viernes, 13 de junio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Evolución por la Energía

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Universo, a su manera, también es un Ente vivo

No pocas veces hemos explicado aquí que la Entropía mide la cantidad de Orden de un Sistema, y, si el desorden aumenta, también lo hace la Entropía. Es un Principio hace tiempo conocido: El Universo tiende al desorden ya que necesita menos energía para su mantenimiento. Nosotros y todos los organismos vivos, por el contrario, necesitamos energía para el mantenimiento. La energía nos asegura la supervivencia y hace posible la reproducción que garantiza la perpetuidad de la especie. Todos los seres vivos que conocemos están inmersos en la dinámica de un intercambio  constante con el medio al que se tiene que adaptar, cuando se producen cambios drásticos, las consecuencias son fatales para la vida

 

Todo es energía? Fijemosnó en la Tierra : Blog de Emilio Silvera V.

 

El universo entero es energía. En sus formas diferentes la energía cambia continuamente y lo mismo hace que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.

La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad sin energía que hiciera el trabajo más duro, no evolucionarían en el bienestar social y el saber.

 

Resultado de imagen de Qué serála energíaResultado de imagen de Qué serála energía

Sabemos como obtenerla pero…

De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas, que relacionados de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos se presentan fragmentados, divididos en disciplinas, y los científicos que trabajan en cada una de ellas están muy ocupados para leer el resultado obtenido en los otros estudios.

 

Chance Colibri GIF - Chance Colibri Oiseau - Discover & Share GIFs

El Colibrí | Síntesis Tlaxcala

 

Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia desde el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.

 

Resultado de imagen de Plantas generadoras de electricidadResultado de imagen de Plantas generadoras de electricidad

 

Los ingenieros se preocupan por las plantas generadoras de electricidad y piensan poco en las constantes fundamentales de la energía o en los cambios que determinaron la evolución de las sociedades antes de la llegada de la civilización de los combustibles fósiles.

Energía es todo, desde el Sol hasta un embarazo; desde el pan que comemos hasta un microchip. Sin embargo, es difícil que un técnico pueda pensar en ello cuando está centrado en resolver el problema del momento.

 

Resultado de imagen de El Sol suministra la energía y la vida en la TierraResultado de imagen de El Sol suministra la energía y la vida en la TierraResultado de imagen de fotosintesisResultado de imagen de La cadena trófica

 

La progresión lógica se realiza siguiendo una secuencia progresiva desde los flujos de energía planetarios a la vida de las plantas y los animales, siguiendo con la energía humana, la energía en el desarrollo de las sociedades preindustriales y modernas, y concluyendo con el transporte y los flujos de información, que son las dos características más importantes de la civilización de los combustibles fósiles.

Los que han leído algunos de mis trabajos saben que aquí podrán encontrarse con datos y materias diversas, y aunque el tema central, como he reseñado por título, es la evolución por la energía, también podrán leer sobre la entropía, las fuerzas de la naturaleza, el átomo, o incluso, del Sol, los vientos, radiación solar o cualquier dato que, en realidad, pueda estar conectado con el concepto de energía.

Leer más

Nuestro lugar en el Universo…¿Cuál será?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 En esto de la vida en otros mundos, si nos ceñimos a las estadísticas, no podemos negar que estén ahí fuera, situados en mundos como el nuestro o parecidos, una ingente cantidad de criaturas de todo tipo y pelaje, unos con inteligencia y otros, como aquí en la Tierra, a medio camino entre la consciencia y ese limbo en el que no se tiene consciencia de Ser.

¿Cómo serán los “bordes” del Universo?

 

Antes en otra entrada que titulé “Observar la Naturaleza… da resultados”, comentaba sobre los grandes números de Dirac y lo que el personaje llamado Robert Henry Dicke pensaba de todo ello y, cómo dedujo que para que pudiera aparecer la biología de la vida en el Universo, había sido necesario que el Tiempo de vida de las estrellas fuese el que se necesita para poder ·fabricar” todos los elementos necesarios para la Vida, el Universo, también tiene que tener, no ya las condiciones que posee, sino también, la edad que le hemos estimado.

 

El Hubble capta remanentes de supernova electrizantes

El telescopio espacial Hubble ha logrado capturar los remanentes de supernova que resaltan por parecer la explosión de fuegos artificiales en la Gran Nube de Magallanes, y que esconde una estrella de neutrones que es súper densa. La imagen aporta nuevos datos sobre estos objetos interesantes que esconden grandes secretos sobre la formación de las estrellas.

 

Filamentos del remanente de la supernova Vela |

Filaments of the Vela Supernova Remnant
Créditos de imagen & Copyright: Angus Lau, Y Van, SS Tong (Jade Scope Observatory)

“La explosión se ha acabado pero las consecuencias siguen. Hace unos once mil años, una estrella de la constelación de  Vela  estalló y creó un extraño punto de luz que los humanos que vivían al principio de la  historia registrada pudieron contemplar. Las capas externas de la estrella se estrellaron contra el  medio interestelar e impulsaron una onda expansiva que todavía es visible hoy en día.En  rayos X se ve una  onda de choque en expansión más o menos esférica. La  imagen muestra en  luz visible algunos restos de aquella explosión gigantesca. A medida que el gas se aleja de la estrella estallada se descompone , reacciona con el medio interestelar y produce luz en diferentes colores y bandas de energía. el centro del  remanente de la supernova Vela queda un  púlsar , o sea, una estrella más densa que la materia nuclear que gira sobre sí misma más de diez veces por segundo.”

 

La Impresionante remanente de supernova de la Nube de Magallanes –  CURIOSIDADES ASTRONÓMICAS "Divulgación de la Astronomía"

Remanente de Supernova

 Los filamentos de un remanente de Supernova que, mirándolos y pensando de donde vienen… Te hacen recorrer unos caminos alucinantes que comenzaron con una inmensa aglomeración de gas y polvo que se constituyó en una estrella masiva que, después de vivir miles de millones de años, dejó, a su muerte, el rastro que arriba podemos contemplar.

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en su conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte. Las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas. Eddington las dispuso en tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:

mpr/me ≈ 1840

La inversa de la constante de estructura fina

2πhc/e≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón,

e2/Gmpr me ≈ 1040

A estas Eddington añadió su número cosmológico, NEdd ≈ 1080. A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica:

 “¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física que pueda demostrar que una o todas ellas podrían ser prescindibles? ¿Podrían haber sido diferentes de lo que realmente son?…  Surge la pregunta de si las razones anteriores pueden ser asignadas arbitrariamente o si son inevitables.  En el primer caso, sólo podemos aprender sus valores por medida; en el segundo caso es posible encontrarlos por la teoría…  Creo que ahora domina ampliamente la opinión de que las (cuatro anteriores) constantes… no son arbitrarias, sino que finalmente se les encontrará una explicación teórica; aunque también he oído expresar lo contrario.”

 

     Medida una y mil veces, α parece que no cambia a pesar de todo

Siguiendo con su especulación Eddington pensaba que el número de constantes inexplicadas era un indicio útil del hueco que había que cerrar antes de que se descubriese una teoría verdaderamente unificada de todas las fuerzas de la naturaleza.  En cuanto a si esta teoría final contenía una constante o ninguna, tendríamos que esperar y ver:

 

Las constantes de la Naturaleza : Blog de Emilio Silvera V.Ciencias Planetarias y Astrobiología : La constante de estructura ...

 

 “Nuestro conocimiento actual de 4 constantes en lugar de 1 indica meramente la cantidad de unificación de teoría que aún queda por conseguir. Quizá resulte que la constante que permanezca no sea arbitraria, pero de eso no tengo conocimiento.”

Eddington, como Max Planck, Einstein y Galileo, y Newton antes que ellos, era simplemente un adelantado a su tiempo; comprendía y veía cosas que sus coetáneos no podían percibir.

Hay una anécdota que se cuenta sobre esto y que ilustra la dificultad de muchos para reconciliar el trabajo de Eddington sobre las constantes fundamentales con sus monumentales contribuciones a la relatividad general y la astrofísica. La historia la contaba Sam Goudsmit referente a él mismo y al físico holandés Kramers:

 

  Samuel Abraham Goudsmit, George Uhlenbeck y Hendrik Kramers

“El gran Arthur Eddington dio una conferencia sobre su derivación de la constante de estructura fina a partir de una teoría fundamental. Goudsmit y Kramers estaban entre la audiencia.  Goudsmit entendió poco pero reconoció que era un absurdo inverosímil. Kramers entendió mucho y reconoció que era un completo absurdo. Tras la discusión, Goudsmit se acercó a su viejo amigo y mentor Kramers y le preguntó: ¿Todos los físicos se vuelven locos cuando se hacen mayores? Tengo miedo. Kramers respondió, “No Sam, no tienes que asustarte. Un genio como Eddington quizá puede volverse loco pero un tipo como tú sólo se hace cada vez más tonto”.

 

La historia es la ciencia de las cosas que no se repiten ...

               El filósofo-poeta , prosista y pensador

Aquí hablamos del Universo, de las Teorías que tratan de explicarlo, de la Mente humana que no hemos llegado a comprender, y, hemos llegado a la conclusión que, como dijo aquel pensador: “No sólo de pan vive el hombre”. Necesitamos sentir y crear para alcanzar la plenitud, para dar algún sentido a nuestras vidas.

 

   Aquí también están algunas de esas constantes

Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón crea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r0 = e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

 

       Nuestro universo es como lo podemos observar gracias a esos números

El mayor misterio que rodea a los valores de las constantes de la naturaleza es sin duda la ubicuidad de algunos números enormes que aparecen en una variedad de consideraciones aparentemente inconexas. El número de Eddington es un ejemplo notable. El número total de protones que hay     dentro del alcance del universo observable esta próximo al número

1080

Si preguntamos ahora por la razón entre las intensidades de las fuerzas electromagnéticas y gravitatoria entre dos protones, la respuesta no depende de su separación, sino que es aproximadamente igual a

1040

En un misterio. Es bastante habitual que los números puros que incluyen las constantes de la naturaleza difieran de 1 en un factor del orden de 102, ¡pero 1040, y su cuadrado 1080, es rarísimo! Y esto no es todo. Si seguimos a Max Planck y calculamos en valor estimado para la “acción” del universo observable en unidades fundamentales de Planck para la acción, obtenemos.

10120

 

   Supernovas, Nebulosas, Estrellas… ¡Fuerzas y Constantes fundamentales!

 

La Constante Cosmológica: Uno de los mayores remordimientos de ...

 

Algunos llegan a afirmar que, el Universo es plano e indican que la “energía oscura” es probablemente la constante cosmológica de Einstein…¡Vivir para ver! El maestro llegó a decir que incluir la constante cosmológica en su ecuación había sido el mayor error de su vida y, sin embargo ahora… resulta que sí estaba en lo cierto. ¡Ya veremos!

Ya hemos visto que Eddington se inclinaba a relacionar el número de partículas del universo observable con alguna cantidad que incluyera la constante cosmológica. Esta cantidad ha tenido una historia muy tranquila desde esa época, re-emergiendo ocasionalmente cuando los cosmólogos teóricos necesitan encontrar una manera de acomodar nuevas observaciones incómodas.

 

El Hubble detecta la estrella más lejanaEl Hubble capta una rara supernova multiplicada por una «lupa» del ...

