viernes, 20 de junio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Diferentes maneras para no saber lo que el TIEMPO es.

Autor por Emilio Silvera    ~    Archivo Clasificado en Sin categoría    ~    Comentarios Comments (15)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

PARTICIPÓ EN EL CARNAVAL DE LA FÍSICA

 

Reglas para participar en el Carnaval de la Física | Gravedad Cero

 

 

¿Qué es el Tiempo?

 

Espacio-tiempo - Wikipedia, la enciclopedia libreLas primeras estrellas en la historia del universo

 

Con el Big Bang nació el Tiempo y cuando se produjeron los nacimientos de las primeras estrellas, se marcaron los primeros 200 millones de años desde aquel acontecimiento primero.

Bueno, se podría decir que es la dimensión que permite distinguir entre dos sucesos que ocurren en el mismo punto del espacio y que de otra forma serían idénticos. El intervalo entre dos de esos sucesos constituye la base de la realidad del tiempo. Claro que, para propósito más generales, nos agarramos a la rotación de la Tierra sobre su eje que nos sirve para definir las unidades del reloj, es decir, el día. También la órbita de la Tierra alrededor del Sol es utilizada por nosotros para definir las unidades del calendario que conforma un año. Para fines científicos, los intervalos de tiempo son ahora definidos mediante la frecuencia de una radiación electromagnética especificada (ya hemos hablado aquí del reloj de Cesio).

 

                                                     El meteorito que devastó una ciudad y pudo haber inspirado la leyenda de Sodoma y Gomorra - BBC News Mundo

 

Claro que, en esto del Tiempo, no podemos estar seguros de nada, se nos puede acabar en cualquier momento y por cualquier causa inesperada. Los físicos se refieren al tiempo de generación para expresar el promedio transcurrido entre la emisión de un neutrón por fisión y la fisión producida por ese neutrón.

 

La Teoría de la Relatividad: Las escalas de PlanckGAE UNAM: Gravitación y Altas Energías - Cuando uno empieza a estudiar física, seguirle la pista a las unidades parece primero algo molesto; pero pronto se vuelve una herramienta crucial. No tendría

 

También tenemos el Tiempo que necesita un fotón (viajando a la velocidad de la luz, c) para moverse a través de una distancia igual a la Longitud de Planck, es decir, Lp = √(Gћ/h5), el valor de este Tiempo de Planck es del orden de 10-43 segundos. En la cosmología del Big-Bang , hasta un Tp después del instante inicial, es necesario usar una teoría cuántica de la Gravedad para describir la evolución del universo.

La importancia del Tiempo de Reverberación – Estudio 15Sonido directo, reverberación y distancia crítica. - Centro Auditivo Cuenca, audífonos Valencia

El Tiempo de reverberación se refiere al Tiempo necesario para que la densidad de energía de un sonido que es 106 veces más potente que el umbral de audición disminuya hasta el propio umbral de audición, es decir,  una disminución de 60 decibelios. Es una característica importante de un auditorio. El valor óptimo es proporcional a las dimensiones lineales del auditorio.

Leer más

Si las constantes fueran variables en el teimpo y en el espacio…mala...

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

constante de Estructura Fina:
La Mecánica Cuántica: La estructura fina del hidrógenoEl nuevo valor más preciso de la constante de estructura fina está a 5.4  sigmas del anterior - La Ciencia de la Mula Francis

Constante universal que está relacionada con el desplazamiento de los niveles de energía de un átomo que presenta estructura fina. Su valor es α = 2π e2 /hc, donde e es la carga del electrón, h la constante de Planck, y c la velocidad de la luz en el vacío.

 

               Constante Estructura FinaCiencias Planetarias y Astrobiología : La constante de estructura fina en nuestro Universo

 

Hemos podido leer por ahí, artículos diversos que nos dicen: “Estudios realizados con el Telescopio…en…, han venido a confirmar que, la constante de estructura fina fue más pequeña en el pasado, cuando el universo era más joven. Otros, sin embargo, nos han dicho lo contrario y dicen que la constante de estructura fina era mayor en el pasado. Tales discrepancias, al parecer, son debidas a que, cada grupo investigador lo hicieron de una parte distinta del Universo. Sin embargo, hay otros muchos que no creen en una constante de estructura fina variable (me cuento entre ellos), ya que, como decía Einstein, si el Universo no es igual en todas partes y en todo tiempo… Sino ¡qué chapuza de universo!

 

ESPRESSO pone a prueba las constantes de la Física | Instituto de Astrofísica de Canarias • IAC

     No son pocas las veces que se han puesto a prueba las constantes de la física

Algunos grupos de científicos sugieren que las variaciones en la constante de estructura fina nos dicen que las leyes de la física no son iguales en todas partes y, cuando leo algo así, me pregunto qué clase de físicos son estos que ponen en duda cuestiones que, como la constante α, han sido más que estudiadas a lo largo de la historia de la Física y, el resultado, es bien conocido.

De todas las maneras, una cosa está muy clara y no deja margen para las dudas: Si las constantes universales variaran con el paso del Tiempo, el Universo también lo haría, y, que sepamos, el Universo se manteiene constante con sus leyes para que nada varíe.

El descubrimiento de los cuásares - NaukasDescubren el primer cuásar del Universo

 

Los primeros quásares, descubiertos a finales de 1950, fueron identificados como fuentes de una intensa radioemisión. En 1960 los astrónomos observaron objetos cuyos espectros mostraban unas líneas de emisión que no se podían identificar. En 1963, el astrónomo estadounidense de origen holandés Maarten Schmidt descubrió que estas líneas de emisión no identificadas en el espectro del quásar 3C 273 eran líneas ya conocidas pero que mostraban un desplazamiento hacia el rojo mucho más fuerte que en cualquier otro objeto conocido.

Una de las cuestiones más controvertidas en la cosmología es porque las constantes fundamentales de la naturaleza parecen finamente ajustadas para la vida. Una de estas constantes fundamentales es la constante de estructura fina o alfa, que es la constante de acoplamiento de la fuerza electromagnética (usualmente denotada α, es un número que determina la fuerza de una interacción) y equivale a 1/137,03599911.

 

                                                             

 Los quásares son los objetos más lejanos del universo y en ellos se producen los sucesos más espectaculares del universo antiguo, debido a inmensos agujeros negros que habitan en su interior. Allí, se pidrían buscar muchas respuestas a preguntas que aún, no han sido contestadas.

