sabemos responder? II

Autor por Emilio Silvera    ~    Archivo Clasificado en Bioquímica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Hallan la galaxia más lejana - Internet Agencia

Los astrónomos han confirmado mediante observaciones espectroscópicas que los átomos son realmente los mismos en cualquier lugar del Cosmos, Un átomo de Carbono en la galaxia Andrómeda es exactamente igual que un átomo de Carbono de la Galaxia Vía Láctea, son idénticos y también, idénticos, a los átomos de Carbono de la Tierra. Cinco elementos químicos desempeñan un papel estelar en la Biología terrestre:

Carbono

Atomo de carbono | PPT | Descarga GratuitaGori-Gori

Oxígeno

 

Átomo de hidrógeno - Wikipedia, la enciclopedia libre

Hidrógeno

 

9,000,000+ vectores de Átomo de nitrógeno, imágenes vectoriales | Depositphotos

 

Nitrógeno

 

Fósforo en 3D

Fósforo

Estos elementos están entre los más abundantes del Universo. Sin embargo, no siempre fue asíHubo un tiempo, antes de que nacieran las primeras estrellas, que en el Universo todo era Hidrógeno y Helio, los materiales primordiales a partir de los cuales, pudieron surgir todos los demás en los hornos nucleares de las estrellas y en las explosiones supernovas.

 

  ¿La Vida? Sí es un delicado equilibrio que hace la Naturaleza para que pueda existir

Todas las leyes de la física nos muestran que la existencia y sostenimiento de la vida se asientan en equilibrios y medidas o cantidades específicas. La estructura general del universo, el lugar de la Tierra en el mismo, las características materiales de ésta –aire, luz, agua, etc.–, se basan en propiedades esenciales para nuestra supervivencia y, sobre todo eso… ¡El Carbono!

 

PORQUE ES IMPORTANTE EL CARBONO PARA LA NATURALEZA Y LOS SERES VIVOS

 

El carbono ayuda a regular la temperatura de la Tierra, hace posible la vida, es un ingrediente clave en los alimentos que nos sustentan y proporciona una fuente importante de energía para impulsar nuestra economía global. El ciclo del carbono es un viaje continuo desde la atmósfera al suelo terrestre y de vuelta

El Carbono es el elemento auténticamente vital. Merece un lugar de honor debido a una propiedad química única: los átomos de Carbono (como tantas veces expliqué aquí) pueden unirse para formar moléculas de cadena extendida, o polímeros, de variedad y complejidad ilimitadas. Las Proteínas y el ADN son dos ejemplos de dichas moléculas de cadena larga.

 

Hay que recordar que todas las especies que han vivido en la Tierra, sin excepción, están basadas en el Carbono

Si no fuera por el Carbono, la vida como la conocemos sería imposible. Probablemente sería imposible cualquier tipo de vida. Soy muy remiso (aunque no descarto nada), a que existan formas de vida que no estén basadas en el Carbono. De hecho, todos los seres vivos que conocemos que existen en la Tierra están, como nosotros, basados en el Carbono.

 

Concretan la primera detección de carbono en el Universo primitivo - El Periódico

Concretan la primera detección de carbono en el Universo primitivo

Hasta el momento, los científicos pensaban que era imposible detectar este elemento en las estrellas más antiguas

Cuando el Universo “empezó” con el “Big Bang”, el Carbono estaba completamente ausente. El intenso calor del nacimiento cósmico impedía cualquier núcleo atómico compuesto. En lugar de ello, el material cósmico consistía en una sopa de partículas elementales tales como protones y neutrones que pudieron conformar los núcleos de átomos de hidrógeno. Sin embargo, a medida que el universo se expandía y enfriaba durante los primeros minutos, las reacciones nucleares transmutaron parte del hidrógeno en helio.

Proceso triple-alfa - Wikipedia, la enciclopedia libre

 

El proceso triple alfa es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Esta reacción nuclear de fusión solo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio

Muchos millones de años más tarde, en las estrellas, por algo que se llama “proceso triple Alfa”, surgió el Carbono en el Universo. No siendo el tema aquí el de explicar como se llega en las estrellas  hasta el Carbono a partir del helio, seguiremos hablando de la química cósmica.

La Química es algo más que unos tubos de ensayo, y, está presente de manera natural por todo el espacio interestelar. Allá por los 70 me llamó poderosamente la atención el descubrimiento de moléculas de amoníaco y de agua en el espacio exterior. ¿Cómo llegaron a llí? Bueno, todos conocemos esas inmensas nubes estelares que llamamos Nebulosas y, en ellas, se producen, a partir de materiales sencillos, esos cambios que tan poderosamente llaman nuestra atención.

 

Determinacion de la formula de la molecula de oxigeno. Enlaces Covalentes

 

El timo de átomo más común en el universo, después del hidrógeno y el helio, es el oxígeno. El oxígeno puede combinarse con hidrógeno para formar grupos grupos oxhidrilos (HO) y moléculas de agua (H2O), que tiene una marcada tendencia a unirse a otros grupos y moléculas del mismo tipo que encuentren por el camino, de forma que poco a poco se van constituyendo pequenísimasm partículas compuestas por millones y millones de tales moléculas. Los grupos oxhidrilo y las moléculas de agua pueden llegar a constitur una parte importante del polvo cósmico. Allá por el año 1965 se detectó por primera vez grupos oxhidrilo en el espacio y se comenzó a estudiar su distribución. desde entonces, se han encontrado allí, moléculas más, complejas que contienen átomos de carbono, de hidrógeno y de oxígeno. También átomos de calcio, sodio, potasio y hierro han sido detectados al observar la luz que dichos átomos absorben.