 

Recientemente se ha repetido este escenario. Nuevas observaciones de alcance y precisión sin precedentes, posibilitadas por el telescopio espacial Hubble trabajando en cooperación con telescopios sensibles en tierra, han detectado supernovas en galaxias muy lejanas. Su pauta de brillo y atenuación característica permite deducir su distancia a partir de su brillo aparente. Y, sorprendentemente, resulta que están alejándose de nosotros mucho más rápido de lo que cualquiera esperaba. La expansión del universo ha pasado de ser un estado de deceleración a uno de aceleración. Estas observaciones implican la existencia de una constante cosmológica positiva (Λ+). Si expresamos su valor numérico como número puro adimensional medido en unidades del cuadrado de la longitud de Planck, entonces obtenemos un número muy próximo a

10-120

Nunca se ha encontrado un número más pequeño en una investigación física real. Podemos decir que es el más grande de los pequeños números.

 

 

Hablar del Universo en todo su conjunto…, no es nada fácil. Podemos hablar de parcelas, de elementos por separado y también de sucesos, objetos y de la mecánica celeste de manera individualizada para tratar de comprenderlos mejor y, más tarde, juntarlos para tener una perspectiva de su conjunto que… No siempre podemos llegar a comprender. ¡Es tanto lo que esas constantes nos quieren decir! que comprenderlas y entenderlo todo…, nos llevará algún tiempo.

¿Qué vamos a hacer con todos estos grandes números? ¿Hay algo cósmicamente significativo en 1040 y sus cuadrados y cubos?

 

http://upload.wikimedia.org/wikipedia/commons/7/78/Hermann_Weyl_ETH-Bib_Portr_00890.jpg

                             Hermann Weyl

La aparición de algunos de estos grandes números ha sido una fuente de sorpresas desde que fue advertida por vez primera por Hermann Weyl en 1.919. Eddington había tratado de construir una teoría que hiciera comprensible su aparición, pero no logró convencer a un número significativo de cosmólogos de que estaba en la vía correcta. Pero sí convenció a la gente de que había algo que necesitaba explicación. De forma inesperada, fue precisamente uno de sus famosos vecinos de Cambridge quien escribió a la revista Nature la carta que consiguió avivar el interés por el problema con una idea que sigue siendo una posibilidad viable incluso hoy.

 

                                 Paul Dirac

Paul Dirac ocupó la Cátedra Lucasiana de matemáticas en Cambridge durante parte del tiempo en que Eddington estuvo viviendo en los observatorios. Las historias que se cuentan de Paul Dirac dejan muy claro que era un tipo con un carácter peculiar, y ejercía de matemático las 24 h. del día. Se pudo saber que su inesperada incursión en los grandes números fue escrita durante su viaje de novios (Luna de miel), en febrero de 1937.

Aunque no muy convencido de las explicaciones de Eddington, escribió que era muy poco probable que números adimensionales muy grandes, que toman valores como 1040 y 1080, sean accidentes independientes y no relacionados: debe existir alguna fórmula matemática no descubierta que liga las cantidades implicadas. Deben ser consecuencias más que coincidencias.

Esta es la hipótesis de los grandes números según Dirac:

“Dos cualesquiera de los números adimensionales muy grandes que ocurren en la naturaleza están conectados por una sencilla relación matemática, en la que los coeficientes son del orden de la unidad”.

Un número adimensional, también conocido como número adimensional o magnitud adimensional, es un número que no tiene unidades físicas, y por lo tanto, es un número puro. Se define como el resultado de una relación entre dos o más cantidades físicas que sí tienen unidades, de tal forma que las unidades se cancelan, quedando solo un valor numérico.

 

 

La magia del número 137 – Blog de Unicoos

Alfa (α) la Constante de estructura fina, el número puro y adimensional 137

El Nobel León Lederman (Director del CERN muchos años), decía:

“Todos los físicos del mundo deberían tener en el lugar más destacado de sus casas, un marco con el número 137. El motivo de tan conveniente obligación, sería recordarles, cada vez que lo vieran, lo poco que sabemos.”

Nos puede parecer mentira pero… Los verdaderos grandes números están en ¡La Mente!

 

Los grandes números de que se valía Dirac para formular esta atrevida hipótesis salían del trabajo de Eddington y eran tres:

N1 = (tamaño del universo observable) / (radio del electrón)

= ct (e2/mec2) ≈ 1040

N2 = Razón fuerza electromagnética-a-gravitatoria entre protón y electrón

= e2/Gme mp ≈ 1040

N = número de protones en el universo observable

= c3t/Gmp ≈ 1080

Aquí t es la edad actual del universo, me es la masa de un electrón, mp es la masa de un protón, G la constante de gravitación, c la velocidad de la luz y e la carga del electrón.

 

es el conjunto de todo lo que existe,lo que esta cerca y a ...Boletines - Marzo 2014 | BOLETIN ENCIENDE - CHISPAS DE LA CIENCIA ...

Constantes universales : Blog de Emilio Silvera V.

 

     El Universo es todo lo que existe: Materia, Tiempo y Espacio inmersos en un océano de fuerzas y constantes

Según la hipótesis de Dirac, los números N1, N2y raizN eran realmente iguales salvo pequeños factores numéricos del orden de la unidad. Con esto quería decir que debe haber leyes de la naturaleza que exijan fórmulas como N1 = N2, o incluso N1 = 2N2. Un número como 2 ó 3, no terriblemente diferente de 1 está permitido porque es mucho más pequeño que los grandes números implicados en la fórmula; esto es lo que él quería decir por “coeficientes….  del orden de la unidad”.

Esta hipótesis de igualdad entre grandes números no era en sí misma original de Dirac. Eddington y otros habían escrito antes relaciones muy semejantes, pero Eddington no había distinguido entre el número de partículas del universo observable, que se define como una esfera centrada en nosotros con un radio igual a la velocidad de la luz multiplicada por la edad actual del universo, o lo que es lo mismo:

 

PERCEPCIÓN ESPACIO TEMPORALCurvatura del espacio-tiempo - Wikipedia, la enciclopedia libre

Espacio-tiempo - Wikipedia, la enciclopedia libreAstrofísica y Física: Teoría de Einstein del espacio-tiempo curvado

 

La trayectoria del llamado Universo Observable (y del cual somos su centro al recorrer su geodésica en la geometría espacio-temporal) tiene la forma perimetral de una gota (forma de media lemniscata; cosa curiosa, lemniscata: figura curva ∞ usada como el símbolo de infinito ¿?) que al girarla 45 ° y desarrollar un cuerpo de revolución, se obtienen dos campos toroidales cual si fuesen imágenes antagónicas (una reflejada) de una fuente (surtidor – sumidero cada uno), correspondiendo uno al campo material y el otro al antimaterial.

 

poderes unidos - trayectoria del universo observable poderes unidos - trayectoria del universo observable_02

               Trayectoria del Universo observable.

Lo están ocupando en su totalidad, se retroalimentan a sí mismos en la Hipersingularidad (punto de contacto de los dos campos, principio y fin de ambos flujos donde reacciona la materia y la antimateria con la finalidad de mantener separados ambos universos con el adicional resultado de impulsar nuevamente a los fluidos universales de ambos campos a recorrer la finita trayectoria cerrada (geodésica) siendo el motor propulsor universal de dos volúmenes dinámicos, finitos pero continuos).

Universo observable: R = 300.000 × 13.500.000.000

 

 

La propuesta de Dirac provocó un revuelo entre un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, pero escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

Atención! El Universo observable ahora es más pequeño | Muy ...

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

Cuando hablamos del Universo, de inmediato, surgen las polémicas y los desacuerdos y las nuevas ideas y teorías modernas que quieren ir más allá de lo que “se sabe”, nunca han gustado en los centros de poder de la Ciencia que ven peligrar sus estatus con ideas para ellos “peregrinas” y que, en realidad, vienen a señalar nuevos posibles caminos para salir del atolladero o callejón sin salida en el que actualmente estamos inmersos: Mecánica cuántica y Relatividad que llevan cien años marcando la pauta en los “mundos” de  lo muy pequeño y de lo muy  grande sin que nada, las haya podido desplazar.

 

Ciencia a la última: Materia oscura y energia oscura (Adrián Gil y ...

Esto nos deja con un ridículo 4% para la materia Bariónica que emite luz, y, hablan de todo ello como si realmente estuvieran seguros, cuando solo se trata de una hipótesis, no se ha podido comprobar de manera fehaciente que existe, ni la energía oscura ni la materia oscura.

Mientras tanto, continuamos hablando de materia y energía oscura que delata la “oscuridad” presente en nuestras mentes, creamos modelos incompletos en el que no sabemos incluir a todas las fuerzas y en las que (para cuadrar las cuentas), hemos metido con calzador y un poco a la fuerza, parámetros que no hemos sabido explicar (como el Bosón de Higgs en el Modelo Estándar que…, a pesar de todo ¡No está muy claro que esté ahí!).  Sin embargo y a pesar de todo, el conocimiento avanza, el saber del mundo aumenta poco a poco y, aunque despacio, el conocimiento no deja de avanzar y, esperemos que las ideas surjan y la imaginación en la misma medida para que, algún día en el futuro, podamos decir que sabemos, aunque sea de manera aproximada, lo que el Universo es.

Emilio Silvera Vázquez

¡La Tierra! ¡Qué lugar tan maravilloso!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Numaniáticos

En este lugar encontré una exposición de rincones de la Naturaleza que merecen la pena ser vistos y, ante ellos, nos podemos hacer una idea de la rica variedad que nos ofrece el mundo y, si pensamos en los miles de millones de mundos que en las galaxias son… ¿Qué no podríamos encontrar en ellos?

1) Salar de Uyuni (Bolivia), el mayor espejo del mundo.

 

Salar de Uyuni, Bolivia

 

Durante la temporada de lluvias, el mayor desierto de sal del mundo se convierte en el espejo más grande del mundo. El Salar nació cuando varios lagos prehistóricos se unieron en uno solo.

2) Montañas Tianzi (China), la montañas de la película “Avatar”.

 

Las Montañas de Avatar (Tianzi) en Hunan (China) ❤Montañas Tianzi, China

Montañas Tianzi (China) · A estas... - Viajes Tierra Sinaí | FacebookMontañas Tianzi | Montañas Tianzi (China), la montañas de la… | Flickr

 

Estas montañas son únicas. Son tan extrañas que se utilizaron en la película “Avatar” de James Cameron. Formadas bajo el agua hace 380 millones de años. La tierra se elevó como resultado de la actividad volcánica. Algunos de los pilares han llegado a más de 4.000 metros sobre el nivel del mar.

3) Centinelas del Ártico, Finlandia.

 

Los Centinelas del Ártico – astronomia-iniciacion.comCentinelas del Ártico – NuestroclimaEL EMBRUJO DE GAIA: CENTINELAS DEL ÁRTICOCentinelas del Ártico – Nuestroclima

 

Estos “centinelas” son realmente gigantescos árboles cubiertos de nieve y hielo. Esta extraña imagen se produce en invierno, cuando las temperaturas oscilan desde -40 hasta -15 grados centígrados.

 

4) Cuevas Reed Flute (China).

 

Reed Flute Cuevas, China

Reed Flute Cuevas, China

 

Este sistema de cuevas de 240 metros de longitud se encuentran en Guilin, y son una de las atracciones más populares en China durante más de 1.200 años. Las hermosas estalactitas, estalagmitas y columnas fueron creadas por la erosión del agua. Se destacan por sus múltiples luces de colores que crean un ambiente verdaderamente surrealista.

5) Skaftafell, cueva de hielo, en Islandia.

 

Skaftafell cueva de hielo, Islandia

 

Las cuevas de hielo son estructuras temporales que se forman en el borde de los glaciares cuando el agua derretida forma un agujero. El hielo formado tiene muy pocas burbujas de aire y absorbe toda la luz excepto el azul, que da a la cueva ese color único.