Era una cuestión más o menos de rutina para John Webb, de la Universidad de Nueva Gales del Sur, y sus colegas. Se trataba de estudiar el comportamiento de una oscura constante de la naturaleza nada fotogénica, la constante alfa, fundamental para comprender la propagación de ondas electromagnéticas, como lo son las ondas de luz. Se le llama “la constante de estructura fina”, y en el trabajo usaron dos telescopios, uno en el norte, el telescopio Keck en Mauna Kea, Hawai, y otro en el sur, el Very Large Telescope (VLT) en Paranal, Chile. Las observaciones se referían a objetos extremadamente luminosos del pasado distante del cosmos, llamados quásares.
                                                  Telescopio de Keck imagen de archivo. Imagen de estrella - 49390231

                                                          Telescopio Keck, en Hawaii

 

                                              

                                              Very Large Telescope, en Chile

Entonces, la sorpresa sobrevino. De acuerdo a los datos, hace 10 mil millones de años alfa parecería haber sido mayor en la dirección sur de nuestro planeta, y más pequeña en la dirección norte. Esto consolidaba lo que por más de 20 años han hallado algunos investigadores: que la estructura fina  del universo varía con el tiempo.
Una constante que varía es un oximoron. (Un oxímoron es una figura retórica en la que aparece una contradicción, combinándose dos palabras o expresiones de significado opuesto y que dan lugar a un sentido nuevo.).
                                                       El truco de un Premio Nobel para poder estudiar cualquier cosa de manera sencilla

ES un secreto bien guardado, pero sabemos la respuesta a la vida, el universo y todo. El nº  es 1/137.

Este número inmutable determina cómo se queman las estrellas, cómo ocurre la química e incluso si existen átomos. El físico Richard Feynman , que sabía un par de cosas al respecto, lo llamó “uno de los mayores misterios de la física: un número mágico que nos llega sin comprenderlo”.

El hecho de que una “constante” universal varíe de este modo crea un nuevo escenario para nuestro conocimiento de la ciencia. No por nada Richard Feynman se refirió a ella como “one of the greatest damn mysteries of physics.”
                                               Estrella - Wikipedia, la enciclopedia libre
La variación encontrada en el análisis de Webb fue de una en cien mil partes. Si la constante de estructura fina fuera sólo un 4% mayor o menor, las estrellas no podrían crear reacciones nucleares creando en sus interiores los átomos de carbón y oxígeno, los elementos sobre los cuales se basa la vida como la conocemos

No será la constante más famosa del mundo, pero sin su valor actual ni siquiera estaríamos aquí. Ahora descubrimos que podría ni siquiera ser constante.

                                                   Constante de Estructura Fina | Stargazer

Estas son las cosas que se comentan de la constante de estructura fina que, como se ha dicho otras veces aquí, es la que guarda los secretos de ¡tantas cosas!, es el 137, es la h de Planck, la c de Einstein y la e de Dirac, es decir, ahí están implicadas el cuanto de acción de Planck, la mecánica cuántica, la velocidad de la luz en el vacío, la relatividad especial de Einstein, y, también el electrón de Dirac. Venir a estas alturas a decirnos que dicha constante es variable en el tiempo y el espacio…da que pensar. Pero sigamos.

 

Divulgación de la Ciencia: La constante de estructura fina

 

La constante de estructura fina o constante de estructura fina de Sommerfeld, normalmente representada por el símbolo α, es la constante física fundamental que caracteriza la fuerza de la interacción electromagnética Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.

La expresión que la define  es:

 \alpha = \frac{e^2}{\hbar c \ 4 \pi \epsilon_0} = 7,297 352 568 \times 10^{-3} = \frac{1}{137,035 999 11} .

donde e es la carga elemental,  \hbar = h/(2 \pi) es la es la constante reducida de Planck,  c es la velocidad de la luz  en el vacío, y ε0 es la permitividad del vacío.

 

¿Brillarían las estrellas de la misma manera si la constante de estructura fina fuese variable? Y, nosotros, ¿estaríamos aquí? El resultado de las dos respuestas sería que NO.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

 

                                           Ciencias Planetarias y Astrobiología : La constante de estructura fina en nuestro Universo

         Existen algunas más pero, todas son intocables, si ellas varían las consecuencias serían funestas

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por m3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

 

La Nebulosa del Capullo desde CFHT

                    ¿Qué provoca los colores de la Nebulosa del Capullo?

La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.

 

                                                         Todos tenemos tendencia a interesarnos por alguna cosa : Blog de Emilio Silvera V.

 

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, β, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, α, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

 

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los microcristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

Porque, ¿qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas. La constante de estructura fina están por todas partes.

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de α versión β, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de α, entonces, a menos que  αF > 0,3 α½, los elementos como el carbono no existirían.

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

 

http://apod.nasa.gov/apod/image/1003/m78_torregrosa.jpg

Tampoco las Nubes moleculares en Orión, lugar cercano a nuestra casa, serían iguales si α fuese variable

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

En fin, que nuestro Universo es como es porque las constantes fundamentales son las que son.

Emilio Silvera Vázquez

De la ciencia y de la vida misma

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El siglo XIX fue vital para la ciencia. Aunque la ciencia ya había mostrado para entonces su capacidad única para estudiar qué sucede en la naturaleza y qué principio (o leyes) la gobiernan, y contaba por entonces con una larga lista de teorías, datos y héroes científicos, no se había convertido todavía en una gran empresa, en la “profesión” que terminaría siendo.

PROFESIONES RELACIONADAS CON CIENCIAS SOCIALES by Lizeth ArevaloLos científicos piensan que su profesión es desconocida para la sociedad

La “profesionalización” e “institución” de la ciencia, entendiendo por tal que la práctica de la investigación científica se convirtiese en una profesión cada vez más abierta a personas sin medios económicos propios, que se ganaban la vida a través de la ciencia y que llegasen a atraer la atención de gobiernos e industrias, tuvo su explosión a lo largo de 1.800, y muy especialmente gracias al desarrollo de dos disciplinas, la química orgánica y el electromagnetismo. Estas disciplinas, junto a las matemáticas, la biología y las ciencias naturales (sin las cuales sería una necedad pretender que se entiende la naturaleza, pero con menos repercusiones socio-económicas), experimentaron un gran desarrollo entonces, tanto en nuevas ideas como en el número de científicos importantes: Faraday, Maxwell, Lyell, Darwin y Pasteur, son un ejemplo. Sin olvidar a otros como Mendel, Helmholtz, Koch, Virchow, Lister o Kelvin, o la matemática de Cauchy, de Gauss, Galois, Fourier, Lobachevski, Riemann, Klein, Cantor, Russell, Hilbert o Poincaré. Pero vamos a pararnos un momento en Faraday y Maxwell.

