viernes, 06 de junio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Estrellas cercanas que podrían facilitar la presencia de vida

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay una veintena de estrellas que se encuentran dentro de un radio de acción marcado por los doce años-luz de distancia al Sol. ¿Cuál de ella se nos presenta como la más probable para que, algunos de sus planetas pudieran albergar alguna clase de vida, incluso Vida Inteligente? La estrella más cercana a nosotros es Alfa Centauro que, en realidad es un sistema estelar situado a unos 4.37 años-luz de nosotros (unos 42 billones de kilómetros). En realidad, se trata de un sistema de tres estrellas.

 

Sigamos con el trabajo de hoy

Alfa Centauro contiene al menos un planeta del tamaño terrestre con algo más de la masa de la Tierra que está orbitando a Alfa Centauro B. Sin embargo, su cercanía a la estrella, unos 6 millones de kilómetros lo hace tener una temperatura de más de 1.ooo ºC lo que parece ser muy caliente para albergar alguna clase  de vida.

 

http://bitacoradegalileo.files.wordpress.com/2011/07/alpha-y-beta-cen-hubble.jpgCientíficos descubren la mayor Supertierra cercana a nuestro Sistema Solar

 

Alfa Centauri, seguramente por su cercanía a nosotros, ha ejercido siempre una sugestiva atracción para nosotros cuando miramos el cielo nocturno. Resulta ser, en su conjunto, la tercera estrella más brillante de todas, y junto con Hadar (Beta Centauri), las dos en la imagen de arriba, es una muy importante y útil referencia para la localización de la Cruz del Sur.  Además, y como se trata de una estrella triple, Alpha Centauri A, la componente principal, se constituye en una buena candidata para la búsqueda  de planetas del mismo tipo que la Tierra.

Las tres estrellas se formaron a partir de la misma nebulosa de materia interestelar. El trío de estrellas se van orbitando las unas a las otras a un ritmo como de vals, unidas por los lazos invisibles de la fuerza gravitatoria que generan y con la que se influyen mutuamente. Lo cierto es que las estrellas triples gozan de pocas probabilidades para albergar la vida, porque no pueden mantener a sus planetas en una órbita estable y segura, la inestabilidad que producen las tres estrellas en esos posibles planetas, parece que sería insoportable para formas de vida inteligente. Claro que, las distancias a las que se encuentran unas estrellas de otras es grande y… ¿Quién sabe? Nunca podemos afirmar nada sin haberlo confirmado.

 

Resultado de imagen de La estrella de BarnardResultado de imagen de La estrella de Barnard

                                             La estrella de Barnard y el mundo que la orbita

La siguiente estrella más allá de Alfa Centauri es la estrella de Barnard, situada a 6 años-luz aproximadamente de nuestro Sol, o, lo que es lo mismo, a unos sesenta mil billones de kilómetros de distancia. Esta estrella parece contar con una familia de planetas. Sin embargo, es una estrella muy vieja, casi tanto como el propio universo, y, por tanto, es deficitaria en la mayoría de los elementos químicos esenciales para la vida. Es poco prometedora para buscar vida en sus alrededores.

Las 10 estrellas más cercanas al Sol se encuentran en un rango de distancia entre los 4 y 10 años luz. Para tener una idea, la Vía Láctea mide unos 100.000 años luz, lo cual convierte a estas estrellas en verdaderas vecinas:

 

 

13050101tamanyouniverso

                                                En un radio de 12,5 años-luz

  1. Alfa Centauri (que, en realidad, es un sistema de tres estrellas): a 4,2 años luz.
  2. Estrella de Barnard: a 5,9 años luz.
  3. Wolf 359: a 7,7 años luz.
  4. Lalande 21185: a 8,2 años luz
  5. Sirio (un sistema binario de estrellas): a 8,6 años luz
  6. Luyten 726-8 (otro sistema binario): a 8,7 años luz.
  7. Ross 154: a 9,7 años luz
  8. Ross 248: a 10,3 años luz
  9. Epsilon Eridani: a 10,5 años luz.
  10. Lacaille 9352: a 10,7 años luz

Un planeta alrededor de la estrella de Barnard: ¿a la segunda va la  vencida? - Eureka

 

Más allá de Barnard existe un cierto numero de estrellas, todas ellas poco prometedoras para la existencia de vida y de inteligencia porque, o son demasiado pequeñas y frías para emitir la clase de luz que la vida tal como la conocemos requiere, o demasiado jóvenes como para que haya aparecido la vida inteligente en los planetas que las circundan. No encontraremos otra estrella que pueda albergar la vida y seres inteligentes hasta que no viajemos a una distancia próxima a los once años-luz del Sol.