 

6) Cañón del Antílope, Arizona, en Estados Unidos.

 

El Cañón del Antílope, el gran secreto de los navajos donde se teme a la lluviaExcursión de un día al cañón del antílope superior o inferior desde Las Vegas | 2021 | Viator

El Cañón del AntílopeCómo visitar ANTELOPE CANYON (Arizona): horarios | Viajar a Estados Unidoscañón del antílope / Arizona | Antelope canyon arizona, Antelope canyon photography, Antelope canyon

Este cañón se formó hace millones de años. El agua forjó una profunda grieta muy estrecha. Las paredes parecen ser de diferentes colores.

 

7) Mar de Estrellas, Isla Vaadhoo, Maldivas

 

Mar de Estrellas, Isla Vaadhoo, Maldivas

Mar de Estrellas, Isla Vaadhoo, Maldivas

 

Puede parecer normal durante el día, pero por la noche, esta playa cobra vida. El brillo en el agua proviene de microbios marinos llamados fitoplancton. La galaxia que se dibuja en la arena es impresionante.

 

  La Gran Fuente Prismática, Wyoming

 

Wyoming

 El Parque de Yellostone

La Gran Fuente Prismática, en Wyoming, es el lugar más grande de aguas termales en los Estados Unidos. Los colores vivos son el resultado de los microbios pigmentados que crecen alrededor de los bordes del agua rica en minerales.

9) Dead Vlei, Namibia

 

Dead Vlei

Dead Vlei

 

Estas fotografías parecen un cuadro… pero son reales. Son fotografías del “valle muerto”, donde los árboles mueren frente a un fondo con una de las dunas de arena más altas del mundo. El desierto se va acercando y matando cualquier tipo de vida.

10) Lago Baikal, Siberia.

 

Lago Baikal, Siberia

 

El lago Baikal es el lago de agua dulce más grande y antiguo del mundo. En el invierno, el lago se congela pero el agua es tan clara que se puede ver 40 metros por debajo del hielo. En marzo, las heladas y el sol provocan grietas en la corteza de hielo y aparecen los fragmentos de hielo de color turquesa que vemos en la superficie.

11) Socotra, Yemen

 

socotra

socotra

socotra

 

Un tercio de la vida vegetal de la isla de Socotra no se encuentra en ningún otro lugar del planeta tierra. Una de las formas más extrañas es el árbol de sangre de dragón, que se asemeja a un paraguas.

 

12) Parque Geológico Zhangye Danxia, Gansu, China.

 

El Arcoíris hecho Montañas de Zhangye DanxiaEl Arcoíris hecho Montañas de Zhangye Danxia

Parque Geológico Zhangye Danxia: impactantes montañas de colores – travelcamp.com.arPin en LUGARES

 

Estas formaciones rocosas de colores son el resultado de los minerales que se han depositado durante 24 millones de años. El viento y la lluvia tallan formas increíbles en la roca, formando pilares naturales, torres, barrancos, valles y cascadas.

13) Túnel del Amor, Klevan, Ucrania

 

Visita el Túnel del Amor en Ucrania, una atracción para enamorados - Ciudades con EncantoEl túnel del amor en Ucrania, del horror al romance | El SouvenirEl Túnel del Amor ucraniano - Turysteando

 

Este túnel se formó durante muchos años gracias a que los trenes hacían tres veces el mismo trayecto en un día y moldeaban los árboles circundantes. Ahora está abandonado y es un lugar romántico para una tarde de paseo.

 

14) Cuevas de Waitomo Glowworm (Nueva Zelanda)

 

Cuevas de Waitomo Glowworm (Nueva Zelanda)

 

Miles de diminutas luciérnagas cuelgan en el techo de esta gruta e irradian una luz luminiscente, creando una escena sacada de una película de ciencia ficción.

 

15) Las terrazas de arroz de Yuanyang, en China

 

Las terrazas de arroz de Yuanyang, en China

Las terrazas de arroz de Yuanyang, en China

Las técnicas de cultivo del condado de Yuanyang han creado un paisaje que es realmente sorprendente.

 

16) Lago Hillier, Australia

 

Lago Hillier

 

El color rosa de este lago es el resultado de un colorante creado por las algas y bacterias que hay en el agua. A pesar de la tonalidad extraña, el lago no parece tener efectos adversos en los seres humanos o la vida silvestre local.

 

17) La cascada blanca de Pamukkale, Turquía

 

La cascada blanca de Pamukkale

La cascada blanca de Pamukkale

 

Durante millones de años, las aguas termales de Pamukkale han transformado el paisaje. Aunque puede parecer que estas terrazas están hechos de hielo y nieve, Turquía tiene un clima cálido todo el año. El suelo está recubierto sólo de piedra caliza blanca.

18) Caño Cristales, Colombia.

 

Caño cristales: el río que escapó del ParaísoCaño Cristales: un río al rojo vivo en el corazón de Colombia | Ladera Sur

Visita el extraordinario ecosistema de Caño Cristales en Colombia — Mi ViajeCaño Cristales: cerrado por entrada de temporada seca - Viajar - Vida - ELTIEMPO.COM

 

Debido al extenso hábitat de fauna y flora, este río tiene una gran variedad de colores: amarillo, verde, azul, negro y rojo. Las rocas tienen alrededor de 1,2 mil millones de años, y los que lo visitan lo llaman el río más hermoso del mundo.

19) La Catedral de Mármol, en Chile

 

CUEVAS DE MARMOL EN LA PATAGONIA. IMPRESIONANTE. Lago Buenos Aires o Lago General Carrera - YouTubeCuevas de mármol de la Patagonia: Impresionantes y misteriosas - Ciudades con EncantoTodo lo que tienes que saber para ir a las Capillas de MármolDónde están las cuevas de mármol de color azul

Formadas por miles de años gracias a las olas que chocan contra el carbonato de calcio. Estas cuevas tienen paredes lisas arremolinadas que reflejan las aguas azules del lago.

 

20) Calzada del Gigante, Irlanda del Norte

 

Calzada del Gigante, Irlanda del Norte

Calzada del Gigante, Irlanda del Norte

 

Hace unos 55 millones años, la intensa actividad volcánica de la zona formó una meseta de lava. Con el tiempo, la lava se enfrío y se fracturó creando columnas que son tan perfectas que casi parecen artificiales.

 

21) Géiser Fly, Nevada

 

El Géiser Fly, una maravilla fruto de un error humano - ¡No sabes nada!El géiser fly - EcuRedGéiser Fly: cuando un error humano se convierte en una maravilla (casi) natural

Géiser Fly fue creado accidentalmente cuando se perforó un pozo. Los minerales y algas comenzaron a subir desde el géiser y se acumularon formando un montículo extraño.

 

22) Cascada bajo el agua, en Mauricio

 

Cascada bajo el agua en Mauricio

 

Unas corrientes marinas muy fuertes empujan los sedimentos y la arena hacia abajo, creando esta cascada submarina.

23) Monte Roraima, Venezuela

 

El curioso aislamiento evolutivo de la cima del Monte Roraima – Ciencia de SofáMONTE RORAIMA - AMÉRICA DEL SUR- - YouTube

Monte Roraima – Expedición a la cima del “Mundo Perdido”Monte Roraima: Un Mundo Perdido en Venezuela | Fotos de RoraimaAguas Termales Monte Roraima Venezuela | Venezuela paisajes, Venezuela turismo, Mount roraima

 

Es uno de los montes más antiguos de la Tierra. Se remonta a dos mil millones años, cuando la tierra se levantó por encima del suelo por la actividad tectónica. Los lados de la montaña son escarpados acantilados verticales con varias cascadas. Es casi imposible de escalar.

 

24) Aogashima, Japón

 

Aogashima, el pueblo situado en el interior de un volcánAogashima

Aogashima, el remoto pueblo japonés en el interior de un volcánISLA DE AOGASHIMA, JAPON - DESTINOS INTERNACIONALES - BEAUTY AND HEALTH MAGAZINE - colombia - www.beautyandhealthmagazine.com

Aogashima es una isla volcánica situada a 200 kilómetros de la costa de Tokio.

 

25) La cueva de Fingal, Escocia

 

La cueva de Fingal, Escocia

La cueva de Fingal, Escocia

Al igual que la Calzada del Gigante, esta cueva fue formada por el enfriamiento de la lava y su fracturación durante millones de años.

 

26) Río bajo el agua, Cenote Angelita, México

 

Interesante: un río bajo el agua en el Cenote Angelita, México¿Un río bajo el agua? El curioso cenote Angelita - BallesterismoDía 524: Los Cenotes - Crónicas de una cámaraLos cenotes, los pozos sagrados de los mayas, visita obligada en la Riviera Maya | Viajar y disfrutar en Playa del Carmen y la Riviera Maya -Azul Fives hotel Blog Playa del

 

Debajo de las aguas del Cenote Angelita fluye un río lleno de sulfato de hidrógeno, que es mucho más pesado que el agua del río.

 

27) Mina de Naica, México

 

Mina de Naica

Mina de Naica

Esta mina de plata está recubierta de cristales enormes.

28) Playa Escondida, Islas Marietas, México

 

Playa Escondida Islas Marietas

Esta magnífica playa escondida fue creada por una explosión militar en 1900. Sólo se puede acceder nadando a través de un túnel.

29) Lago Natron, Tanzania

 

Lago Natron, Tanzania

 

Este lago tiene una forma única de alto contenido en sal. Los microorganismos amantes de la sal se desarrollan y producen un pigmento rojo que colorea el agua. Para otros animales, la sal es mortal: se calcifican y muchos acaban “convirtiéndose en piedra” después de entrar en contacto con el agua.

 

30) Estructura de Richat, Mauritania (El Ojo de África)

 

Estructura de Richat

 

Se encuentra en medio del desierto del Sáhara. Es un lugar profundamente erosionado y tiene más de 24 kilómetros de diámetro. La formación natural es tan impresionante que, desde hace mucho tiempo, los científicos creían que era el sitio de un impacto de un asteroide.

31) Tierras Altas de Islandia

 

Tierras Altas de Islandia

Tierras Altas de Islandia

 

Las tierras altas de Islandia tienen algunos de los lugares naturales más magníficos del hemisferio norte. Glaciares alucinantes, cráteres, lagos y géiseres… pero cuando cae la noche, la zona se convierte en uno de los mejores lugares para presenciar la aurora boreal.

 

32) Parque nacional de los Lagos de Plitvice, Croacia

 

Parque nacional de los Lagos de Plitvice

El Parque Nacional de Plitvice es el más grande de su tipo en Croacia y el más antiguo en el sudeste de Europa. Tiene hermosos lagos, cuevas y cascadas.

 

33) La Catedral de Sal, en Colombia.

 

lugar surrealista

Este lugar fue excavado por los mineros de sal. Un arquitecto reconvirtió ese lugar en una catedral para que los lugareños pudieran orar por tan sacrificados hombres.

 

34) Río Tinto, en la provincia de Huelva en  España.

 

rio tinto

Es un río de color rojo debido a la interacción entre los metales pesados de la zona y unas bacteria existentes en río. El río tiene un alto contenido en azufre por lo que es muy interesante que puedan vivir dichas bacterias.

 

35) Lagunas de Cañada del Hoyo, Cuenca, España.

 

lugar surrealista

 

Son en total siete lagunas repartidas en una extensión no muy grande. Lo curioso de estas siete lagunas es que todas tienen un color diferente debido a los micro-organismos que viven en ellas y depende de cómo les de la luz.