 

                               Palabras Electricidad, Magnetismo, óptica. Fondos Abstractos, Matriz Abstracta Como Fondo. Campo Estelar En El Espacio Profundo A Muchos Años Luz De La Tierra. Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De

Para la electricidad, magnetismo y óptica, fenómenos conocidos desde la antigüedad, no hubo mejor época que el siglo XIX. El núcleo principal de los avances que se produjeron en esa rama de la física (de los que tanto se benefició la sociedad -comunicaciones telegráficas, iluminación, tranvías y metros, etc.-) se encuentra en que, frente a lo que se suponía con anterioridad, se descubrió que la electricidad y el magnetismo no eran fenómenos separados.

Leer más

La Naturaleza, Nosotros, y, el Tiempo.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La física y sus 4 fuerzas fundamentales

 

Las leyes de la naturaleza son las mismas en cualquier lugar de nuestro universo; todo está formado por partículas elementales que se unen para formar núcleos, átomos, células y materia. Todo ello, se produce en un medio que no conocemos bien del todo, al parecer existen algunos parámetros desconocidos que hacen que las cosas sean como son. Algo puede estar permeando todo el espacio y no sabemos lo que pueda ser, existen lo que llamamos energía y fluctuaciones de vacío que no sabemos bien lo que puedan ser, hay (según nos dicen) más materia de la que podemos ver, y, tanto el mundo infinitesimal de lo cuántico como el macrocosmos, existen fenómenos que debemos descubrir si queremos saber, lo que la Naturaleza es.

 

La Cueva Flauta de Caña en Guilin, Guangxi, China | blogdepelusitaCueva de la Flauta de Caña - EcuRed

 

La cueva Reed Flute de Guilin, China fue descubierta durante la Dinastía Tang hace casi 1,300 años. Y, de la misma manera, hemos descubierto otras maravillas en el mundo físico. Leucipo y Demócrito conjeturaron, 45o años a. C., que la materia estaba hecha de entidades indivisibles, los átomos y, Platón, enseñaba que el mundo material sólo era la sombra de la realidad.

 

 

El principio de constancia de la velocidad de la luz — Cuaderno de Cultura Científica

 

Einstein se inspiró en la invariancia de la velocidad de la luz para regalarnos su teoría de la relatividad especial con su sencilla y asombrosa fórmula  E = mc2, que nos dice la igualdad entre masa y energía. Nos dijo cómo se ralentizaba el tiempo al viajar más rápido y, con su teoría de la relatividad general, nos dejó una profunda lección de cómo se formula una teoría de la máxima eficacia mediante unas ecuaciones de bella factura y, sobre todo, de un extenso e inmenso mensaje que hoy, 100 años después, aún está dando sus frutos.

 

 

Cheddar Gorge sunset (1553) - Don Bishop PhotographyWhats on Bath - Cheddar Gorge Caves

 

Cheddar Gorge es el mas grande cañón británico que se encuentra dentro de las Cavernas Cheddar, donde en 1903 se descubrió el esqueleto humano mas antiguo y completo que data de 9,000 años de antigüedad. El poner estas imágenes que, al parecer, nada tienen que ver con los temas aquí tratados, es para hacer ver que, son muchas las cosas que desconocemos y que están aquí, a nuestro alrededor. Hay cosas que nos llaman la atención y nos hablan de la inteligencia humana: Hace 5.500 años que en Perú y México se cultivaba algodón.

 

Paul DiracArthur Eddington: the champion of relativity | BBC Science Focus Magazine

Los grandes números de Eddington y Dirac, Los números infinitesimales de Planck, y trabajos de otros muchos personajes, tales como Maxwell o Lorentz, son los que, junto a otros de otras disciplinas científicas han facilitado al mundo el avance intelectual del que ahora dispone, y, a lo largo de mis escritos he procurado ir reflejándolos para facilitar al lector datos que no conocía y aspectos interesantes de las ciencias físicas y de otro tipo de saber.

 

 

Las unidades de Planck o unidades naturales son un sistema de unidades propuesto por primera vez en 1899 por Max Planck. El sistema mide varias de las magnitudes fundamentales del universo: tiempolongitudmasacarga eléctrica y temperatura. El sistema se define haciendo que las cinco constantes físicas universales de la tabla tomen el valor 1 cuando se expresen ecuaciones y cálculos en dicho sistema.”

Hamilton Pool una piscina natural formada de por la naturaleza cuando el domo de la caverna colapso, es frecuentada por naturalistas. Una bella piscina natural. Ante la presencia del agua, uno recuerda a aquél filósofo natural, Tales de Mileto (uno de los siete sabios de Grecia) que fue el primero en darse cuenta de la importancia del agua para la vida.

El espacio “vacío” del universo, las fuerzas que lo rigen, la simetría original en el Big Bang, las familias de las partículas con sus quarks, leptones y hadrones (bariones y mesones), y las partículas mediadoras de las fuerzas, gluones, fotones, partículas W y Z y el esquivo gravitón.

Estalactitas que adornan el techo de las cavernas Luray, Virginia, las aguas siguen mostrando un perfecto reflejo. Uno puede pensar en el tiempo que fue necesario para construir lo que arriba podemos contemplar, y, al mismo tiempo, pensar que, hace ahora 40.000 años que los humanos pudimos inventar el lenguaje complejo con la aparición de los seres humanos modernos.

 

 

El Modelo Estándar de la Física de Partículas y las interacciones con sus parámetros discrecionales y sus muchos beneficios con su eficacia como herramienta de trabajo que, a pesar de todo, debemos mejorar. Durante un largo camino de observar el mundo que nos rodea, los científicos han podido llegar a la formulación de modelos que nos hablan de cómo la Naturaleza se comporta en ciertos medios en regiones de lo muy pequeño y, también, en el macromundo del Cosmos de las Galaxias y todo lo que en ellas existe.

Las nuevas teorías de supercuerdas, la teoría M, sus autores y el final que pretenden unificar todas las fuerzas del universo, la materia, la luz y la gravedad (la teoría cuántica de Max Planck con la Relatividad de Einstein), la explicación de “todo” lo que en el Universo es.

También otras veces hemos comentado sobre el principio de incertidumbre de Heisenberg, la función de onda de Schrödinger, el cuanto de Planck, el positrón de Dirac, la exclusión de Pauli, la nueva teoría de Witten, el radio de Schwarzschild que, a partir de las ecuaciones de Einstein dedujo la existencia de agujeros negros con su singularidad y el horizonte de sucesos, punto sin retorno de lo que pueda traspasar sus límites.

