sábado, 27 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Conocer la Naturaleza! Hoy sólo un sueño ¿Realidad mañana?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los poderosos amos de los hombres: los dioses de Mesopotamia
Mesopotamia
Las primeras ciudades conocidas: · Ur · Uruk; Sippar; Akshak; Kish; Marad; Isin; Nippur; Adab; Zabalan; Shuruppak; Umma; Girsu; Lagash; Nina; Bab-Tibira; Larsa; Eridu .

“A partir de sus principios en Sumeria alrededor del 3500 a. C., en Mesopotamia, los pueblos del norte comenzaron a intentar registrar la observación del mundo con datos cuantitativos y numéricos sumamente cuidados. Pero sus observaciones y medidas aparentemente fueron tomadas con otros propósitos más que la ley científica. Un caso concreto es el del teorema de Pitágoras, que fue registrado, aparentemente en el siglo XVIII a. C.: la tabla mesopotámica Plimpton 322 registra un número de trillizos pitagóricos (3,4,5) (5,12,13)…., datado en el 1900 a. C., posiblemente milenios antes de Pitágoras,1 pero no era una formulación abstracta del teorema de Pitágoras.

 

 

Teorema de Pitágoras - YouTube

 

Los avances significativos en el Antiguo Egipto son referentes a la astronomía, a las matemáticas y a la medicina.2 Su geometría era una consecuencia necesaria de la topografía, con el fin de intentar conservar la disposición y la propiedad de las tierras de labranza, que fueron inundadas cada año por el Nilo. La regla del triángulo rectángulo y otras reglas básicas sirvieron para representar estructuras rectilíneas, el pilar principal de la arquitectura dintelada egipcia. Egipto era también el centro de la química y la investigación para la mayor parte del Mediterráneo.”

 

Arquitectura del Antiguo Egipto | Egipto Exclusivo

Isabel Pérez Arellano y Róbinson Torres Villa, publicaron un artículo en 2009, sobre la física moderna y sus paradigmas y, comenzaban diciendo:

Desde siempre el hombre ha intentado dar respuesta a los interrogantes más profundos que lo inquietan; preguntas que van desde ¿Quién soy?, ¿de dónde vengo? ¿y hacia dónde voy?, hasta los intentos por explicar el origen y final universo en qué vive. Muchas son las prepuestas que se han dado a esos interrogantes, dependiendo de la corriente de pensamiento seguida por quien aborda esas preguntas; es así como se ven aproximaciones místicas, esotéricas, religiosas y científicas entre otras; pero todas con el objetivo de dilucidar alguna respuesta a esas preguntas fundamentales.

Desde el punto de vista científico y concretamente de la física moderna, se han planteado algunas explicaciones del universo en el que vivimos que algunas veces rozan con lo fantástico, dado el nivel de abstracción o especulación que llevan implícito, todo obviamente avalado por sofisticados modelos matemáticos que al parecer soportan las hipótesis planteadas.”

 

 

Si repasamos la historia de la ciencia, seguramente encontraremos muchos motivos para el optimismo. Por mencionar a un científico de nuestro tiempo, escojamos a E. Witten que está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck. Como ya he contado en otras ocasiones, él dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles. En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible. Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas… La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante 25 años.”

 

Ley de la gravedad de Isaac Newton - Gravedad

 

Dos maravillas de la Mente Humana

En su opinión, las buenas ideas siempre se verifican. Los ejemplos son innumerables: la gravedad de Newton, el campo eléctrico de Faraday y el electromagnetismo de Maxwell, la teoría de la relatividad de Einstein en sus dos versiones y su demostración del efecto fotoeléctrico, la teoría del electrón de Paul Dirac, el principio de incertidumbre de Heisenberg, la función de ondas de Schrödinger, y tantos otros. Algunos de los físicos teóricos más famosos, sin embargo, protestaban de tanto empeño en la experimentación.

 

Arthur Stanley Eddington.jpg

 

Arthur Eddington es famoso por su trabajo relacionado con la Teoría de la Relatividad. Eddington escribió un artículo en 1919- Report on the relativity theory of gravitation (Informe sobre la teoría relativista de la gravitación), que transmitió la Teoría de la Relatividad de Einstein al mundo anglosajón. Debido a la Primera Guerra Mundial,  los avances científicos alemanes no eran muy conocidos en Gran Bretaña.

Demostró que la energía en el interior de las estrellas era transportada por radiación y convección. Estos trabajos quedaron plasmados en el libro The Internal Constitution of the Stars (1926). Era un gran científico y se hizo amigo de Einstein desde que comprobó que éste llevaba razón en sus predicciones cuando comprobó que la luz se curva en presencia de grandes masas, como consecuencia de un eclipose solar.