Finaliza con una recomendación:

“Comparte estas fotos surrealistas con la gente que te encantaría viajar.”

 

Después de este viaje por rincones de nuestro mundo sorprendente, nos podemos preguntar, y, teniendo todo esto y mucho más, ¿Qué sentido tiene querer ir a otros mundos en los que no sabemos que podemos encontrar? A pesar de esta reflexión de sensatez, no cejaremos en el empeño de visitar otros lugares fuera de este nuestro… ¡El más hermoso!

Publica: Emilio Silvera V.

PD.

¿Habrá algún planeta más bello que la Tierra?

Si lo hay… ¡No lo conocemos!

La Historia de la Vida no la pudo escribir nadie

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Son muchas las cosas que no sabemos y, de cada una de ellas, nosotros los humanos, creamos hipótesis y hacemos conjeturas, construimos modelos y, con los datos que hemos podido reunir, dejamos expuesta una teoría de lo que pudo ser. De esa manera hemos creado la “historia” de cómo se formó nuestro Sistema solar a partir de una explosión de supernova que creando una nebulosa sería el origen, hace algunos miles de millones de años, de todo el sistema planetario en el que está la Tierra y nos cobijamos nosotros.

 

 

A mayor escala y viajando mucho más lejos en el Tiempo, también hemos “recreado” el escenario que suponemos que pudo existir cuando “nació” el universo, cuando dio comienzo la existencia del Tiempo y apareció el Espacio, se creó la materia y comenzaron a formarse los objetos que hoy podemos contemplar por todo el inmenso Cosmos. De todo ello, de manera “misteriosa” (nadie sabe a ciencia cierta como fue), aparecieron los primeros signos de vida, primero en forma de rústicas criaturas y más elaboradas después, cuando con el paso de los años, pudieron evolucionar.

 

 

En nuestra región, situada en el interior del brazo de Orión a unos 30.000 años-luz del centro galáctico, las cosas se pudieron suceder, más o menos, como nos dicen al margen de la imagen, con algunas dudas y algunas preguntas sin contestar, así pudieron suceder, a grandes rasgos las cosas. Sin embargo, no es ese el tema que el título nos señala, nos vamos a centrar en la “vida” esa explosión de imaginación que ha tenido el universo para que, al menos en nuestro caso, haya alguien que comente sobre él y también, sobre esa maravilla que representamos: Seres Conscientes en un universo de materia, de explosiones y cambios, de energías sin fin.

 

Lo cierto es que, el recuerdo de los miles de millones de años de la historia de la vida, no ha podido ser inscrito en la memoria de los seres que la representan, al igual que los últimos millones de años no están grabados en la memoria de los seres humanos, los primeros naturalistas que se sintieron intrigados por los fósiles que encontraban, no pudieron presentir de qué manera aquello que estaban sacando a la luz del día, acabaría por servir para reconstruir el pasado a través de los archivos sedimentarios de la tierra.

 

 

De nada sirvieron los razonamientos poéticos y religiosos que les habían preparado para lo contrario. La realidad nos hizo descubrir un mundo distinto, una cronología distinta y una historia distinta. Resulta fácil comprender, en qué medida, los primeros  descubrimientos paleontológicos les pudieron parecer (en aquellos tiempos), por tanto, maravillosos y también, desconcertantes, hasta que punto aquella extraordinaria diversidad de formas de vida desaparecidas, su frecuente extravagancia y rareza y el encadenamiento asombroso que parecían ir revelando poco a poco, les debieron fascinar, pero también confundir.

 

 

Y, de esa manera, nuestra innata curiosidad, nos llevó a descubrir muchas clases de vida que existió en el pasado, incluso de seres monstruosamente grandes que extinguidos, sirvieron para que todos, antes sus descomunales restos, dejaran volar la imaginación y pudieran construir escenarios ya desaparecidos hacia millones de años. Claro que, todos aquellos descubrimientos, vinieron a ensanchar la mente de lo posible y la concepción de la historia de la vida en la Tierra y también, de manera paralela, hemos ido creando una historia más profunda, de unos 13.750.000 millones de años para la historia del propio universo. Pero, la historia que nos interesa, la de la vida, se remonta a unos 4.000 millones de años (al menos en nuestro planeta), que es el tiempo que tienen los fósiles más antiguo hallados en las rocas más viejas del planeta.

 

El hallazgo que sugiere que los neandertales y los humanos modernos convivieron durante 10.000 años en Europa - BBC News MundoNeandertal: ¿cómo vivieron los últimos individuos de la especie y por qué tienen más cosas en común con los humanos modernos de lo que crees? | TECNOLOGIA | EL COMERCIO PERÚ

Ya el hombre de Neanderthal se interesaba por los fósiles.

El descubrimiento de edades anteriores a la aparición del hombre tuvo una enorme repercusión, a finales del siglo XIX, mucho más allá de los círculos científicos, en buena parte porque reveló paisajes desaparecidos y poblados por criaturas extrañas, predominantemente monstruosas. Incluso en nuestros días los grandes vertebrados del pasado ejercen a menudo una especie de fascinación: ¿no se ha convertido acaso el mamut en el emblema de una cadena de supermercados y no resultan los nombres de muchos dinosaurios mucho más familiares, incluso para los niños, que los numerosos animales actuales?.

Esa familiaridad relativa con criaturas que hasta hace dos siglos, su existencia era inimaginable, es así mismo, un gran logro de la paleontología de los vertebrados sacados a la luz por la ciencia. Claro que, si hablamos de vida, no sólo de grandes animales se compone la gran relación que podríamos hacer de todas aquellas especies que poblaron nuestro planeta y de las que, el 99% están desaparecidas. Ahora, sólo el 1% de todas las especies vivientes siguen presentes y, las demás, por una u otra causa, quedaron extinguidas al no poder adaptarse, al ser eliminadas en las grandes extinciones… ¡y vaya usted a saber cómo!

 

 

Cuentan que, durante uno de sus viajes por el Mediterráneo, san Pablo, según la leyenda que circula, naufragó ante las costas de Malta. Habiendo logrado llegar a esa isla, fue mordido por una vibora. Encolerizado, maldijo entonces a todas las serpientes maltesas, por lo que sus lenguas bífidas se transformaron en piedra. Esas lenguas petrificadas, llamadas a veces “lenguas de san pablo”, son muy comunes en Malta; no son otra cosa que los dientes de los tiburones del período mioceno, cuyas formas evocan las lenguas bífidas de las serpientes.

 

 

El relato ilustra muy bien la fascinación que han ejercido desde tiempos inmemoriales ciertos fósiles sobre la imaginación humana y la forma en que pueden ser explicados los orígenes de esos objetos misteriosos, más allá de toda hipótesis científica, en los sistemas de pensamientos tradicionales. Sin embargo, jamás conoceremos las más antiguas de esas leyendas explicativas, ya que el interés por los fósiles se remonta a la prehistoria lejana, tal como nos lo demuestran los diversos descubrimientos arqueológicos.

En el transcurso de sus excavaciones en las cuevas de Arcy-sur-Cure,  en Borgoña, el célebre prehistoriador francés André Leroi Gourhan descubrió en un estrato correspondiente qal paleolítico medio una pequeña pero muy antigua “colección paleontológica” ; se trataba de un polípero y de un gasterópodo fósiles, y habían sido llevados a esa cueva por un hombre de Neardenthal. Hará más de 50.000 años posiblemente, que la atención de un “hombre fósil” se vio atraida por esos objetos curiosos, hasta el punto de que se los llevó consigo. No cabe duda de que nunca sabremos cuáles eran las interpretaciones que los hombres prehistóricos daban a los fósiles que recogían. En todo caso, ciertas conchas profundamente enterradas, le pudieron recordar a sus conchas actuales, y bien pudiera ser que se hubieran preguntado en aquel entonces qué hacían sobre las rocas unos animales que se encuentran habitualmente en el agua.

 

 

Es cierto que siempre, a lo largo de la Historia, hemos tenido pensadores y naturalistas. La Historia natural es un término cuya definición es problemática, en tanto que diversas disciplinas la abordan de manera diferente. Muchas de estas concepciones incluyen el estudio de las cosas vivientes (por ejemplo, la biología, incluyendo botánica, zoología y ecología); otras concepciones extienden el término al campo de la paleontología, la geografía y la bioquímica, así como a la geología, astronomía y la física. Lo cierto es que, al final del camino, todas esas disciplinas se encuentras, es decir, están de una u otra manera relacionadas. Todo en el Universo tiene una conexión que no siempre podemos ver o comprender.

 

La vida caída del cielo | Sociedad | EL PAÍSFósil de concha marina con base.excepcional asociación fósil de conchas y carac - Comprar Fósiles en todocoleccion - 158887678Grupo De Fósiles De Conchas Marinas Bien Conservadas Desde Hace Millones De Años Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De Derecho. Image 31680103.

 

Claro que, algunos pensadores griegos ya especularon con las viejas conchas fósiles que se hallaban dentro de las piedras y que eran el origen de especulaciones “geológicas” de algunos que, como Jenófanes o Heródoto, quiénes habían comprendido la naturaleza auténtica de ciertas conchas fósiles y habían sacado conclusiones pertinentes, aquellos restos de organismos marinos, encontrados tierra adentro, demostraba que los mares, se extendían en otras épocas mucho más allá de sus límites actuales.

 

 

Lo cierto es que, hacer historia de la vida en nuestro planeta es imposible, sólo podemos ir atando cabos a medida que se encuentran huellas de ella en las viejas rocas, y, como la vida consciente tardó mucho más en llegar… ¡Carece de historia, toda vez que no existieron cronistas para escribirla! Así, nos vemos abocados a especular juntando todos los datos que hemos podido reunir y, de esas especulaciones, hemos formado un conjunto, si no plausible en su totalidad, sí aceptable mientras no encontremos más respuestas a la gran pregunta: ¿Cómo surgió la vida en la Tierra, y, es nuestro planeta el único lugar del Universo que la contiene?

 

 

Claro que, si creemos que la vida es ciudadana del universo sin fronteras, no debemos perder de vista la Panspermia, esas esporas viajeras que llegan a los mundos y en ellos, se posan y dejan pasar el tiempo para que, las condiciones locales, las radiaciones exteriores y propias del lugar, hagan su trabajo para que, con el tiempo suficiente por delante, puedan emerger y crecer hasta llegar a conformar seres con ideas y pensamientos.

Los animales unicelulares han descubierto el método más corto para comer las plantas. La muerte y el sexo han de crearse para que los organismos pluricelulares sean capaces de envejecer y dejar de funcionar como una cooperativa colonial de células. Los animales han descubierto como comerse a otros animales. Por encima de todo, ha evolucionado una especie inteligente, una especie tan lista que ha llegado a descubrir una vía para poder salir de la Tierra y llevar todo el proceso de la evolución hasta el extremo.

 

 

Nunca nadie ha sabido explicar lo que es la Vida a pesar de que también siempre nos lo hemos preguntado. Cuál es su origen y cómo surgieron los seres vivos que conocemos y que tenemos a nuestro alrededor, así como aquellos que con el paso de tiempo no supieron adaptarse y se extinguieron. La especie humana, la única que en nuestro planeta alcanzó la plenitud de conciencia, siempre ha tratado de responder a esa pregunta: ¿Qué es la Vida? Pero siempre también, resultó un gran problema el poder responderla y las Ciencias Naturales nunca pudo confeccionar una respuesta plausible. Hemos podido llegar a saber que sin los materiales fabricados en las estrellas, la vida no sería posible en nuestro Universo. Así muchos, dicen que somos… ¡Polvo de estrellas!