Cuenta la leyenda que la Cueva Wookey fue habitada por cavernícolas en Somerset, Inglaterra. Por otra parte, también se cuenta que hace ahora 3.500 millones de años, células vivas microscópicas evolucionaban sobre la Tierra y que, poco después, la división sexual aceleró el ritmo de evolución biológica. Algo más tarde, aparecieron las plantas, el oxígeno envenó la atmósfera de la Tierra y proliferaron los organismos aeróbicos (amantes del oxígeno).

 

 

He dedicado algunas líneas a explicar la teoría de los viajes en el tiempo, permitidos por las ecuaciones de Einstein a través de los agujeros de gusano que nos llevarían desde este universo hasta otros lugares muy lejanos y en otros tiempos distintos. Se habla de la materia exótica que permitiría mantener abierta la boca del agujero para permitir dicho viaje,  Kip S. Thorne y el físico Stephen Hawking  tuvieron largas discusiones sobre si eran o no eran posibles dichos viajes en el tiempo, el primero decía que sí y el segundo argumentaba que tenía que haber una censura temporal que los impediría. Sobre estos viajes que hoy día son pura teoría (no tenemos los medios ni las energías necesarias para poder realizarlos y tampoco la tecnología ni el conocimiento), se han escrito muchas historias y realizado muchas películas dentro del género futurista.

Este lago subterráneo en las cuevas de Mellisani, cerca de Kefalonia, fue encontrado cuando el techo de la cueva se derrumbó tras un terremoto en 1953. Como podeis ver, no siempre es necesario hacer un viaje en el tiempo a través de un agujero de gusano, aquí mismo, por casualidad, podemos encontrarnos con lugares como el de arriba que al haberse formado en otros tiempos, nos llevan a mundos remotos dentro de nuestro propio mundo.

 

 

Es bueno para el ser humano que sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro terminará.

El fin del universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de mis comentarios, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado. En cada uno de estos modelos de universos, el final será distinto…,  claro que para nosotros, la Humanidad, será indiferente el  modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados del Big Crunch, acabarán con nosotros.

La Cueva Lechuguilla, en el Parque Nacional de las Cavernas de Carlsbad, Nuevo México es la quinta mayor caverna descubierta con 120 millas (193 km) de largo y 489 metros (1604 pies) de profundidad, lo cual la hace ser la más profunda en el territorio de Estados Unidos. Aquí estamos hablando de Densidades críticas, de un posible Big Crunch, del final del Universo. Sin embargo, ¿nos hemos parado a pensar en cómo se formaron lugares como el de arriba? ¿Cuánto tiempo se necesitó? Pienso, por ejemplo que, hace ahora 100.000 años que las estrellas adoptaron las formas de las constelaciones reconocibles. ¡El Tiempo!

 

 

Si se produce el Big Cruch, algunos, postulan que habrá una especie de “rebote” o fluctuación y a partir de esa contracción final, se producirá una nueva expansión y comenzará un nuevo universo que, desde luego, nadie sabe, si volverá a ser o tendrá las mismas fuerzas y constantes y materia que este Universo nuestro presente.

Para evitar la desaparición de la Humanidad se está trabajando desde hace décadas. Se buscan formas de superar dificultades que nos hacen presas fáciles de los elementos. La Naturaleza indomable, sus leyes y sus fuerzas, hoy por hoy son barreras insuperables, para poder hacerlo, necesitamos tiempo y saber.

El saber nos dará soluciones para conseguir más energías, viajar más rápido y con menos riesgos, vivir mejor y más tiempo, superar barreras hoy impensables como las del límite de Planck, la barrera de la luz (para poder viajar a las estrellas) y el saber también posibilitará, algún día, que nuestras generaciones futuras puedan colonizar otros mundos en sistemas solares de estrellas lejanas, incluso se podrán habilitar mundos y viajar a otras galaxias, viajar a otro tiempo y, finalmente, viajar para escapar de nuestro destino, a otros universos.

Sí, lo sé, algunos de los que esto puedan leer pensarán que estoy fantaseando, pero la verdad es que no he hablado con más seriedad en mi vida, ya que, si no fuera como estoy diciendo, entonces, ¿para qué tantas calamidades, desvelos y sufrimientos?

Este lago subterráneo cerca de Macan Ché en la Península de Yucatán es uno de los muchos que se consideran regalos de los dioses Mayas, y por tanto, sagrada. Hace 800 años que estaba presente la cultura Olmeca en México, ¿será de aquella época ésta maravilla de la Naturaleza?

 

 

Creo que la Humanidad tiene que cumplir su destino, primero en las estrellas lejanas, en otros mundos dentro y fuera de nuestra galaxia, y después…, ¿quién sabe? Y, a todo esto, no debemos olvidar que para conseguir lo que necesitamos, lo que en verdad tenemos que procurarnos es ¡TIEMPO! Claro que, según lo que podemos ver cada día, una Sociedad deteriorada y mal encaminada, ese tiempo se nos acaba, tenemos que poner remedio y retomar el buen camino para que todo lo que deseamos en nuestro futuro se pueda hacer realidad.

Nos referimos al tiempo en múltiples ocasiones y para distintas situaciones y motivos, como al referirnos a la duración de las cosas sujetas a cambios, época durante la cual ocurrieron unos hechos, edad de los objetos, estación del año, el período de vida de alguien desde que crece hasta que deja de existir, ocasión o coyuntura de hacer algo, cada uno de los actos sucesivos en que dividimos la ejecución de un trabajo, y otros mil temas que requieren la referencia temporal.

La configuración de esta formación de Caliza en este lago subterráneo de México se asemeja a una cascada convertida en piedra. La Naturaleza no tiene prisas, tiene todo el tiempo del mundo para conformar bellas maravillas que, mucho más tarde nosotros encontramos y admiramos. De la misma manera, muy poco a poco, a transcurrido el avance del saber de la Humanidad, recordemos, por ejemplo, que Aristarco de Samos (hace ya mucho tiempo) adoptó la hipótesis de una Tierra girando alrededor del Sol en un universo gigantesco. Eso fue mucho antes de que llegará Copérnico.