Arthur Eddington se cuestionaba incluso si los científicos no estaban forzando las cosas cuando insistían en que todo debería ser verificado. El premio Nobel Paul dirac incluso llegó a decir de forma más categórica: “Es más importante tener belleza en las ecuaciones que tener experimentos que se ajusten a ellas“, o en palabras del físico John Ellis del CERN, “Como decía en una envoltura de caramelos que abrí hace algunos años, «Es sólo el optimista el que consigue algo en este mundo».

Yo, como todos ustedes, un hombre normal y corriente de la calle, escucho a unos y a otros, después pienso en lo que dicen y en los argumentos y motivaciones que les han llevado a sus respectivos convencimientos, y finalmente, también decido según mis propios criterios y emito mi opinión de cómo es el mundo que, no obligatoriamente, coincidirá con alguna de esas opiniones, y que en algún caso, hasta difieren radicalmente.

 

                                                               

 

Suponiendo que algún físico brillante nos resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro universo, con un poco de suerte, podría ocurrir en este mismo siglo, lo que no estaría nada mal considerando las dificultades de la empresa. El problema fundamental es que estamos obligando a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando su “ámbito natural” está en la energía de Planck. Esta fabulosa energía fue liberada sólo en el propio instante de la creación, lo que quiere decir que la teoría de supercuerdas tiene su explicación allí, en aquel lugar y tiempo donde se produjeron las mayores energías conocidas en nuestro Universo y que, nosotros, no podemos alcanzar -de momento-.

Fuimos capaces de predecir que el Big Bang produjo un “eco” cósmico reverberando en el universo y que podría ser mesurable por los instrumentos adecuados. De hecho, Arno Penzias y Robert Wilson de los Bell Telephone Laboratories ganaron el premio Nobel en 1.978 por detectar este eco del Big Bang, una radiación de microondas que impregna el universo conocido.

 

                                                                             

Como una onda, podemos detectar el eco del big bang

 

El que el eco del Big Bang debería estar circulando por el universo miles de millones de años después del suceso fue predicho por primera vez por George Gamow y sus discípulos Ralpher y Robert Herman, pero nadie les tomó en serio. La propia idea de medir el eco de la creación parecía extravagante cuando la propusieron por primera vez poco después de la segunda guerra mundial. Su lógica, sin embargo, era aplastante. Cualquier objeto, cuando se calienta, emite radiación de forma gradual. Ésta es la razón de que el hierro se ponga al rojo vivo cuando se calienta en un horno, y cuanto más se calienta, mayor es la frecuencia de radiación que emite. Una fórmula matemática exacta, la ley de Stefan-Boltzmann, relaciona la frecuencia de la luz (o el color en este caso) con la temperatura. De hecho, así es como los científicos determinan la temperatura de la superficie de una estrella lejana; examinando su color. Esta radiación se denomina radiación de cuerpo negro.

 

 

Llegaremos a ver en la oscuridad? - Libertad Digital

                                         Podemos ver en plena oscuridad

Esta radiación, ¡cómo no!, ha sido aprovechada por los ejércitos, que mediante visores nocturnos pueden operar en la oscuridad. De noche, los objetos relativamente calientes, tales como soldados enemigos o los carros de combate, pueden estar ocultos en la oscuridad, pero continúan emitiendo radiación de cuerpo negro invisible en forma de radiación infrarroja, que puede ser captada por gafas especiales de infrarrojo. Ésta es también la razón de que nuestros automóviles cerrados se calientes en verano, ya que la luz del Sol atraviesa los cristales del coche y calienta el interior. A medida que se calienta, empieza a emitir radiación de cuerpo negro en forma de radiación infrarroja. Sin embargo, esta clase de radiación no atraviesa muy bien el vidrio, y por lo tanto queda atrapada en el interior del automóvil, incrementando espectacularmente la temperatura y, cuando regresamos para proseguir el camino… ¿quién es el guapo que entra?

 

                                         

 

Todo cuerpo emite energía en forma de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada …

Análogamente, la radiación de cuerpo negro produce el efecto invernadero. Al igual que el vidrio, los altos niveles de dióxido de carbono en la atmósfera, causados por la combustión sin control de combustibles fósiles, pueden atrapar la radiación de cuerpo negro infrarroja en la Tierra, y de este modo calentar gradualmente el planeta.