 

MitoseFastmp4.gif (320×240)

Aquella primera célula viva que dio lugar a la fascinante historia de la vida

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo –nos preguntamos- la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la Ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.

 

Cómo se formaron los Océanos?formación de un nuevo océano | Tectonica de placas, Geología, Capas de la tierraEl agua en la Tierra: del polvo cósmico primitivo a los océanos - EL ÁGORA DIARIOCómo se formaron los océanos? - Odisea NewtonOcéanos

La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Sin embargo, la vida es distinta porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un papel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida. A grandes rasgos entendemos cómo pueden haber evolucionado las moléculas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de forma tan compleja.

Según todos los indicios, en los primeros años del planeta, los continentes que hoy conocemos estaban todos unidos formando la denominada Pangea. El movimiento de las placas tectónicas terrestres logró que estos se separaran y, con el transcurso de millones de años, llegaron a adquirir la moderna forma que hoy conocemos. En todo ese transcurrir y, mientras tanto, una serie de condiciones nuevas aparecieron para hacer posible el surgir de la vida.

 

El mapa que muestra cómo sería el mundo si aún existiera Pangea

 

Distribución de los continentes hace 260 millones durante el Pérmico. El supercontinente con forma de “C” es Pangea; dentro de la C se localizan los océanos Paleo-Tetis al norte y Tetis al sur; separando ambos océanos se sitúa el continente Cimeria; cerrando la “C” al noreste se sitúan los micro-continentes de China del Norte y China del Sur; mientras que el resto del globo está ocupado por el océano Panthalassa.

 

 

Microfósiles de sedimentos marinos. “Microfósil” es un término descriptivo que se aplica al hablar de plantas o animales fosilizados cuyo tamaño es menor de aquel que puede llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos para diferenciar microfósiles de eucariotas y procariotas.

A partir de todos los fragmentos que la ciencia ha podido ir acumulando, ¿Qué tipo de planeta podemos recomponer y qué porcesos tuvieron que darse para que, la vida, tal como la conocemos pudiera surgir? Sin temor a equivocarnos podemos afirmar que, cuando se formó el mar de Warrawoona la Tierra ya era un planeta biológico. Además, las mediciones de isótopos de carbono indican que ya podía haber comenzado la gran liberación ecológica de la fotosíntesis. No podemos tener la certeza si entre los microorganismos de aquel entonces había cianobacterias reproductoras de oxígeno, pero la presencia de cualquier tipo de organismo fotosintético en el océano de Warrawoona es de por sí muy informativa, pues nos permite colocar un punto de calibración en el árbol de la vida.

 

Image

Los estromatolitos forman parte del registro fósil y son los responsables del oxígeno de la Tierra

Son la evidencia de vida más antigua que se conoce en la Tierra. Las rocas ígneas más antiguas de la Tierra están en Groenlandia y tienen 3800 millones de años. Los estromatolitos más antiguos son de Warrawoona, Australia y tienen unos 3500 millones de años (Precámbricos – Arqueanos). La edad de la Tierra como planeta acrecionado se calcula en 4500 millones de años. La teoría dice que, dadas las condiciones en esa época, los primeros habitantes de la Tierra debieron ser organismos unicelulares, procariontes, y anaerobios. Por tanto, los estromatolitos forman parte del registro fósil más importante de la vida microbiológica temprana. Pero además, vida microscópica foto-trófica.

En la nueva concepción de la evolución microbiana que simboliza el árbol, los organismos fotosintéticos aparecen relativamente tarde y se diversifican mucho después del origen de la vida y de la divergencia de los principales dominios de la biología. Si la materia orgánica de Warrawoona es producto de la fotosíntesis, hay que concluir que para entonces la evolución de la vida ya debía llevar en marcha un buen tiempo.

 

 

Las observaciones geológicas indican que hace tres mil quinientos millones de años la atmósfera de la Tierra contenía nitrógeno, dióxido de carbono y vapor de agua, pero muy poco oxígeno libre. La mayoría de las inferencias acerca de ambientes antiguos se realizan a partir de pistas sutiles que nos proporcionan la geoquímica; la signatura sedimentaria del oxígeno, sin embargo, es muy llamativa: bandas de color rojo vivo en rocas con silex ricos en hermatita (Fe2 O3), un mineral de óxido de hierro.

En la actualidad, nuestros conocimientos de la vida y ambientes arcaicos son a un tiempo frustrantes y emocionantes: frustrantes por las pocas certezas que tenemos y, sólo muchas hipótesis a partir de los datos dispersos que se van obteniendo, emocionante porque sabemos algo, por poco que esto pueda ser, es estimulante contar con un punto de partida que nos permita continuar en el estudio y la observación, seguir experimentando para que, algún día, sepamos a ciencia cierta, de donde pudo venir la vida.

Es verdad que las rocas más antiguas que podemos identificar nos indican la presencia de organismos complejos ¿qué clase de células vivían en aquellos tiempos aún más lejanos? En última instancia, ¡cuál será el verdadero origen de la vida?

 

 

Además de las cianobacterias, la microflora puede incluir algas (verdes y diatomeas), hongos, crustáceos, insectos, esporas, polen, rodófitas, fragmentos y sedimentos de todo tipo. La variedad biológica de cada comunidad estromatolítica dependerá de condiciones ambientales e hidrológicas: hipersalino, dulce-acuícola, intermareales, submareales, fuertes corrientes, moderadas nulas, cálidos, templado, altitud (afecta a la exposición de la luz uv). En la superficie, es rugosa, porosa y cubierta por mucilago, filamentos, etc. Las partículas de carbonato van quedándose atrapadas, hasta que la cimentación por crecimiento de cristales, forma una capa mas, de esta forma la estructura aumenta de tamaño.

 

 

 

La Tierra es el tercer planeta del Sistema Solar. Esta situación orbital y sus características de masa la convierten en un planeta privilegiado, con una temperatura media de unos 15º C, agua en forma líquida y una atmósfera densa que pudo evolucionar, con oxígeno y otros ingredientes, condiciones imprescindibles para el desarrollo de la vida.

La creencia general es que hace unos 4.600 millones de años la corteza de la Tierra comenzó a consolidarse y las erupciones de los volcanes empezaron a formar la atmósfera, el vapor de agua y los océanos. El progresivo enfriamiento del agua y de la atmósfera permitió el nacimiento de la vida, iniciada en el mar en forma de bacterias y algas, de las que derivamos todos los seres vivos que habitamos hoy nuestro planeta tras un largo proceso de evolución biológica.

 

 

Aun los organismos más simples son máquinas moleculares extraordinariamente sofisticadas. Las primeras formas de vida tenían que ser muchísimo más sencillas. Necesitamos encontrar una familia de moléculas lo bastante simples como para formarse por procesos químicos y lo bastante complejas como para servir de cimiento a la evolución de las células vivas. Una molécula capaz de contener información y estructura suficientes como para replicarse a sí mismas y, al cabo, para dirigir la síntesis de otros componentes que puedan canalizar la replicación con una eficiencia cada vez mayor.

 

ESTRUCTURA DE LA CELULA BACTERIANA

 

TEMA 1 ESTRUCTURA BACTERIANA

 

Unas moléculas, en fin, que pudieran iniciar una trayectoria evolutiva que permitiera a la vida emanciparse de los procesos físicos que le dieron nacimiento, sintetizando las moléculas necesarias para el crecimiento en lugar de incorporarlas de su entorno y captando energía química o solar para alimentar el funcionamiento de la célula.

El descubrimiento de las enzimas de ARN, o ribosomas, realizado de forma independiente y aproximadamente al mismo tiempo por el bioquímico de Yale Sidney Altman, tuvo un efecto catalítico sobre el pensamiento acerca del origen de la vida.

 

ARN autorreplicante: Del origen de la vida hasta aplicaciones biotecnológicas en medicina en sólo un mes - La Ciencia de la Mula Francis

ARN auto-replicante

 

Ribozima _ AcademiaLab2018 mayo 25 : Blog de Emilio Silvera V.

 

Los enzimas de ARN (llamadas “ribozimas” o “aptazimas”) son moléculas de ARN capaces de autorreplicarse a temperatura constante en ausencia de proteínas. Utilizan la llamada replicación cruzada, en la que dos enzimas se catalizan el uno al otro de forma mutua. Este proceso permite entender cómo surgió la vida, pero los biotecnólogos las usan para algo mucho más prosaico. Estos enzimas de ARN pueden ser utilizados para detectar una gran variedad de compuestos, incluyendo muchos relevantes en diagnóstico médico. El compuesto orgánico se liga al aptazima, que se replica exponencialmente, amplificando exponencialmente la concentración del compuesto hasta permitir que sea fácilmente detectado.

En palabras del filósofo de la biología Iris Fry, esta extraordinaria molécula se alzó como “el huevo y la gallina al mismo tiempo” en el rompecabezas del origen de la vida. La vida, esa misteriosa complejidad que surgió a partir de la “materia inerte” que, bajo ciertas y complejas condiciones, dio lugar a que lo sencillo se convirtiera en complejo, a que lo inerte pudiera despertar hasta los pensamientos.

 

 

Aminoácidos Y ProteínasPéptidos Departamento de Ciencias Naturales.

14 Ejemplos de Ácidos Nucleicos (son la base de la genetica)Bioquímica | Ácidos Nucleicos | El enlace fosfodiéster - YouTube

 

Sabemos que, en ciertas condiciones prebióticas, los aminoácidos se forman fácilmente, así quedó demostrado por Stanley Miller en su gamoso experimento. Como los ácidos nucleicos, pueden unirse para formar péptidos, las cadenas de aminoácidos que se pliegan para formar proteínas funcionales.

Hay teorías para todos los gustos, y, el afamado Freeman Dyson, un renombrado físico que ha pensado profundamente sobre el origen de la vida, sugiere que en realidad la vida comenzó en dos ocasiones, una por la vía del ARN y otra vez por vía de las proteínas. Las células con proteínas y ácidos nucleicos interactivos habrían surgido más tarde en función protobiológica.  Y, está claro que, la innovación por alianzas es uno de los principales temas de la evolución.

 

phylogenetic_tree-es.png

 

En el árbol de la vida, nosotros (“tan importantes”), sólo somos una pequeña ramita.

Hay muchos procesos que son de una importancia extrema en la vida de nuestro planeta y, dado que los organismos fotosintéticos (o quimio-sintéticos) no pueden fraccionar isótopos de carbono en más de unas treinta parte por 1.000, necesitamos invocar la participación de otros metabolismos para poder explicar los resultados de las mediciones que se han realizado. Los candidatos más probables son bacterias que se alimentan de metano en los sedimentos. Estas bacterias obtienen tanto el carbono como la energía del gas natural (CH4) y, al igual que los organismos fotosintéticos, son selectivos con los isótopos. A causa de su preferencia química por el 12CHfrente al 13CH4, los microbios que se alimentan de metano fraccionan los isótopos de carbono en unas veinte o veinticinco partes por 1.000 en los ambientes donde el metano es abundante. ¿Habéis pensado en la posibilidad de que esos organismos fotosintéticos estén presentes en Titán? ¡El festín está servido!

 

Los océanos de metano de titán podrían ser una buena fuente de vida

 

La fotosíntesis anoxigénica se da en los organismos que utiliza la energía de la luz del sol, dióxido de carbono (sustrato a reducir) y sulfuro de hidrógeno (en lugar del agua) como dador de electrones que se oxida, se fabrican glúcidos y se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria.