 

 

En física, el tiempo es la cuarta coordenada espacial en el continuo espacio-tiempo. En gramática es la categoría que indica el momento relativo en que se realiza o sucede la acción del verbo: pretérito, lo que ha sucedido; presente, lo que sucede en ese momento y futuro, lo que aún no ha sucedido. Nos referimos al tiempo meteorológico para explicar el estado del clima (hace mal tiempo; qué tiempo más bueno hace hoy, etc). En mecánica, el tiempo puede estar referido a las fases de un motor. También están los tiempos referidos a cada una de las partes de igual duración en que se divide el compás musical. En astronomía nos referimos al tiempo de aberración en relación al recorrido de un planeta hasta llegar a un observador terrestre. El tiempo está también en la forma de cálculo horario que empleamos en nuestra vida cotidiana para controlar nuestros actos y evitar el caos (¿qué haríamos sin horario de trenes, de comercio, bancos, oficinas, etc?).

El tiempo es tan importante en nuestras vidas que está presente siempre, de mil formas diferentes, desde que nacemos (cuando comienza “nuestro tiempo”), hasta que morimos (cuando “nuestro tiempo ha terminado”). El tiempo siempre está. Es algo que, simplemente, está ahí. Sin embargo, a pesar de lo importante que es el TIEMPO, no he podido leer nunca una explicación satisfactoria sobre el mismo; una explicación que lo defina con sencillez y claridad sin restarle la importancia que tiene para todos y lo que en realidad es dentro del contexto – no ya de nuestras vidas, simples e insignificantes puntos en la inmensidad del universo – de la naturaleza cósmica de la que formamos parte.

¿Cuánto tiempo ha tenido la Naturaleza para formar  esta pequeña cascada y su entorno en Banff, Canadá? Bueno, seguramente mucho más tiempo del que tuvo Pitágoras para enseñar a sus discípulos que “todo es número” y que, “la Naturaleza es armoniosa”.

 

 

En el año 1.905, Einstein público su teoría de la relatividad especial y desde entonces, el concepto de “tiempo” cambió para el mundo. Minkowski, un antiguo profesor de Einstein, cuando repasó el trabajo de la relatividad especial, se dio cuenta de que a partir de ese momento se tendría que hablar del continuo espacio-temporal; el espacio y el tiempo dejan de estar separados, dejan de considerarse como entidades distintas, para pasar a estar conectados; conexión que, desde el punto de vista matemático, la dan las transformaciones de Lorentz.

Las transformaciones de Lorentz ponen de manifiesto cómo varía el tiempo, considerado como una cuarta coordenada.

Estamos acostumbrados a considerar el mundo como tridimensional. Para especificar exactamente la posición de un objeto en una habitación, por ejemplo un reloj encima de una mesa, partiremos de un ángulo de la habitación e indicaremos las distancias del reloj a las dos paredes que forman el ángulo y la altura respecto al suelo; la posición del reloj queda globalmente determinada por tres números, esto es, tres coordenadas espaciales.

Pero al hacerlo así no tenemos en cuenta el hecho de que el reloj en cuestión, que estaba encima de la mesa a las diez, puede estar en el dormitorio a las once y ser colocado en el mismo punto de la mesa que ocupaba antes a las once y media. Esto no importa cuando se considera un tiempo absoluto y, por tanto, hay un único reloj para todos los observadores, pero resulta esencial cuando sistemas de referencia en movimiento relativo tienen distintos relojes no sincronizables. Por tanto, todo observador tiene un espacio cuatridimensional (el espacio-tiempo) relativo al propio sistema de referencia.

Lost Sea en Sweetwater, Tennessee el lago subterráneo más grande del mundo. Pero, yo al menos considero que es mucho más grande todo lo que nosotros, a lo largo de nuestra evolución, hemos podido descubrir sobre la naturaleza de las cosas, de la materia, de las fuerzas de la Naturaleza y del Universo en su conjunto, y, todo ello, confinados en nuestro mundo, lo cual, no ha podido impedir que salgamos fuera, muy lejos, para ver que ocurre por ahí en las ignotas regiones del Cosmos.

 

 

Las transformaciones de Lorentz son más complejas que las de Galileo, pero tienen la ventaja de eliminar todas las contradicciones halladas anteriormente. Sin embargo, para velocidades muy inferiores a la de la luz, estas nuevas relaciones se reducen a las de Galileo, y sólo se manifiestan grandes diferencias cuando los sistemas de referencia tienen velocidades relativas próximas a la de la luz; entonces, el tiempo transcurre más lentamente para ese hipotético viajero que viaje a esas velocidades relativistas.

La diferencia fundamental entre la mecánica clásica y la mecánica relativista radica en el hecho de que, en el primer caso, la velocidad de un cuerpo es diferente para un observador en reposo y para otro en movimiento, es decir, es un concepto relativo; sin embargo, en el segundo caso la velocidad es un concepto absoluto, no cambia con el movimiento. No obstante, como cociente que es entre dos magnitudes fundamentales, espacio y tiempo, el hecho de que dos velocidades que deben ser diferentes sean iguales obliga a que exista una variación en el espacio y el tiempo. Así, se debe producir un acortamiento de los metros y un ralentizar del tiempo. En la mecánica de Newton, por el contrario, los metros y los segundos son invariables.

 

La Teoría de la Relatividad: 7: Las transformaciones de Lorentz

 

Las transformaciones de Lorentz son un conjunto de ecuaciones que relacionan las coordenadas espacio-tiempo de dos sistemas que se mueven a velocidad constante el uno respecto al otro. Efectivamente, las fórmulas predicen una contracción espacial (contracción conocida como de Lorentz-Fitzgerald) y una dilatación temporal, cuando la velocidad relativa de los dos sistemas se aproximan a la de la luz. Sin embargo, Lorentz se vio obligado a introducir el concepto de tiempo local, que supone que el paso del tiempo varía según el lugar. Einstein se basó en la transformación de Lorentz y la mejoró para el desarrollo de su teoría de la relatividad especial.

 

Imágenes impresionantes las podemos hallar en cualquier parte y, siempre, sin excepción, están presentes los mecanismos de la naturaleza y la luz. En 1572, Tycho Brahe pudo ver el resplandor de una supernova en el cielo, y, por mi parte, cada día puedo ver el resplandor que emana de mi querida esposa que, para mí, brilla mucho más. ¡Qué paciencia tiene conmigo! Me sumerjo en mis escritos y me olvido del mundo.

 

 

El Diccionario Oxford-complutense de Física explica que, cuando se viaja a velocidades relativistas, cercanas a c, se produce lo que conocemos como contracción de Lorentz-Fitzgerald que se concreta en la contracción de un cuerpo móvil en la dirección del movimiento. Fue propuesta independientemente por H. A. Lorentz  (1.853 -1.928) y G. E. Fitzgerald (1.851-1.900) en 1892 para explicar el resultado negativo del experimento de Michelson – Morley. A la contracción se le dio el marco teórico en la teoría especial de la relatividad como antes hemos reseñado. La ecuación está definida de la forma siguiente:

 

De donde se sigue que, L0 es la longitud en reposo (por ejemplo una barra), L es la longitud cuando el objeto se desplaza a velocidad v y c es la velocidad de la luz. La mecánica clásica estudia los fenómenos a una escala tal que v < c, por lo que estos cambios son apreciables.