 

Una supertierra orbita a la estrella de Barnard | ESO España

La estrella de Barnard es una de las estrellas más famosas del cielo a pesar de no ser visible a simple vista (su magnitud es de 9,5). El motivo es que esta pequeña enana roja es el segundo sistema estelar más cercano al Sol después de las tres estrellas del sistema Alfa Centauri (Alfa Centauri A y B y Proxima Centauri). Situada a solo seis años luz en la constelación de Ofiuco, es también la estrella que tiene el movimiento aparente más elevado, desplazándose 10,3 segundos de arco cada año. Debido a su cercanía y posición en la bóveda celeste, ha sido estudiada de forma extensiva desde que fue descrita por Edward Emerson Barnard en 1916. Ya en los años 60 el controvertido astrónomo neerlandés Peter van de Kamp anunció el descubrimiento de dos gigantes gaseosos alrededor de esta estrella mediante astrometría. Aunque ampliamente cuestionado, el descubrimiento tuvo mucha repercusión en su época. Sirva como ejemplo el proyecto Dédalo de la BIS (British Interplanetary Society) de los años 70, una iniciativa para diseñar una nave interestelar de fusión no tripulada que tendría como objetivo estudiar los planetas de la estrella de Barnard.

 

Centauri A y B y Proxima Centauri). Situada a solo seis años luz en la constelación de Ofiuco, es también la estrella que tiene el movimiento aparente más elevado, desplazándose 10,3 segundos de arco cada año. Debido a su cercanía y posición en la bóveda celeste, ha sido estudiada de forma extensiva desde que fue descrita por Edward Emerson Barnard en 1916. Ya en los años 60 el controvertido astrónomo neerlandés Peter van de Kamp anunció el descubrimiento de dos gigantes gaseosos alrededor de esta estrella mediante astrometría. Aunque ampliamente cuestionado, el descubrimiento tuvo mucha repercusión en su época. Sirva como ejemplo el proyecto Dédalo de la BIS (British Interplanetary Society) de los años 70, una iniciativa para diseñar una nave interestelar de fusión no tripulada que tendría como objetivo estudiar los planetas de la estrella de Barnard.

 

Epsilon Indi Ab, el primer exoplaneta visto directamente por el telescopio  espacial James Webb - Eureka

Épsilon Eridani está situada a unos 10,5 años-luz del Sol, es una de las estrellas más cercanas  al Sistema Solar y la tercera más próxima visible a simple vista. Está en la secuencia principal, de tipo espectral K2, muy parecida a nuestro Sol y con una masa algo menor que éste, de unas 0,83 masas solares. Es joven, sólo tiene unos 600 millones de años de edad mientras que el Sol tiene 4.600 millones de años.

Épsilon emite menos luz visible y luz ultravioleta que nuestra estrella, pero probablemente sea suficiente para permitir allí el comienzo de la vida que, si tenemos en cuenta el corto tiempo que ha pasado, no llegaría a poder ser inteligente. Claro que, los cálculos realizados sobre la vida de las estrellas en general y sobre esta en particular… ¡No son fiables! Y, siendo así (que los), tampoco podemos estar seguro de lo que en sus alrededores pueda estar presente. Se le descubrió un planeta orbitando a su alrededor, Épsilon Eridani b, que se descubrió en el año 2000. La masa del planeta está en 1,2 ± 0,33 de la de Júpiter y está a una distancia de 3,3 Unidades Astronómicas. Se cree que existen algunos planetas de reciente formación que orbitan esta estrella.

 

Resultado de imagen de Epsilón EridaniResultado de imagen de Epsilón EridaniResultado de imagen de Epsilón EridaniResultado de imagen de Epsilón Eridani

 

“Epsilon Eridani es un joven sistema estelar que se encuentra a muy poca distancia del Sistema Solar. Está a solo 10,5 años-luz. Así que, a la vuelta de la esquina (cósmicamente hablando) tenemos un objetivo perfecto para su estudio. Por eso no es sorprendente que los científicos hayan centrado su atención en él para poder comprender mejor la evolución de los sistemas planetarios. Lo más interesante, es que tiene un parecido remarcable con nuestro propio Sistema Solar, y eso no es común.”