 

Los organismos fotosintéticos: qué son y tipos - EspacioCiencia.com

 

Fotosíntesis - Wikipedia, la enciclopedia libreLos organismos fotosintéticos: qué son y tipos - EspacioCiencia.comOrganismos que utilizan la fotosíntesisLos organismos fotosintéticos: qué son y tipos - EspacioCiencia.com

 

Otra característica es que los organismos foto-sintéticos anoxigénicos contienen bacterio-clorofila, un tipo de clorofila exclusiva de los foto-organótrofos, usan longitudes de onda de luz que no son absorbidas por las plantas. Estas bacterias contienen también carotenoides, pigmentos encargados de la absorción de la energía de la luz y posterior transmisión a la bacterio-clorofila. El color de estos pigmentos dan el nombre a estas bacterias: bacterias púrpuras del azufre y bacterias verdes del azufre. En las cianobacterias los pigmentos captadores de luz son las ficobilinas, por lo tanto se les nombra, bacterias azules.

 

 

Cualquiera de estas imágenes de arriba nos cuenta una larga y compleja historia de cómo se pudieron formar cada uno de los ahí representados, y, en cualquiera de sus fases, formas y colores, es toda una gran obra de la Ingenieria de la Naturaleza que, al fin y al cabo, es la única fuente de la que debemos beber para saciar nuestra sed de sabiduría y alejar la ignorancia que nos abruma.

No pocas veces he dejado aquí constancia de que, el Universo, en todas sus regiones, por muy alejadas que estén, se rige por unas leyes que están presentes en todas parte por igual, y, así lo confirman mil observaciones y mil proyectos que a tal efecto se han llevado a buen término. Por ejemplo, mediaciones precisas de isótopos de azufre en muestras de Marte traídas a la Tierra por meteoritos demuestran que muy pronto en la historia del planeta vecino el ciclo del azufre estaba dominado por procesos atmosféricos que producían un fraccionamiento independiente de la masa.

 

 

Valles en Marte. (ESA) La región de Valles Marineris, que tiene una longitud de 4.000 kilómetros y una anchura de 600 kilómetros, es el sistema de cañones más grande conocido en el sistema solar, con profundidades que llegan a los diez kilómetros.

 

Basándose en este descubrimiento del fraccionamiento independiente de la masa, se dirigió la atención sobre las rocas terrestres más antiguas. Para sorpresas de muchos geoquímicos, lo que se hayó fue que el yeso y la pirita de las sucesiones sedimentarias más antiguas de la Tierra  también como en Marte, han dejado constancias del fraccionamiento independiente de la masa de los isótopos de azufre. Al igual que en Marte, en la Tierra primitiva la química del azufre se encontraba al parecer influenciada por procesos fotoquímicos que sólo pueden producirse en una atmósfera pobre en oxígeno. La etapa del oxígeno comenzó en nuestra atmósfera a comienzos del eón Ptoterozoico. En suma, todos los caminos de la biogeoquímica llevan al mismo sitio, es decir, lo que pasa aquí pudo pasar allí y, al decir allí, quiero decir en cualquier planeta de cualquier galaxia. Las leyes fundamentales de la Naturaleza son, las mismas en todas partes. No existen sitios privilegiados.

 

Es difícil imaginarse hoy una Tierra sin oxígeno

Dos equipos independientes de investigadores descubrieron que el oxígeno gaseoso apareció en la atmósfera terrestre unos 100 millones de años antes del evento de la gran oxidación de hace 2400 millones de años. Es decir, cuando cambió la antigua atmósfera y el planeta se equipó con la que hoy conocemos.

 

 

El oxígeno es un gas muy reactivo, no existe de manera libre durante un largo período de tiempo, pues forma óxidos o reacciona con otras sustancias de manera rápida. Si está presente en la atmósfera es porque las plantas lo reponen continuamente. Antes de la invención de la fotosíntesis y durante muchos cientos de millones de años no había oxígeno libre en la Tierra.

En los estratos geológicos se pueden encontrar pruebas de la existencia de un momento en el que se produjo una gran oxidación mineral, prueba de que el oxígeno se encontraba ya libre en la atmósfera terrestre por primera vez y en gran cantidad. A este hecho se le ha denominado evento de gran oxidación, o GOE en sus siglas en inglés, y fue un hecho dramático en la historia de la Tierra. Este oxígeno permitió más tarde la aparición de vida animal compleja. Los geólogos creían que durante el GOE los niveles de oxígeno subieron rápidamente desde niveles prácticamente despreciables.

 

Las bacterias: Amigas o Enemigas - ppt descargarBacterias: amigas o enemigasBacterias y Virus, nuestras amigas y enemigos - SurcosSurcosMicrobiota y VIH: ¿Amigas o enemigas?

El mundo bacteriano es fascinante. Las bacterias no siempre son las enemigas. Los virus son otra cosa

Con estas bacterias es posible obtener dos tipos de celdas microbianas o baterías. Unas llamadas celdas de sedimento emplean el lodo donde habitan estos microorganismos; ahí, se produce energía simplemente conectando un electrodo en la parte donde, a cierta profundidad, no hay oxígeno, con otro electrodo que se encuentre en presencia de oxígeno.

¿Cómo respondió la vida a la revolución del oxígeno? Podemos imaginar, un “holocausto de oxígeno” que habría llevado a la muerte y la extinción a innumerables linajes de microorganismos anaeróbicos. Pero hace dos mil doscientos millones de años los ambientes anóxicos no desaparecieron; simplemente, quedaron relegados bajo una capa oxigenada de agua y sedimentos superficiales.

Aquello permitió a la Tierra dar cobijo a una diversidad biológica sin precedentes. Los microorganismos anaeróbicos mantuvieron un papel esencial en el funcionamiento de los ecosistemas, igual que en la actualidad.

 

Real Circulo de Labradores | 17 de enero, conferencia 'La Tierra primitiva y el origen de la vida'

 

 

En la primera fase de cualquier ejercicio aeróbico, el oxígeno se combina con la glucosa procedente del glucógeno. Al cabo de unos minutos, cuando el cuerpo nota que escasea el azúcar, empieza a descomponer las grasas. Entonces disminuye un poco el rendimiento, mientras el cuerpo se adapta al cambio de origen de su energía. Superado este punto, se vuelve a los niveles y sensaciones normales, pero se queman grasas en lugar de glucosa.

De otro lado, los organismos que utilizan, o al menos toleran el oxígeno se expandieron enormemente. La respiración aeróbica se convirtió en una de las formas principales de metabolismo en las bacterias, y las bacteria quimiosintéticas que obtienen energía de la reacción entre oxígeno e hidrógeno o iones metálicos se diversificaron a lo largo de la frontera entre ambientes ricos en oxígeno y ambientes pobres en oxígeno. Desde ese momento, la Tierra comenzó a convertirse en nuestro mundo.

 

 

Nuestro mundo, rico en agua líquida que cubre el 71% de la superficie del planeta, y, su atmósfera con un 78% (en volumen) de Nitrógeno, un 21 de Oxígeno y un 0,9 de Argón, además de dióxido de carbono, hidrógeno y otros gases en cantidades mucho menores que, permiten que nuestros organismos encuentren el medio indóneo para poder vivir. Otros muchos factores presentes en la Tierra contribuyen a que nuestra presencia aquí sea posible.

 

 

Las algas verdeazuladas también son llamadas bacterias verdeazuladas porque carecen de membrana nuclear como las bacterias. Sólo existe un equivalente del núcleo, el centroplasma, que está rodeado sin límite preciso por el cromatoplasma periférico coloreado. El hecho de que éstas se clasifiquen como algas en vez de bacterias es porque liberan oxígeno realizando una fotosíntesis similar a la de las plantas superiores. Ciertas formas tienen vida independiente, pero la mayoría se agrega en colonias o forma filamentos. Su color varía desde verdeazulado hasta rojo o púrpura dependiendo de la proporción de dos pigmentos fotosintéticos especiales: la ficocianina (azul) y la ficoeritrina (rojo), que ocultan el color verde de la clorofila.

 

 

Mientras que las plantas superiores presentan dos clases de clorofila llamadas A y B, las algas verdeazuladas contienen sólo la de tipo A, pero ésta no se encuentra en los cloroplastos, sino que se distribuye por toda la célula. Se reproducen por esporas o por fragmentación de los filamentos pluricelulares. Las algas verdeazuladas se encuentran en hábitats diversos de todo el mundo. Abundan en la corteza de los árboles, rocas y suelos húmedos donde realizan la fijación de nitrógeno. Algunas coexisten en simbiosis con hongos para formar líquenes. Cuando hace calor, algunas especies forman extensas y, a veces, tóxicas floraciones en la superficie de charcas y en las costas. En aguas tropicales poco profundas, las matas de algas llegan a constituir unas formaciones curvadas llamadas estromatolitos, cuyos fósiles se han encontrado en rocas formadas durante el precámbrico, hace más de 3.000 millones de años. Esto sugiere el papel tan importante que desempeñaron estos organismos cambiando la atmósfera primitiva, rica en dióxido de carbono, por la mezcla oxigenada que existe actualmente. Ciertas especies viven en la superficie de los estanques formando las “flores de agua”.

Sin descanso se habla de quer nosotros, con nuestro comportamiento estamos cambiando la atmósfera de la Tierra, que contaminamos y que, de seguir así, podemos acabar con la vida placentera en el planeta. Tal exageración queda anulada por la realidad de los hechos.

 

Las 20 ciudades más grandes del mundo en 2021 | ArchDaily en EspañolLas 20 ciudades más grandes del mundo en 2021 | ArchDaily en EspañolEstas son las 10 ciudades más grandes del mundo en 2025

 

 

Gigantescas ciudades son una buena muestra de nuestra presencia aquí, y, ¿Qué duda nos puede caber? Nuestro morfología nos ha convertido en el ser vivo dominante en el planeta. Sin embargo, no somos los que más hemos incidido en sus condiciones. Si se estudia la larga historia de la vida en la Tierra, podremos ver que una inmensa cantidad de especies han interactuado con la biosfera para modificar, en mayor o menor medida los ecosistemas del mundo. En realidad, la especie que cambió el planeta de manera radical, la que en verdad modificó la Tierra hasta traerla a lo que hoy es, creando una biosfera nueva a la que todas las especies se tuvieron que adaptar (también nosotros), esa especie que, aunque diminuta en su individualidad forma un gigantesco grupo, no son otras que las cianobacterias.

 

De esa manera, si el oxígeno trajo consigo un cambio revolucionario, las heroínas de la revolución fueron las cianobacterias. Fósiles extraordinariamente bien conservados en siles de Siberia de mil quinientos millones de años de edad demuestran que las bacterias verdeazuladas se diversificaron tempranamente y se han mantenido hasta la actualidad sin alterar de manera sustancial su forma. La capacidad de cambiar con rapidez, pero persistir indefinidamente, compendia la evolución bacteriana.

Las cianobacterias comparten con algunas otras bacterias la habilidad de tomar el N2 del aire, donde es el gas más abundante, y reducirlo a amonio (NH4), una forma que todas las células pueden aprovechar. Los autótrofos que no pueden fijar el N2, tienen que tomar nitrato (NO3-), que es una sustancia escasa. Esto les ocurre por ejemplo a las plantas. Algunas cianobacteria son simbiontes de plantas acuáticas, como los helechos del género Azolla, a las que suministran nitrógeno. Dada su abundancia en distintos ambientes las cianobacterias son importantes para la circulación de nutrientes, incorporando nitrógeno a la cadena alimentaria, en la que participan como productores primarios o como descomponedores.