 

La Naturaleza también tiene sus rarezas

Simultaneidad

Esa variación que experimenta el tiempo en la mecánica relativista cuestiona el concepto de simultaneidad, ya que bajo ese punto de vista no es fácil afirmar que dos fenómenos son simultáneos. Si lo son, deben ocurrir en el mismo instante, y para medir ese tiempo debe emplearse un mismo reloj para cada uno de los sucesos.

Lorentz supuso dos sistemas de ejes coordenados que se mueven uno respecto al otro con velocidad v. Las coordenadas de ambos sistemas están relacionadas entre sí según muestran las ecuaciones siguientes:

 

Siguen otra serie de ecuaciones que, al no ser el presente trabajo de tipo técnico ni para entendidos, no me parece procedente reseñar, y me limitaré a explicaciones escritas, no numéricas que no estarían al alcance de todos.

Así que, en realidad, tanta numerología nos viene a decir que:

  • Los objetos se contraen en el sentido de su marcha si sus velocidades son relativistas (cercanas a c, la velocidad de la luz).
  • El tiempo se dilata para el viajero que ocupe una nave espacial que corre a la velocidad de la luz o similar. Su tiempo transcurre más despacio que el tiempo de los que quedamos en la Tierra.

De esta forma, podemos demostrar cómo el tiempo es distinto para cada persona, lugar o circunstancia, tendremos tiempos unitarios y tiempos universales. El transcurrir del tiempo en el universo está referido a un tiempo uniforme igual para todo y para todos. El transcurrir del tiempo de personas individuales o de grupos, en realidad, puede ser distinto del tiempo de otras personas o de otros grupos.

Lo que llamamos tiempo es otra de las incognitas que tienen que resolver los seres humanos. ¿Existe en realidad el tiempo? ¿Es una abstracción? y, ¿por qué el tiempo no es igual para todos? y transcurre en función de la velocidad a la que viajemos o podamos estar en reposo.

 

 

Así lo demuestra . Son los efectos predichos por la teoría de la relatividad especial de Einstein; los tiempos son relativos al movimiento de los observadores. El reloj viajero es más lento en un factor = ecuación arriba reseñada.

Para poder contestar la pregunta ¿cuándo comenzó el tiempo?, nos vemos obligado a retroceder 13.500 millones de años, hasta lo que conocemos como Big Bang, el origen del universo. Allí, en ese preciso momento, nació el tiempo y el espacio.

El Big Bang es la teoría más acertada del origen y evolución del universo que se originó a partir de un estado inicial de alta temperatura y densidad que, desde entonces, ha estado siempre expandiéndose, y es precisamente esta expansión la que da lugar al espacio (cada vez mayor) que abarca el universo y, al mismo ritmo, crece o transcurre el tiempo inexorable.

La Tierra, nuestro mundo, es una maravilla.

 

El paso del tiempo lo cambia todo; los sistemas se transforman, viven y mueren para dar paso a otros nuevos sistemas. Estrellas que brillan durante miles de millones de años y con el paso del tiempo consumen su material-combustible nuclear y mueren explotando en novas o supernovas para, con su material complejo, contribuir a la formación de nuevas estrellas y planetas e incluso formas de vida.

Todo envejece, se deteriora por la acción de la entropía, del paso del tiempo. Sin embargo, él no cambia, es invariante, continúa su camino mientras que, a su alrededor, las mutaciones son continuas y lo único que permanece inalterable es: el Tiempo.

Me encantaría tener sabiduría para poder exponer de manera más amplia y precisa lo que es el tiempo. Lo que aquí dejo escrito (después de documentarme), es corto y no me deja satisfecho. Cualquier persona mejor preparada lo habría hecho mejor pero, de todas formas, la voluntad que he puesto en este trabajo compensa sus posibles deficiencias y el lector sabrá disculpar las mismas.

De todas las maneras posibles en los que me he detenido a pensar sobre lo que es y supone el tiempo, la que más me impresiona es aquella que me hacer ver claramente que no podemos impedir su transcurrir, que su paso nos llevará hacia la eternidad convertidos en polvo, dejando atrás a los seres queridos que nos gustaría seguir protegiendo, sin llevarnos la certeza de lo que el destino les tiene reservado a sus vidas. Esa incertidumbre me causa una aguda impotencia, casi infinita que, en no pocas ocasiones, llego a sentir como un dolor físico y real causado por un pensamiento profundo del significado y las implicaciones irreversibles que el paso del tiempo nos trae a todos.

 

       

¿Cómo puede existir, a estas alturas, un pueblo dentro de una Cueva?

 

Individualmente hablando, el tiempo está bien mientras nos acompaña en nuestro recorrido a lo largo de nuestras vidas; después él continúa su camino mientras nosotros desaparecemos. Colectivamente, el tiempo es muy importante. Cada uno de nosotros hacemos un trabajo y desarrollamos una actividad que se va sumando a la de los demás. Con el tiempo, el trabajo, ese conocimiento adquirido, continúa aumentando y ese tiempo “infinito” es el que necesitamos nosotros y los que vendrán detrás para resolver problemas muy graves que se presentarán en el futuro y que, de poder o no poder resolverlos, dependerá que la humanidad perdure.

 

El tiempo será la mejor herramienta con la que podemos contar para resolver todos los problemas. Así lo dijo Hilbert:

“Por muy inabordables que parezcan estos problemas, y por muy desamparados que nos encontremos frente a ellos hoy, tenemos la íntima convicción de que debe ser posible resolverlos mediante un número finito de deducciones lógicas. Y para ello, la mejor herramienta es el tiempo; él nos dará todas las respuestas a preguntas que hoy no podemos ni sabemos contestar”.

Es mucho lo que hemos avanzado en los últimos ciento cincuenta años.  El adelanto en todos los campos del saber es enorme. Las matemáticas, la física, la astronomía, la química, la biología genética, y otras muchas disciplinas científicas que, en el último siglo, han dado un cambio radical a nuestras vidas.

 

 

¿Hasta dónde podremos llegar? Ahí tenemos que estar ojo avizor, no podemos consentir que, nosotros mismos, construyamos seres que sean nuestros destructores.