 

 

Alrededor de las nebulosas planetarias Tc-1 y M1-20, entre 600 y 2.500 años luz de la Tierra, un equipo de investigadores del Instituto e Astrofísica de Canarias(IAC) ha hallado por primera vez evidencias de fullerenos complejos, denominados «cebollas de carbono», las moléculas más complejas observadas hasta el momento en el espacio exterior. Un hallazgo que tiene importantes implicaciones a la hora de entender la física y química del Universo y del origen y composición de las bandas difusas interestelares (DIBs), uno de los fenómenos más enigmáticos de la astrofísica.

 

Primera detección de una molécula interestelar con tres átomos de oxígeno

Algunas de las moléculas descubiertas en las Nebulosas son esenciales para la vida

Actualmente, la lista de las moléculas descubiertas en el espacio es larga y más de cien sustancias químicas la adornan, siendo muchas de esas moléculas interestelares orgánicas. La más abundante es el monóxido de carbono, pero también hay abundancia de acetileno, formaldehido y alcohol. También se han detectado moléculas orgánicas más complejas, tales como aminoácidos y HAP (hidrocarburos aromáticos policíclicos). Ahora está claro que no sólo abunda en todo el Universo elementos que favorecen la Vida, sino que también lo hacen muchas de las moléculas orgánicas realmente utilizadas por la vida. Con miles de millones de años disponibles para que la química cósmica pudiera generar dichas sustancias, ha habido tiempo más que suficiente para que estas se formen en las nubes moleculares gigantes de las que emergen las estrellas y los sistemas solares como el nuestro.

 

Resultado de imagen de NGC 7822 en Cefeo

Nubes Moleculares Gigantes  en este caso (NGC 7822 en Cefeo). Colapsos gravitacionales, estrellas nuevas, vientos estelares, abundante radiación ultravioleta, todas esas fuentes de energías que dan lugar al nacimiento de estrellas nuevas, hacen también posible que, los materiales se mezclen y sufran mutaciones de simples a complejos y, a partir de ellos, nacen los nuevos sistemas planetarios y…¡la Vida!

Que en un principio, sin temor a equivocarnos podemos decir que la génesis de la vida ha sido posible a partir de lo que en el espacio pasó, ¿Qué duda nos puede caber? Incluso no se descarta que las semillas que trajeron la vida al planeta Tierra fueran transportadas por cometas que hicieron impacto en la Tierra regando de materiales biológicos el planeta que, miles de millones de años más tarde, evolucionaron y florecieron para surgir en sus formas diferentes.

Cometa West cerca del Sol, 1976 | NASA Images

           El cometa West, con sus colas de plasma y polvo

Los Cometas que a pesar de todo lo que sabemos de ellos, siguen siendo algo enigmáticos, incluso algunos que han sido minuciosamente observados durante siglos. Muchos son los que dicen que llevan la semilla de la Vida con ellos y, de vez en cuando, la siembran en algún planeta que, como la Tierra, recibe sus esporádicas visitas.

 

Cuando el sol se convierta en una nebulosa planetaria y #SaludSinBulos

 

Mucho se podría hablar aquí de cómo llegaron a formarse los cometas a partir de aquella Nebulosa planetaria pero, no siendo el tema de hoy, lo dejaremos en lo que ya hemos explicado y que, de manera muy simple y general, os dará una idea de lo que en el Universo puede pasar y de cómo, todo se confabula para que la vida, sea posible.

En la parte primera hemos hablado de los super-microbios y de otras cuestiones que nos acercan al saber, al menos, de cómo hemos tratado de conocer el origen de la Vida en nuestro mundo, una pregunta que más o menos ha quedado contestada pero, a medias, toda vez que, contestar a la pregunta primera de… ¿Qué es la vida? no he podido, me faltan conocimientos para ello.

 

Para documentarme, he leído sobre el misterioso origen de la vida, he tratado de saber qué es la vida, he buceado en la historia de las moléculas antiguas, he dado un largo paseo por el Edén de los microbios y sus dominios, he tratado de estudiar lo que es el principio de generación biológica y química, a todo ello, he añadido meros conocimientos del hueco de entropía y la Gravedad como fuente de Orden, He querido saber sobre el árbol de la vida y me he querido enterar de qué hallaron los expertos en las rocas antiguas, qué fósiles había allí como huella de la vida del pasado, también procuré saber si era posible la generación expontánea y sobre “la sopa primordial”. Me interesé sobre el Azar en relación con el Origen de la Vida.

Resultado de imagen de Aquellas primeras células replicantes que trajeron la vida

 

La célula. 1. Introducción. Origen de los eucariotas. Atlas de Histología Vegetal y AnimalEvolución. Linajes celulares. Procariotas. Web de evolución de la Universidad de Vigo

                              Los precursores de las primeras células procariotas

También sobre las células replicantes que nos trajeron la vida, el código genético de la reproducción, el ARN y el ADN. No me olvidé del polvo de Estrellas y de la Química cósmica para hacer posible una génesis a partir del espacio exterior y, en fin, muchos espacios y muchas razones más que me han llevado a conocer, lo que creemos que la vida es. Sin embargo, a pesar de todo eso, con algunos conocimientos más de los que tenía hace veinte o treinta años sobre el tema, sigo sin saber contestar la pregunta:

¿Qué es la Vida? ¿Quién puede contestar a eso?

Emilio Silvera Vázquez