 

Nuestras Amigas y Aliadas las Bacterias y los Microorganismos Regeneradores - Revista Universo HolisticoLos diferentes organismos modelo. Capítulo 3: bacterias – EcotoxsanProbióticos: ¿cómo elegirlos bien? | PiLeJeBacteriuria Asintomática - aeuexp

 

La resistencia general de las bacterias a la extinción es bien conocida. Las bacterias poseen tamaños poblacionales inmensos y pueden reproducirse rápidamente: no importa que por la mañana nos lavemos los dientes meticulosamente; a media tarde, las bacterias que hayan sobrevivido al cepillo se habrán multiplicado hasta el extremo de recubrir nuevamente el interior de la boca. Además, las bacterias saben habérselas muy bien con medios cambiantes. El aire, por ejemplo, está lleno de bacterias; un plato de leche colocado en el alfeizar de la ventana no tarda en fermentar. Lo que es más, las bacterias son muy buenas a la hora de resistir perturbaciojnes ambientales. Aunque la mayoría crece especialmente bien dentro de unos márgenes ambientales estrechos, son capaces de tolerar condiciones extremas, al menos durante un tiempo.

Si miramos el tiempo que llevan aquí, como se pueden adaptar a condiciones que, ni en sueños podríamos hacerlo nosotros, y, sobre todo, si pensamos en la diversidad y en la inmensa cantidad y en que están ocupando (prácticamente) todas las regiones del planeta, tendremos que convenir que, es necesario saber cuanto más mejor de ellas y, es necesario que nos sumerjamos en los reinos de las pequeñas criaturas que, de una u otra forma, serán nuestra salvación o, podrían provocar nuestra extinción.

 

Descubren moléculas de oxígeno en Orión | Muy InteresanteHallan en la Nebulosa de Orión todos los ingredientes claves para la vida

Moléculas de Oxígeno en Orión además de todos los ingredientes para la vida

 

Nebulosa de Orión - Wikipedia, la enciclopedia libreLos astrónomos descubren oxígeno molecular en otra galaxia

Aquí hay más de lo que a simple vista podemos ver

Fred Hoyle, el gran astrofísico Inglés, descubridor del efecto triple Alfa (la producción de Carbono en las estrellas), escribió una novela de ciencia ficción “La Nube Negra”, en la que decía que en sitios como el de arriba, podía estar presente la vida en forma de pequeños seres de diversa índole.

Algunos creen que,  también, en lugares como el que arriba se muestra, pueden estar presentes esos pequeños seres. En lugares donde abundan los mundos… ¿Qué seres habrá? Ahí, en la imagen de arriba,  están presentes todos y cada uno de los elementos necesarios para la vida, y, simplemente con que uno sólo de entre una infinidad de planetas que ahí se formarán se encuentre dentro de la zona habitable de su estrella, podría contener un sin fin de formas de vida que, como aquí en la Tierra, hayan evolucionado y, ¿Quién sabe? hasta es posible que esa clase de vida, pueda haber logrado alcanzar los pensamientos, la imaginación, la facultad de ser conscientes.

De todas las maneras…, seguimos sin saber, a ciencia cierta, como pudo surgir las vida. Sólo tenemos vestigios que nos acercan a esa posible fuente, y, son muchas, las zonas oscuras que no dejan ver lo que allí ocurrió, lo que hizo la evolución o dejó de hacer y, las condiciones primigenias que posibilitaron que en este pequeño planeta rocoso, emergieran formas de vida que evolucionadas han podido salir al exterior para ver lo que hay fuera.

 

Panspermia es la teoría que dice que la vida en la Tierra es de origen extraterrestre | BLOOM MAGAZINEPanspermia es la teoría que dice que la vida en la Tierra es de origen extraterrestre | BLOOM MAGAZINE

           Esporas del espacio que pueden llevar la vida a diversos mundos

Acodémonos de la panspermia o llegada de vida desde fuera de la Tierra. La idea está muy extendida a pesar de que no existe la menor evidencia científica a su favor. Ni se ha encontrado vida fuera de nuestro planeta ni hay indicios de que alguno de los organismos de la Tierra procedan de otros mundos. Sin embargo…¡Ahí queda eso!

Entonces y para finalizar… ¿Cómo surgió la vida en la Tierra? ¡Nadie lo sabe!

Emilio Silvera Vázquez

El secreto está en las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

El Tiempo es inexorable y su transcurrir va dejando atrás las cosas del presente. Lejos queda ya aquellas efemérides y celebraciones del año 2009, cuando se conmemoró el Año Internacional de la Astronomía y me cupo el honor de (humildemente), colaborar con aquellas celebraciones. Con orgullo luzco en el ojal de mi chaqueta el astrolabio que nos dieron en Madrid, a todos los invitados, a la fiesta de inauguración en la que estaban presentes muchos astrónomos y astrofísicos del mundo entero.

 

Lanzamiento del Año de la Astronomía en España | Futuro | EL PAÍSUntitled

           Tuve el honor de ser uno de los 200 invitados en aquel acontecimiento

Lo cierto es que, en su momento, ya desde el inicio del año 2.009 en el que se celebró el Año Internacional de la Astronomía, en muchos de mis artículos publicados en la colaboración que con la Organización Internacional tuve el honor de prestar y fueron publicados, se hablaba de todos esos interesantes temas que, el Universo nos presenta y que, inciden en el saber de la Naturaleza y del Mundo que nos acoge que, como nosotros… ¡También es Universo!

 

 

                   LA QUÍMICA DE LAS ESTRELLAS

Los cambios se estaban produciendo a una velocidad cada vez mayor. Al siglo de Newton también pertenecieron, entre otros, el matemático Fermat; Römer, quien midió la velocidad de la luz; Grimaldi, que estudió la difracción; Torricelli, que demostró la existencia del vacío; Pascal y Boyle, que definieron la física de los fluidos…La precisión de los telescopios y los relojes aumentó notablemente, y con ella el número de astrónomos deseosos de establecer con exactitud  la posición de las estrellas y compilar catálogos estelares cada vez más completos para comprender la Vía Láctea.

La naturaleza de los cuerpos celestes quedaba fuera de su interés: aunque se pudiera determinar la forma, la distancia, las dimensiones y los movimientos de los objetos celestes, comprender su composición no estaba a su alcance. A principios del siglo XIX, William Herschel (1738-1822), dedujo la forma de la Galaxia, construyó el mayor telescopio del mundo y descubrió Urano. Creía firmemente que el Sol estaba habitado.

 

       Hasta llegar a conocer nuestra situación astronómica…

Al cabo de pocos años, nacía la Astrofísica, que a diferencia de la Astronomía (ya llamada  -”clásica o de posición”-), se basaba en pruebas de laboratorio. Comparando la luz emitida por sustancias incandescentes con la recogida de las estrellas se sentaban las bases de lo imposible: descubrir la composición química y la estructura y el funcionamiento de los cuerpos celestes. Estaba mal vista por los astrónomos “serios” y se desarrolló gracias a físicos y químicos que inventaron nuevos instrumentos de análisis a partir de las demostraciones de Newton sobre la estructura de la luz.

 

http://4.bp.blogspot.com/-IN2Qri7IUSg/TyUpQySdUqI/AAAAAAAAAyg/ampELovJApU/s1600/Abundancia+relativa+de+elementos+en+el+universo.gif

El H es el elemento más abundante en el universo. Él solo representa el 92 % de los átomos que existen en el cosmos, lo que equivale a un porcentaje del 75 % en masa de todos los que hay. Le sigue en abundancia el He, con un 7 % de los átomos y un 24 % en masa. Todos los demás elementos poseen abundancias muy inferiores, que equivalen a algo menos del 1 % de átomos y algo más del 1 % en masa. Después de H y He los siguientes ocho elementos más abundantes son Carbono, Nitrógeno, Oxígeno, Neón, Magnesio, Silicio, Azufre y Hierro. Cabe destacar especialmente el pico del Hierro sobre su entorno y también que las masas atómicas de todos esos elementos son múltiplos de cuatro, de acuerdo con el “proceso alfa” de su formación. Todos ellos ocupan los picos de los dientes de sierra del gráfico. También resulta llamativa la escasez, como ya comentamos en su momento, de los elementos situados entre el Helio, y el Carbono, es decir, Li, Be y B.+

 

 

1814. Fraunhofer y las líneas oscuras del Sol | Ciencia | elmundo.es1814. Fraunhofer y las líneas oscuras del Sol | Ciencia | elmundo.es

 

En 1814, Joseph Fraunhofer (1787-1826) realizó observaciones básicas sobre las líneas que Wollaston había visto en el espectro solar: sumaban más de 600 y eran iguales a las de los espectros de la Luna y de los planetas; también los espectros de Pólux, Capella y Porción son muy similares, mientras que los de Sirio y Cástor no lo son. Al perfeccionar el  espectroscopio con la invención de la retícula de difracción (más potente y versátil que el prisma de cristal), Fraunhofer observó en el espectro solar las dos líneas del sodio: así se inició el análisis espectral de las fuentes celestes.

 

JOHN HERSHEL | El inventor de la Cianotipia

Mientras, en el laboratorio, John Herschel observó por primera vez la equivalencia entre los cuerpos y las sustancias que los producen, Anders J. Anhström (1814-1868) describía el espectro de los gases incandescentes y los espectros de absorción y Jean Foucault (1819-1874) comparó los espectros de laboratorio y los de fuentes celestes. Gustav Kirchhoff (1824-1887) formalizó las observaciones en una sencilla ley que cambió la forma de estudiar el cielo; “La relación entre el poder de emisión y de absorción para una longitud de onda igual es constante en todos los cuerpos que se hallan a la misma temperatura”. En 1859, esta ley empírica, que relacionaba la exploración del cielo con la física atómica, permitía penetrar en la química y la estructura de los cuerpos celestes y las estrellas. De hecho, basta el espectro de una estrella para conocer su composición. Y, con la espectroscopia, Kirchhoff y Robert Bunsen (1811-1899) demostraron que en el Sol había muchos metales.

 

La sonda Solar Orbiter está dando grandes resultados en la observación del Sol – UNIVERSO BlogProtuberancia Solar

 

La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un  nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron  que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.

 

        EL DIAGRAMA HR: EL CAMINO HACIA EL FUTURO

El padre Ángelo Secchi (1818-1878) fue el primero en afirmar que muchos espectros estelares poseen características comunes, una afirmación refrendada hoy día con abundantes datos. Secchi clasificó las estrellas en cinco tipos, en función del aspecto general de los espectros. La teoría elegida era correcta: el paso del color blanco azulado al rojo oscuro indica una progresiva disminución de la temperatura, y la temperatura es el parámetro principal que determina la apariencia de un espectro estelar.

 

The Series of Scientists who won the Nobel Prize in Physics - Pieter Zeeman (English Edition) eBook: Al-Ahmad, Jasem: Amazon.es: Tienda KindlePieter Zeeman - Wikipedia, la enciclopedia libre

El efecto Zeeman que ayuda a medir el campo magnético del sol - Física - 2021La NASA muestra como nunca antes los campos magnéticos del Sol en este alucinante vídeoTEMA 1: Estructura atómica y clasificación periódica de los elementos - PDF Descargar libre

El efecto Zeeman que ayuda a medir el campo magnético del Sol

Más tarde, otros descubrimientos permitieron avanzar en Astrofísica: Johan Balmer (1825-1898) demostró que la regularidad en las longitudes de onda de las líneas del espectro del hidrógeno podía resumirse en una sencilla expresión matemática; Pieter Zeeman (1865-1943) descubrió que un campo magnético de intensidad relativa influye en las líneas espectrales de una fuente subdividiéndolas en un número de líneas proporcional a su intensidad, parámetro que nos permite medir los campos magnéticos de las estrellas.