Más allá de Épsilon Eridani hay nueve estrellas que se encuentran todavía dentro de un margen de distancia del Sol que no sobrepasan los 12 años-luz. Sin embargo, todas ellas, menos una, son demasiado jóvenes, demasiado viejas, demasiado pequeñas o demasiado grandes para poder albergar la vida y la inteligencia. La excepción se llama Tau Ceti.

 

Tau Ceti: detectados cuatro planetas terrestres — Astrobitácora

 

Tau Ceti está situada exactamente a doce años-luz de nosotros y satisface todas las exigencias básicas para que en ella (en algún planeta de su entorno) haya podido evolucionar la vida inteligente: Se trata de una estrella solitaria como el Sol -al contrario que Alfa Centauri- no tendría dificultad alguna en conservar sus planetas que no serían distorsionados por la gravedad generada por estrellas cercanas. La edad de Tau Ceti es la misma que la de nuestro Sol y también tiene su mismo tamaño y existen señales de que posee una buena familia de planetas. No parece  descabellado pensar que, de entre todas las estrellas próximas a nosotros, sea Tau Ceti la única con alguna probabilidad de albergar la vida inteligente.

 

Sistema solar de Tau Ceti

 

La noticia que publicaron los medios decía: ¡Descubren un nuevo planeta extrasolar que se encuentra en una zona habitable! El planeta orbita en torno a la estrella Tau Ceti, a doce años luz del Sol. Hay cinco cuerpos cuya masa oscila entre dos y seis veces la de la Tierra.

Descubren un planeta «cercano» que puede ser habitable

 

¿Quién sabe lo que en algunos de esos planetas que orbitan la estrella Tau Ceti pudiera estar pasando? Y, desde luego, dadas las características de su sistema planetario y la cercanía que parece existir entre alguno de los mundos allí presentes, si algún ser vivo inteligente pudiera contemplar el paisaje al amanecer, no sería extraño que pudiera ser testigo de una escena como la que arriba contemplamos. ¿Es tan bello el Universo! Cualquier escena que podamos imaginar en nuestras mentes… ¡Ahí estará! en alguna parte.

Es cierto que la vida, podría estar cerca de nosotros y que, por una u otra circunstancia que no conocemos, aún no hayamos podido dar con ella. Sin embargo, lo cierto es que podría estar mucho más cerca de lo que podemos pensar y, desde luego, es evidente que el Sol y su familia de planetas y pequeños mundos (que llamamos lunas), son también lugares a tener en cuenta para encontrarla aunque, posiblemente, no sea inteligente.

 

 

Con certeza, ni sabemos cuentos cientos de miles de millones de estrellas puede haber en nuestra propia Galaxia, la Vía Láctea. Sabemos más o menos la proporción de estrellas que pueden albergar sistemas planetarios y, sólo en nuestro entorno galáctico podrían ser cuarenta mil millones de estrellas las que pudieran estar habilitadas para poder albergar la vida en sus planetas.

 

La NASA descubre tres planetas que podrían albergar vida | CNN

 

Estas cifras asombrosas nos llevan a plantear muchas preguntas, tales como: ¿Estarán todas esas estrellas prometedoras dando luz y calor a planetas que tengan presente formas de vida, unas inteligentes y otras no? ¿O sólo lo están algunas? ¿O ninguna a excepción del Sol y su familia. Algunos astrónomos dicen que la ciencia ya conoce la respuesta a esas preguntas. Razonan que la Tierra es una clase de planeta ordinario, que contiene materiales también ordinarios que pueden encontrarse por todas las regiones del Universo, ya que, la formación de estrellas y planetas siempre tienen su origen en los mismos materiales y los mismos mecanismos y, en todas las regiones del Universo, por muy alejadas que estén, actúan las mismas fuerzas, las mismas constantes, los mismos ritmos y las mismas energías.

 

                                            Gliese 581 ¿Otra promesa vida?

Planetas como la Tierra y muy parecidos los hay en nuestra propia Galaxia a miles de millones y, si la vida hizo su aparición en esta paradisíaca variedad de planeta, estos astrónomos se preguntan, ¿por qué no habría pasado lo mismo en otros planetas similares al nuestro? ¿Tiene acaso nuestro planeta algo especial para que sólo en él esté presente la vida? La Naturaleza, amigos míos, no hace esa clase de elecciones y su discurrir está regido por leyes inamovibles que, en cualquier circunstancia y lugar, siempre emplea los caminos más “simples” y lógicos para que las cosas resulten como nosotros las podemos contemplar a nuestro alrededor. Y, siendo así (que lo es), nada aconseja a nuestro sentido común creer que estamos solos en tan vasto Universo.