Con el tiempo suficiente por delante… no tenemos límite. Todo lo que la mente humana pueda idear… podrá hacerlo realidad. A excepción, claro está, de las imposibilidades físicas que, en este momento, no tenemos la capacidad intelectual para enumerar, ya que, incluso en ese campo, se avanza para que, poco a poco, y, cada día, podamos creer más en el hecho de que la inmortalidad podría, algún día, ser un hecho cierto a través de la robótica.

 

Por qué se considera al Rey Salomón el hombre más sabio del mundo?

“Imaginar un mundo en el que todos los seres vivos fueran inmortales es una tarea intrigante y compleja. La inmortalidad no solo desafiaría nuestras percepciones actuales de la vida y la muerte, sino que también tendría profundas implicaciones en la biología, la ecología y la sociedad en su conjunto.”

La verdad es que nuestra especie es inmortal. Sí, lo sé, a nivel individual morimos pero…, debemos tener un horizonte más amplio y evaluar una realidad más global y, sobre todo, a más largo plazo. Todos dejamos aquí nuestro granito de arena, lo que conseguimos no se pierde y nuestras antorchas son tomadas por aquellos que nos siguen para continuar el trabajo emprendido, ampliar los conocimientos, perfeccionar nuestros logros y pasar a la fase siguiente. Este es un punto de vista que nos hace inmortales e invencibles, nada podrá parar el avance de nuestra especie, a excepción de nuestra especie misma.

 

 

Ninguna duda podemos albergar sobre el hecho irrefutable de que venimos de las estrellas y de que nuestro destino, también está en las estrellas. de una u otra manera, nuestro destino está allí, formando parte de los átomos que conforman las estrellas, el tiempo, nos devolverá a ellas.

La humanidad necesita más energía para continuar avanzando. Los recursos naturales fósiles, como el petróleo, el gas o el carbón, son cada vez más escasos y difíciles de conseguir. Se ha llegado a un punto en el que se deben conseguir otras energías. Estos combustibles, en su momento cambiaron el rumbo de la Humanidad, sin embargo, están quedando en el pasado, y, a estas alturas se necesitan nuevas fuentes de energía que posibiliten otras formas de avanzar y de profundizar en los secretos de la Naturaleza, y, para eso, sólo necesitamos…Tiempo.

 

                                       Lo conseguimos mediante la replicación de la especie.

 

Sí, es el tiempo el factor que juega a nuestro favor para conseguir nuestros logros más difíciles, para poder responder preguntas de las que hoy no tenemos respuesta, y es precisamente la sabiduría que adquirimos con el paso del tiempo la que nos posibilita para hacer nuevas preguntas, más profundas que las anteriores y que antes, por ignorancia, no podríamos hacer.  Cada nuevo conocimiento nos abre una puerta que nos invita a entrar en una nueva región donde encontramos otras puertas cerradas que tendremos que abrir para continuar nuestro camino. Sin embargo, hasta ahora, con el “tiempo” suficiente para ello, hemos podido franquearlas hasta llegar al momento presente en el que estamos ante puertas cerradas con letreros en los que se puede leer: fusión, teoría M, viajes espaciales tripulados, nuevas formas de materia, el gravitón, la partícula de Higgs, las ondas de energía de los agujeros negros, hiperespacio, otros universos, materia oscura, y otras dimensiones.

 

La Partícula de Higgs que puede estar inmersa en una maraña surgida de las explosiones del LHC. ¿Cuándo aparecerá? Pero, ¿existe?

Todas esas puertas y muchas más nos quedan por abrir. Además, tenemos ante nuestras narices puertas cerradas que llevan puesto el nombre de: genética, nanotecnología, nuevos fármacos, alargamiento de la vida media, y  muchas más en otras ramas de la ciencia y del saber humano.

Aunque es mucho lo que se ha especulado sobre el tema, en realidad, el tiempo sólo transcurre (que sepamos) en una dirección, hacia delante. Nunca ha ocurrido que unos hechos, que unos sucesos, se pudieran borrar, ya que para ello habría que volver en el tiempo anterior al suceso para evitar que sucedieran. Está claro que en nuestro universo, el tiempo sólo transcurre hacia lo que llamamos futuro.

Siempre encontramos las huellas del paso del tiempo, aparecen sutiles efectos que delata el sentido de sun transcurrir, aunque es algo que no se puede ver ni tocar, su paso se deja sentir, lo nuevo lo va convirtiendo en viejo, con su transcurrir, las cosas cambian. La misma Tierra, debido a las fuerzas de marea, con el paso del tiempo va disminuyendo muy lentamente su rotación alrededor de su eje (el día se alarga) y la distancia media entre la Tierra y la Luna crece. El movimiento de un péndulo, con el tiempo disminuye lentamente en su amplitud por las fuerzas de rozamiento. Siempre está presente ese fino efecto delator del sentido del paso del tiempo que va creando entropía destructora de los sistemas que ven desaparecer su energía y cómo el caos lo invade todo.

 

No pocas veces, nosotros mismos, distorsionamos el paso del tiempo con nuestro quehacer. ¡Insensatos!

Nos podríamos hacer tantas preguntas sobre las múltiples vertientes en que se ramifica el tiempo que, seguramente,  ni un extenso libro sería insuficiente para poder contestarlas todas (de muchas no sabríamos la respuesta).

  • ¿Por qué consideramos que el tiempo rige nuestras vidas?
  • ¿Cómo explicarías “qué es el tiempo”?
  • ¿Por qué unas veces te parece que el tiempo “pasa rápido” y otras veces “muy lento”?
  • ¿Crees que el tiempo estaba antes del Big Bang? ¿Por qué?
  • ¿En algún momento se acabará el tiempo?
  • ¿Cómo el ser humano “fue consciente” de la existencia del tiempo?
  • ¿Qué cosa es el tiempo?
  • ¿Por qué no lo vemos ni tocamos pero notamos sus efectos?
  • ¿Por qué la velocidad relativista puede frenar el transcurrir del tiempo?

 

La Naturaleza, Nosotros, y, el Tiempo. : Blog de Emilio Silvera V.Llegará un “tiempo” en que podamos entender lo que el Tiempo es. : Blog de  Emilio Silvera V.

El concepto de tiempo está enclavado en las profundidades y conceptos más avanzados de la física y la astronomía. Sin embargo, su verdadera naturaleza permanece en el misterio. Todo acontece con el transcurso del tiempo que es implacable y fluye continuamente y todo lo que existió, lo que existe y lo que existirá, está sometido a los efectos del tiempo que, desgraciadamente, sí podemos ver. La destrucción provocada por el paso del tiempo es muy real, y tanto en las cosas como en nosotros mismos, el resultado es el mismo: ¡la aniquilación y la muerte!