 

Resultado de imagen de La estructura del núcleo atómicoModelo atómico de Rutherford. Todo lo que debes saber | Meteorología en Red

EL SABIO QUE VIO LA LÍNEAS INVISIBLES – REVISTA PERSEASiglo y medio de Tabla Periódica

En otros descubrimientos empíricos la teoría surgió tras comprender la estructura del átomo, del núcleo atómico y de las partículas elementales. Los datos recogidos se acumularon hasta que la física y la química dispusieron de instrumentos suficientes para elaborar hipótesis y teorías exhaustivas. Gracias a dichos progresos pudimos asistir a asociaciones como Faraday y su concepto de “campo” como “estado” del espacio en torno a una “fuente”; Mendeleiev y su tabla de elementos químicos; Maxwell y su teoría electromagnética;  Becquerel y su descubrimiento de la radiactividad; las investigaciones de Pierre y Marie Curie; Rutherford y Soddy y sus experimentos con los rayos Alfa, Beta y Gamma; y los estudios sobre el cuerpo negro que condujeron a Planck a determinar su constante universal; Einstein y su trabajo sobre la cuantización de la energía para explicar el efecto fotoeléctrico, Bohr y su modelo cuántico del átomo; la teoría de la relatividad especial de Einstein que relaciona la masa con la energía en una ecuación simple…Todos fueron descubrimientos que permitieron explicar la energía estelar y la vida de las estrellas, elaborar una escala de tiempos mucho más amplia de lo que jamás se había imaginado y elaborar hipótesis sobre la evolución del Universo.

 

Ejnar Hertzsprung | Stellar classification, Astronomical photography,  Spectroscopy | Britannica

 

En 1911, Ejnar Hertzsprung (1873-1967) realizó un gráfico en el que comparaba el “color” con las “magnitudes absolutas” de las estrellas y dedujo la relación entre ambos parámetros. En 1913, Henry Russell (1877-1957) realizó otro gráfico usando la clase espectral en lugar del color y llegó a idénticas conclusiones.

El Diagrama de Hertzsprung-Russell (diagrama HR) indica que el color, es decir, la temperatura, y el espectro están relacionados, así como el tipo espectral está ligado a la luminosidad. Y debido a que esta también depende de las dimensiones de la estrella, a partir de los espectros puede extraerse información precisa sobre las dimensiones reales de las estrellas observadas. Ya solo faltaba una explicación de causa-efecto que relacionara las observaciones entre si en un cuadro general de las leyes.

 

 

El progreso de la física y de la química resolvió esta situación, pues, entre otros avances, los cálculos del modelo atómico de Bohr reprodujeron las frecuencias de las líneas del hidrógeno de Balmer. Por fin, la Astrofísica había dado con la clave interpretativa de los espectros, y las energías de unión atómica podían explicar el origen de la radiación estelar, así como la razón de la enorme energía producida por el Sol.

Las líneas espectrales dependen del número de átomos que las generan, de la temperatura del gas, su presión, la composición química y el estado de ionización. De esta forma pueden determinarse la presencia relativa de los elementos en las atmósferas estelares, método que hoy también permite hallar diferencias químicas muy pequeñas, relacionadas con las edades de las estrellas. Así, se descubrió que la composición química de las estrellas era casi uniforme: 90 por ciento de hidrógeno y 9 por ciento de helio (en masa, 71% y 27%, respectivamente). El resto se compone de todos los elementos conocidos en la Tierra.

 

 

Así mismo, el desarrollo de la Física ha permitido perfeccionar los modelos teóricos y explicare de forma coherente que es y como funciona una estrella. Dichos modelos sugirieron nuevas observaciones con las que se descubrieron tipos de estrellas desconocidas: las novas, las supernovas, los púlsares con periodos o tiempos que separan los pulsos, muy breves…También se descubrió que las estrellas evolucionan, que se forman grupos que luego se disgregan por las fuerzas de marea galácticas.

 

Radioastronomía - Wikipedia, la enciclopedia libreLA FÍSICA ESTA DENTRO DE TI: Radiotelescopio y la Radioastronomía

La Radioastronomía, una nueva rama de la Astronomía, aportó más datos sobre nuestra Galaxia, permitió reconstruir la estructura de la Vía Láctea y superar los límites de la Astronomía óptica.

Se estaban abriendo nuevos campos de estudio: los cuerpos galácticos, los cúmulos globulares, las nebulosas, los movimientos de la galaxia y sus características se estudiaron con ayuda de instrumentos cada vez más sofisticados. Y cuanto más se observaba más numerosos eran los objetos desconocidos descubiertos y más profusas las preguntas. Se descubrieron nuevos y distintos tipos de galaxias fuera de la nuestra; examinando el efecto Doppler, se supo que todas se alejaban de nosotros y, lo que es más, que cuanto más lejanas están más rápidamente se alejan.

 

        El Telescopio Hubble nos muestra esta imagen del Universo Profundo

Acabábamos de descubrir que el Universo no terminaba en los límites de la Vía Láctea, sino que se había ampliado hasta el “infinito”, con galaxias y objetos cada vez más extraños. Sólo en el horizonte del Hubble se contabilizan 500 millones de galaxias. Y los descubrimientos continúan: desde el centro galáctico se observa un chorro de materia que se eleva más de 3.000 a.l. perpendicular al plano galáctico; se observan objetos como Alfa Cygni, que emite una energía radial equivalente a diez millones de veces la emitida por una galaxia como Andrómeda; se estudian los cuásares, que a veces parecen mas cercanos de lo que sugieren las mediciones del efecto Doppler; se habla de efectos de perspectiva que podrían falsear las conclusiones… Y nos asalta una batería de hipótesis, observaciones, nuevas hipótesis, nuevas observaciones, dudas…

 

Este vídeo de apenas 19 segundos es la mejor manera de entender el efecto Doppler - INVDESThe Doppler Effect for Sound

 

Todavía no se ha hallado una respuesta cierta y global. Un número cada vez mayor de investigadores está buscándola en miles de direcciones. De esta forma se elaboran nuevos modelos de estrellas, galaxias y objetos celestes que quizá sólo la fantasía matemática de los investigadores consiga concretar: nacen los agujeros negros, los universos de espuma, las cadenas…

 

NASA detecta presencia de grafeno en el espacio | EL UNIVERSAL - Cartagena

 

Encontrar Grafeno en el espacio ya no es una sorpresa, toparnos de bruces con océanos de metano… ¡tampoco!, hallar colonias de bacterias vivienda a muchos kilómetros de altura no es una novedad, saber que en las estrellas se fabrican los materiales aptos para hacer posible la química de la vida… nos maravilla pero ya, no es causa de asombro. Cada día damos un paso más hacia el saber del “mundo”, de la Naturaleza, del Universo en fin.

 

Evolución Estelar

Las estrellas, como todo en este universo, comienzan siendo una cosa y finalizan siendo otra distinta

En la actualidad, el número de investigadores centrados en problemas relacionados con la evolución estelar, la Astrofísica y las teorías cosmo-genéticas es tan elevado que ya no tiene sentido hablar de uno en particular, ni de un único hilo de investigación. Al igual que ocurre con otras ramas científicas las Astronomía se ha convertido en un trabajo de equipo a escala internacional que avanza sin cesar en una concatenación de innovaciones, inventos, nuevos instrumentos, interpretaciones cada vez más elaboradas y, a menudo más difíciles de entender incluso para los investigadores que avanzan con infinidad de caminos paralelos. Es una situación que ya vaticinaba Bacon en tiempos de Galileo.

 

El enigmático origen de los cúmulos globulares

Hasta la Astronomía se ha hiper-especializado y, por ejemplo, quienes estudian problemas particulares de la física de las estrellas pueden desconocerlo todo sobre planetas y galaxias. También el lenguaje es cada vez más técnico, y los términos, capaces de resumir itinerarios de investigación, son complejos de traducir al lenguaje común. Así, mientras la divulgación avanza a duras penas entre una jungla de similitudes y silogismos, las informaciones que proceden de otras disciplinas son aceptadas por los científicos y los resultados de cada cual se convierten en instrumentos para todos.

 

 

La observación del Sol obsesionó a la mayoría de los Astrofísicos. A veces, resultaba difícil identificar algunas líneas y ello condujo a descubrir un nuevo elemento químico; se empezó a sospechar que el Sol poseía una temperatura mucho más elevada de lo imaginado. La línea de emisión de los espectros de estrellas y nebulosas demostraron que casi un tercio de los objetos estudiados eran gaseosos. Además, gracias al trabajo de Johan Doppler (1803-1853) y de Armand H. Fizeau (1819-1896), que demostró que el alejamiento o el acercamiento respecto al observador de una fuente de señal sonora o luminosa provoca el aumento o disminución de la longitud de onda de dicha señal, empezó a precisarse la forma de objetos lejanos. El cielo volvía a cambiar y hasta las “estrellas fijas” se movían.

Descubierto un cúmulo camuflado entre la Tierra y la nebulosa de OriónInvestigación de más de 3.000 galaxias revela datos sobre la evolución del universo

Científicos descubren una "pared" de galaxias con una longitud de 1 mil 400 millones años luz | Código EspaguetiUna galaxia desafía teorías y resiste al festín de un agujero negro

Las investigaciones sobre planetas, estrellas, materia interestelar, galaxias y Universo van paralelas, como si fueran disciplinas independientes, pero en continua osmosis. Y mientras la información sobre el Sol y los cuerpos del Sistema solar es más completa, detallada y fiable, y las hipótesis sobre nuestra Galaxia hallan confirmación, el Universo que empezamos a distinguir más allá de nuestros limites no se pareced a lo que hace un siglo se daba por sentado. Y mientras los modelos matemáticos dibujan uno o mil universos cada más abstractos y complejos, que tienen más que ver con la filosofía que con la observación, vale la pena recordar como empezó nuestro conocimiento hace miles de años.

 

Otros nos indicaron la dirección a seguir pero, la dureza del camino…, esa, la tuvimos que hacer nosotros. Es decir, en cada época y lugar, los que estuvieron, miraron hacia atrás para ver lo que hicieron sus ancestros y, con aquellas enseñanzas, tener la guía del camino a seguir, o, por el contrario, si los resultados no fueron buenos, rechazarlos. Lo cierto es que, al igual que nosotros, los que vengan detrás partirán con alguna ventaja aunque tengan que hacer su propio recorrido que, ni mucho menos tienen el camino despejado y, la niebla de la ignorancia sigue siendo espesa, aunque algo más suave que la que nosotros nos encontramos.

La niebla | El CulturalEl Universo y la Mente - IESChNcientifico

Sí, la niebla de la ignorancia nos hace transitar caminos a ciegas. No permite que vayamos más allá de lo permitido en cada Tiempo. Y, sobre eso, habría que comprender que cada “cosa” tiene su propio Tiempo, y, adelantarse a él… ¡No sería bueno!

Ahora, amigos, después de este breve repaso por una pequeña parte de la Historia de la Astronomía, al menos tendréis una idea más cercana  del recorrido que, la Humanidad, ha tenido que realizar para conocer mejor el Universo.

Los datos aquí reseñados tienen su origen en diversas fuentes que, de aquí y de allá, han sido tomadas para recomponer un mensaje que les lleve a todos algunos mensajes de como ocurrieron los acontecimientos en el pasado para que fuera posible nuestro presente.

Emilio Silvera Vázquez