 

Resultado de imagen de Otros planetas que albergan formas de vida

El célebre astrónomo, con una sonrisa oía la pregunta del joven periodista:

– ¿Verdad señor que sería un milagro encontrar vida en otros planetas?

El milagro joven, ¡sería que no la encontráramos!

Emilio Silvera Vázquez

Aprender de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en elementos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Moléculas desprendidas de la cola de un asteroide

Encuentran componentes de ADN en unos meteoritos llegados del espacio. ¿Quiere decir esto que la Vida vino de fuera de la Tierra?

 

 

Hoy conocemos los núcleos presentes en el Universo.  La Astrofísica nuclear es una rama relativamente joven de la física entre cuyos objetivos destaca la descripción de las reacciones mediante las cuales tiene lugar la generación de energías y la síntesis de elementos químicos en el Universo. Se trata, por tanto, de un campo multidisciplinar que combina las observaciones astronómicas, con el análisis de la composición de meteoritos, la modelización astrofísica y la física nuclear tanto experimental como teórica.

                                 

                                                                                               Fred Hoyle

En 1957, E.M. Burbidge, W.A. Fowler and F. Hoyle y de manera independiente A.G.W. Cameron publicaron sendos artículos clave, donde definen los principales procesos que explican la transformación de unos núcleos en otros, asentados en base de la Astrofísica nuclear.

A lo largo de la segunda mitad del siglo XX, la Astrofísica nuclear ha conseguido importantes logros que sin duda están íntimamente conectados al impresionante avance experimentado por las técnicas instrumentales y de medidas asociadas y por la capacidad de cálculo numérico.

 

 

 

Los diferentes procesos de nucleosíntesis que tienen lugar durante la vida de una estrella dan lugar a la creación de nuevos elementos químicos que son expulsados al medio interestelar. Estos elementos pasan a formar parte de una nueva generación de estrellas, y pueden ser detectados mediante estudios espectroscópicos. La mejora de las técnicas utilizadas en la instrumentación observacional y de los métodos de detección espectroscópicos, la construcción de grandes telescopios como el VLT y el Keck a los que pronto se añadirá el Gran TeCan, y la posibilidad de hacer observaciones desde el espacio sin la interferencia de la atmósfera terrestre (Telescopio Hubble, Chandra, XMM Newton e Integral), ha permitido obtener toda una nueva visión del universo que nos rodea.

La Física nuclear experimental tampoco ha sido ajena a todos estos avances tecnológicos, desarrollando haces de núcleos estables e inestables y la instrumentación necesaria para realizar experimentos de precisión. Las reacciones nucleares que intervienen en los procesos astrofísicos son reacciones de fusión; reacciones de captura de protones, de neutrones y de partículas alfa y sus inversas; y procesos mediados por la interacción débil tales como las desintegraciones beta, capturas de electrones y de neutrinos.

 

Decaimiento β de un núcleo. Se observa como uno de los neutrones se transforma en un protón emitiendo un electrón) y un anti-neutrino electrónico.

En algunos casos se miden reacciones inducidas por núcleos estables y energías próximas a las que se dan en las estrellas, con secciones eficaces muy pequeñas, que necesitan el uso de instalaciones subterráneas capaces de blindar los equipos de detección a la radiación de origen cósmico. En otros casos, se estudian reacciones inducidas por núcleos inestables (también llamados núcleos exóticos), con una vida media muy corta, y difíciles de sintetizar en el laboratorio con la tecnología actual.

 

No obstante, en las últimas décadas, numerosas instalaciones de haces de núcleos exóticos (Louvain la Neuve, GANIL, GSI, ISOLDE) han desarrollado programas experimentales en los que se han determinado las propiedades fundamentales (masas y vidas medias) y propiedades de la estructura de núcleos claves en reacciones de interés Astrofísico. Igualmente se han medido un número importante de secciones eficaces asociadas a los diferentes procesos de nucleosíntesis. Por otro lado, la construcción de instalaciones de tiempo de vuelo de neutrones (n_ToF arroba CERN) ha permitido el desarrollo de programas dedicados al estudio de la captura neutrónica. Así mismo, las nuevas instalaciones que se construirán en los próximos años (FAIR, SPIRAL 2) incluyen en sus programas científicos el estudio de reacciones nucleares de interés astrofísico.