 

 

El sistema solar, ¿está aislado? En nuestro universo todo está, de una manera u otra, relacionado

Bueno, creo que hay otras formas de mirar el cuadro en el que estamos inmersos y que, nuestro Universo es un Sistema Cerrado que se regenera, y, por eso en las Galaxias las estrellas mueren, nacen Nebulosas de donde nacen nuevas estrellas y de esta manera, el Universo se defiende de la entropía destructora y, de igual forma nosotros, de alguna manera, actuamos igual que el Universo, unos nos vamos para posibilitar que vengan otros que, como las nuevas estrellas vendrán llenos de energía para poder seguir en la lucha de conseguir…nuestro destino, el destino de la Humanidad que, como tantas veces he repetido, está, ineludiblemente, donde está nuestro origen:  ¡las Estrellas!

Emilio Silvera V.

Los secretos de la Naturaleza ¿Los podremos desvelar?

Autor por Emilio Silvera    ~    Archivo Clasificado en El hombre en el Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

¿Qué estará pasando por esa cabecita?

El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo. Un conflicto fundamental caracteriza cada fase. Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior. Análogamente, el psicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño. En un mes, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión, sin comprender que la pelota existe aunque no la vea. Al mes siguiente, esto resultará obvio para el niño.

 

Características de la infancia: 6 etapas de desarrollo físico y mental

https://www.psicologiadelphos.es/fases-de-la-infancia-y-sus-caracteristicas-principales/

Los procesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será.

Esta es la esencia de la dialéctica. Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio universo) pasan por una serie de estadios. Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas. La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio. Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.

 

LAS ETAPAS DEL DESARROLLO

Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”.  Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado. Esta teoría se aplica también a las sociedades o culturas. Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII. Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas. Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a lo cualitativo: los campesinos tomaron las armas, tomaron París y asaltaron la Bastilla.

 

Agua GIF - Encontrar en GIFER

Las transiciones de fases pueden ser también asuntos bastante explosivos. Por ejemplo, pensemos en un río que ha sido represado. Tras la presa se forma rápidamente un embalse con agua a enorme presión. Puesto que es inestable, el embalse está en el falso vacío. El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado  de menor energía. Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.

 

Resultado de imagen de La explosión atómica

 

También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.  De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente. Esto se denomina desintegración radiactiva. Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de Einstein E = mc2. Por supuesto, dicha liberación es una explosión atómica; ¡menuda transición de fase! De nefasto recuerdo por cierto.

Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas. En un libro llamado Pasajes, el autor, Gail Sheehy, destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.

 

Fábricas de estrellas en el Universo lejano

 

Los contornos recubiertos muestran la estructura de la galaxia al ser reconstruida desde las observaciones hechas bajo el fenómeno de lente gravitatorio con el radiotelescopio Submillimeter Array. La formación de nuevas estrellas en el Universo es imparable y, la materia más sencilla se constituye en una estructura que la transformará en más compleja, más activa, más dispuesta para que, la vida, también pueda surgir en mundos ignotos situados muy lejos del nuestro.

 

Sí, todo cambia y nada permanece: transiciones de fases hacia la complejidad

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado. Aquí existe simetría. Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado.  Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.

Rompamos ahora la simetría. Supongamos ahora que el primer comensal toma la copa que hay a su derecha. Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha. Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta.  Cada comensal ha tomado la copa izquierda. De este modo, la simetría izquierda-derecha se ha roto.

 

Resultado de imagen de El niño del espejo le da a su amiguito reflejado la mano derecha y aquel, le saluda, con la izquierda.

 

El niño del espejo le da a su amiguito reflejado la mano derecha y aquel, le saluda, con la izquierda. ¡La simetría especular…! Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.

Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

 

Cadena pp

 En las estrellas se tiene que producir el proceso triple alfa para que exista el Carbono

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados.  Avanza creando en el horno-termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los productos de fisión, como  el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante la conocida fórmula E = mc2. Esta es la fuente de energía que también subyace en la bomba atómica. Es decir, convertir materia en energía.

 

 

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puedo vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución y poder contarlo.

 

Resultado de imagen de Hay cosas que, cambiando... ¡Nunca cambian! La entropía se encarga de ello

Hay cosas que,… ¡Nunca cambian! Son las constantes universales

Pero volviendo a las cosas de la Naturaleza y de la larga vida de las estrellas, sí, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol. Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar, la estrella más cercana a la Tierra (150 millones de Km =  1 UA), con un diámetro de 1.392.530 Km, tiene una edad de 4.500 millones de años, y, como todo en el Universo, su discurrir la va desgastando, evoluciona hacia su imparable destino como gigante roja primero y enana blanca después.

 

El Sol, como gigante roja, engulle a Mercurio

Cuando ese momento llegue, ¿Dónde estaremos? Pues nosotros, si es que para entonces estamos por aquí,  contemplaremos el acontecimiento desde otros mundos. La Humanidad habrá dado el gran salto hacia las estrellas y, colonizando otros planetas se habrá extendido por regiones lejanas de la Galaxia.

El Universo siempre nos pareció inmenso, y, al principio, aquellos que empezaron a preguntarse cómo sería, lo imaginaron como una esfera cristalina que dentro contenía unos pocos mundos y algunas estrellas, hoy, hemos llegado a saber un poco más sobre él. Sin embargo, dentro de unos cuantos siglos, los que detrás de nosotros llegaran, hablarán de universos en plural, y, cuando pasen algunos eones, estaremos de visita de un universo a otro como ahora vamos de una ciudad a otra.

¡Quién pudiera estar allí!

¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco! Que todo nos maravilla o nos da mucho miedo. ¿No era eso mismo lo que sintieron nuestros antepasados cuando oían el trueno en en la tormenta?

 

 Todo lo grande está hecho de cosas pequeñas

Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros.

 

Esta ecuación nos habla de lo que se conoce como masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único número de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!).

Esto significa que tratamos de localizar una partícula con la precisión de una Longitud de Planck,  las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck,  y los efectos de la fuerza gravitatoria entre partículas, así, sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.

Lo cierto es que, esas unidades tan pequeñas, tan lejanas en las distancias más allá de los átomos, son las que marcan nuestros límites, los límites de nuestras teorías actuales que, mientras que no puedan llegar a esas distancias… No podrán avanzar en el conocimiento de la Naturaleza y, tampoco, como es natural, en la teoría de supercuerdas o en poder saber, lo que pasó en el primer momento del supuesto Big Bang, hasta esos lugares, nunca hemos podido llegar.

Emilio Silvera V.