 

En la mayor parte de los Modelos Astrofísicos la Física Nuclear Teórica es necesaria para convertir un texto experimental en el ritmo de reacción que es necesario en la aplicación astrofísica concreta. Ahora mismo nos encontramos al comienzo de una nueva era de desarrollo de modelos teóricos basados en primeros principios (ab-anitio). Esto permitirá reducir las incertidumbres asociadas con extrapolaciones a regiones de la carta de núcleos que no han sido exploradas experimentalmente, pero que son relevantes para diferentes procesos astrofísicos como es el caso de núcleos muy ricos en neutrones para el proceso r.

De forma complementaria, se han producido grandes avances en la modelización astrofísica de las diferentes etapas de evolución estelar. Los desafíos actuales se centran en la realización de simulaciones en tres dimensiones espaciales de los diferentes fenómenos astrofísicos y en particular de las espectaculares explosiones de supernovas tanto termonucleares como debidas al colapso gravitatorio.

 

 

Físicos en el Laboratorio Nacional Argonne en Chicago han utilizado el superordenador IBM Blue Gene/P para modelar la extrema física de una explosión de supernova. La visualización de arriba del superordenador del Laboratorio Nacional de Argonne logró mostrar el mecanismo de la muerte violenta de una estrella masiva, después de una corta vida. La imagen muestro en colores los valores de energía en el núcleo de la supernova. Se asignaron diferentes colores y transparencias a diferentes valores de enstrofía. Ajustando selectivamente el color y la transparencia, los científicos pueden “pelar” las capas externas y ver lo que está sucediendo en el interior de la estrella.

 

      Arriba, varias visualizaciones de la combustión nuclear en una supernova.

El Modelo cosmológico del Big Bang parte de la hipótesis de que nuestro Universo actual es el resultado de la expansión desde un estado inicial extremadamente denso y caliente. Al expandirse la temperatura decrece, lo que permite la formación de neutrones y protones a partir de una “sopa” inicial de Gluones y Quarks. En este momento comienza la época de nucleosíntesis primordial que dura aproximadamente 3 minutos. Debido a la gran cantidad de fotones presentes (altas temperaturas), la rápida expansión y al hecho de que no existen núcleos estables con un número de nucleones (protones y neutrones) igual a 5 y 8, los únicos elementos producidos son principalmente Hidrógeno y Helio (³He y ⁴He) con abundancias residuales de Deuterio y Litio (⁶Li y ⁷Li).

 

El surgimiento de la materia

                                                                                El Surgir de la Materia

Las cifras de las abundancias relativas de Schramm indican que el helio es aproximadamente 25% en masa y el hidrógeno aproximadamente el 73%, con todos los demás elementos constituyendo menos del 2%.

Las predicciones para las abundancias de elementos producidas durante el Big bang están de acuerdo con las observaciones con las abundancias de Deuterio y Helio (⁴He), para un valor de la razón de fotones a bariones que es consistente con las observaciones recientes del fondo de microondas. Es importante resaltar que (BBN), es decir, es la época de la nucleosíntesis primordial, la que nos permite “observar” el universo cuando éste tenía sólo unos pocos minutos de edad, mientras que el fondo de microondas corresponde a una edad de unos 300 mil años. A pesar del buen acuerdo en la predicción de los elementos más ligeros, la teoría predice una abundancia de Litio (⁷Li) superior en un facto 2-3 a la observada. Este hecho ha desencadenado toda una serie de estudios observacionales con el objetivo de determinar las abundancias primordiales de ⁶Li y ⁷Li junto con nuevas medidas experimentales de las reacciones ⁷Be (d.p)2α u d(α, γ)⁶Li.

 

Estrellas, que son y como evolucionan. – Astro Gredos

                                                                              Evolución de las estrellas

Dado que en el Big Bang solamente se produjo hidrógeno y helio, el resto de los elementos tienen que sintetizarse en otro lugar. Actualmente, está bien establecido que la producción de elementos ligeros ocurre mediante las reacciones de fusión que tienen lugar en el interior de las estrellas. La secuencia está reflejada en el gráfico abajo.

 

                                              Diagrama HR

                           Procesos Nucleares y Nucleosíntesis durante la Combustión Hidrostática.

Las estrellas se forman a partir de la contracción de grandes nubes moleculares por su propia gravedad, Estas nubes están constituidas principalmente de hidrógeno y helio, junto con pequeñas trazas de otros elementos más pesados que en la astrofísica se denominan metales y que han sido formados en anteriores explosiones de supernova.

Podemos decir que una estrella nace en el momento en el que la temperatura en su centro es lo suficientemente elevada para desencadenar los primeros procesos de combustión nuclear. Una estrella se puede definir como una esfera de gas autoluminosa. Dado que el Sol es la estrella que mejor conocemos es conveniente tomarlo como referencia a la hora de definir propiedades estelares. El Sol posee un radio de unos 700 mil kilómetros, lo que equivale a 109 veces el radio de la Tierra. Su masa es 330 mil veces la masa de la Tierra. La temperatura en su superficie es de 6000 grados, mientras que en el centro es de 15 millones de grados. Allí la densidad es de 160 veces la densidad del agua. El Sol emite cada segundo la misma energía que consumiríamos en la Tierra durante 4 millones de años al ritmo actual de consumo de energía.

 

                                                           

El proceso triple alfa es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Lo dedujo Fred Hoyle en su investigación con su equipo

Dado que cuando nacen las estrellas están constituidas principalmente por hidrógeno, un mecanismo natural para explicar la generación de energía es la fusión de 4 núcleos de Hidrógeno (protones) para dar un núcleo de Helio (partícula alfa, α) Hans Bethe propuso una explicación a este proceso en 1939, al sugerir la existencia de dos posibles mecanismos hoy denominados cadena pp y ciclo CON. El resultado neto de ambos procesos es la conversión de cuatro protones en un núcleo de Helio que puede escribirse de manera simbólica por la relación

4¹H → ⁴H + 2e⁺+ 2ѵe + energía,

En la que además de un núcleo de Helio (³He, partícula α) se producen dos positrones (e+) y dos neutrinos electrónicos (ѵe). La energía librada en el proceso equivale a un 0,7% de la masa inicial de los cuatro núcleos de hidrógeno. La diferencia de masa se convierte en energía. Para poder mantener su ritmo de emisión de energía, el Sol necesita convertir 600 millones de toneladas de Hidrógeno en 596 millones de toneladas de Helio cada segundo, lo que significa que el Sol continuará quemando Hidrógeno a este ritmo durante los próximos 5.000 millones de años (más o menos).

Cuando llegue el momento en que el Sol consuma su combustible nuclear, todos sabemos bien que se convertirá primera en gigante roja y más tarde, expulsando materia que formará una Nebulosa Planetaria, quedará como enana blanca.

Conforme la temperatura en el centro de la estrella aumenta llega un momento en que la combustión del Helio comienza a ser posible. Podría pensarse que la combustión del Helio procede mediante la fusión de dos núcleos de Helio para dar un núcleo de ⁸Be. Sin embargo, eso no es posible dado que el ⁸Be no es estable y se desintegra nada más formarse. No obstante, su tiempo de vida es lo suficientemente largo (10⁻¹⁶ segundos) como para capturar otro núcleo de Helio y dar lugar a ¹²C mediante el proceso que es comúnmente conocido como “reacción triple alfa”.

 

                                                                  Diagrama del proceso triple-α
       Gracias a este proceso estamos los seres vivos en este planeta. Sin Carbono (la base de la vida), no estaríamos

Parte del Carbono formado reacciona con los núcleos de Helio presentes y produce Oxígeno mediante la reacción ¹²C(α, γ)¹⁶O. Esta última reacción es probablemente la más importante en astrofísica nuclear dado que su ritmo determina la proporción de Carbono y Oxígeno resultante de la combustión de Helio. Esta proporción tiene importantes consecuencias en la determinación de la composición de las enanas blancas y la evolución con masas mayores de 8 masas solares.

La reacción triple alfa ha sido objeto de un estudio experimental reciente donde los estados relevantes del ¹²C han sido poblados mediante las desintegraciones beta del ¹²N y ¹²B. El mismo equipo experimental ha completado el estudio anterior mediante la reacción ¹⁰B(³He, pααα). Este último experimento se ha realizado en el recientemente inaugurado acelerador Tamden del Centro de Micro-análisis de Materiales de la Universidad Autónoma de Madrid.

Las etapas siguientes de la vida de una estrella dependen de su masa. Estrellas con masas menores a aproximadamente 8 masas solares no alcanzan en su centro la temperatura suficiente para iniciar la combustión del Carbono. Estas estrellas finalizan sus vidas expulsando sus capas exteriores, dando así lugar a la formación de una Nebulosa Planetaria que contiene, aproximadamente, la mitad de la masa inicial de la estrella.

 

Las nebulosas planetarias también pueden - Naukas

En el centro de la Nebulosa queda una pequeña estrella que se contrae más y más hasta originar una enana blanca. En 1930, Subrahmanyan Chandrasekhar demostró la existencia de un valor máximo para la masa de una enana blanca, conocido como masa límite de Chandrasekhar. Una estrella con una masa mayor (~ 1,44 masas solares) no es estable y colapsa.

 

Enanas Blancas, estrellas misteriosas : Blog de Emilio Silvera V.

 

                  Evolución de las estrellas en función de sus masas

Las estrellas con masas mayores de 8 masas solares pasan por sucesivas etapas de combustión y contracción quemando cada vez elementos más pesados. Las diferentes etapas de combustión son: combustión de Carbono, Neón, Oxígeno, y finalmente Silicio. Cada uno de estos procesos de combustión ocurre a temperaturas cada vez más elevadas como se ha podido comprobar en presencia de grandes densidades y temperaturas en el centro de la estrella de 25 masas solares durante sus diferentes etapas de combustión nuclear.

Emilio Silvera V.

Conociendo la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El proceso de división de los átomos se denomina fisión. En la foto, fisión colorida de partículas en colisión.

El proceso de división de los átomos se denomina fisión. En la foto, fisión colorida de partículas en colisión.

Entre 1.906 y 1.908 (hace ahora un siglo) Rutherford realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos.  La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol).  Pero no todos.  En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado.  Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido.

 

 

 

Rutherford supuso que aquellas “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad, desviaban los proyectiles que acertaban a chocar contra él.  Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica.

Era lógico suponer, pues, que los protones constituían ese núcleo duro.  Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo.)

 

OQUIMIAJUDA: Prêmio Nobel de Química - 1908, Ernest RutherfordPremios Nobel - Química 1908 (Ernest Rutherford) - El Tamiz

 

En 1.908 se concedió a Rutherfor el premio Nóbel de Química, por su extraordinaria labor de investigación sobre la naturaleza de la materia.  El fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.

Desde entonces se pueden descubrir con términos más concretos los átomos específicos y sus diversos comportamientos.  Por ejemplo, el átomo de hidrógeno posee un solo electrón.  Si se elimina, el protón restante se asocia inmediatamente a alguna molécula vecina; y cuando el núcleo desnudo de hidrógeno no encuentra por este medio un electrón que participe, actúa como un protón -es decir, una partícula subatómica-, lo cual le permite penetrar en la materia y reaccionar con otros núcleos si conserva la suficiente energía.

Leer más

El “universo” de las partículas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La  Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.

Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.

También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.

 

http://www.monografias.com/trabajos75/agua-pesada/image003.gif

 

Si miramos una tabla de las partículas más conocidas y familiares (fotónelectrón muón tau, la serie de neutrinos, los mesones con sus pioneskaones, etc., y, los Hadrones bariones como el protónneutrónlambdasigmapsi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.”

 

Mean Lifetime for Particle Decay

Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”.

 

Ejemplos de isótopos naturales. | Download Scientific Diagram

¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.

 

 

Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.

 

 

Una colisión entre un protón y un antiprotón registrada mediante una cámara de chispas del experimento UA5 del CERN.

En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su carta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas  experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.

 

Las partículas microscópicas como átomos, tienen vida útil? - Quora

¿Cómo se determina la vida media de una partícula? Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, …

Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.

Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas están siendo perseguidas.

Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según  la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.

Desintegración beta - Wikipedia, la enciclopedia libre

Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.

Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”

 

9.a (izquierda) Desintegración beta negativa (β --) de un núcleo y el... | Download Scientific Diagram

Si la vida de una partícula  es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.

The Delta Baryon

Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.

Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

 

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.

Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro,  se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados. Uno de ellos, el Bosón de Higgs, dicen que ha sido encontrado. Sin embargo, a mí particularmente me quedan muchas dudas al respecto.

Emilio Silvera Vázquez