Gamow razonó que el Big Bang era inicialmente muy caliente, y que por lo tanto sería un cuerpo negro ideal emisor de radiación. Aunque la tecnología de los años cuarenta era demasiado primitiva para captar esta débil señal de la creación, Gamow pudo calcular la temperatura de dicha radiación y predecir con fiabilidad que un día nuestros instrumentos serían lo suficientemente sensibles como para detectar esta radiación “fósil”.

 

 

La lógica que había detrás de su razonamiento era la siguiente: alrededor de 300.000 años después del Big Bang, el universo se enfrió hasta el punto en el que los átomos pudieron empezar a componerse; los electrones, entonces,  pudieron empezar a rodear a los protones y neutrones formando átomos estables, que ya no serían destruidos por la intensa radiación que estaba impregnando todo el universo. Antes de este momento, el universo estaba tan caliente que los átomos eran inmediatamente descompuestos por esa radiación tan potente en el mismo acto de su formación. Esto significa que el universo era opaco, como una niebla espesa absorbente e impenetrable.

Pasados 300.000 años, la radiación no era tan potente; se había enfriado y por lo tanto la luz podía atravesar grades distancias sin ser dispersada. En otras palabras, el universo se hizo repentinamente negro y transparente.

 

Teoría cuántica | Radiación del cuerpo negro - YouTubeEjercicio Cuerpo negro. Calcula temperatura e intensidad de la radiación -  Vídeo Dailymotion

 

Terminaré esta parte comentando que un auténtico cuerpo negro es un concepto imaginario; un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica. La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la disminución de energías sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumentar las temperaturas*.

Hablar, sin más especificaciones, de radiación, es estar refiriéndonos a una energía que viaja en forma de ondas electromagnéticas o fotones por el universo. También nos podríamos estar refiriendo a un chorro de partículas, especialmente partículas alfa o beta de una fuente radiactiva o neutrones de un reactor nuclear.

 

 

El universo tendría un alma magnética invisible • Tendencias21

             Radiación y magnetismo presentes en todas partes, No se ve pero… ¡Ahí está!

La radiación actínida es la electromagnética que es capaz de iniciar una reacción química. El término es usado especialmente para la radiación ultravioleta que emiten las estrellas jóvenes y azuladas en las bellas nebulosas.

 

 

Muchos son los tipos conpocidos: Radiación blanda, radiación cósmica, radiación de calor, radiación de fondo, de fondo de microondas, radiación dura, electromagnética, radiación gamma, infrarroja, ionizante, monocromática, policromática, de sincrotón, ultravioleta, de la teoría cuántica, de radiactividad… y, como se puede ver, la radiación en sus diversas formas es un universo en sí misma.

El físico alemán Max Planck (1.858 – 1.947), responsable entre otros muchos logros de la ley de radiación de Planck, que da la distribución de energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.

Einstein se inspiró en este trabajo para a su vez presentar el suyo propio sobre el efecto fotoeléctrico, donde la energía máxima cinética del fotoelectrón, Em, está dada por la ecuación que lleva su nombre: Em = hf – Φ.

 

 

Planck publicó en 1.900 un artículo sobre la radiación de cuerpo negro que sentó las bases para la teoría de la mecánica cuántica que más tarde desarrollaron otros, como el mismo Einstein, Heisenberg, Schrödinger, Dirac, Feymann, etc. Todos los físicos son conocedores de la enorme contribución que Max Planck hizo en física: la constante de Planck, radiación de Planck, longitud de Planck, unidades de Planck, etc. Es posible que sea el físico de la historia que más veces ha dado su nombre a conceptos de física. Pongamos un par te ejemplos de su ingenio:

{\displaystyle \ell _{P}={\sqrt {\frac {\hbar G}{c^{3}}}}\approx 1.616199(97)\times 10^{-35}{\mbox{ metros}}}

 

1.  Esta escala de longitud ( 10-35 m ) veinte órdenes de magnitud menor que el tamaño del protón, de 10-15 m, es a la que la descripción clásica de gravedad cesa de ser válida y debe ser tenida en cuenta la mecánica cuántica. En la fórmula que la describe, G es la constante gravitacional, ħ es la constante de Planck racionalizada y c en la velocidad de la luz.

 

2.    Es la masa de una partícula cuya longitud de onda Compton es igual a la longitud de Planck. En la ecuación, ħ es la constante de Planck racionalizada, c es la velocidad de la luz y G es la constante gravitacional.

La descripción de una partícula elemental de esta masa, o partículas que interaccionan con energías por partículas equivalentes a ellas (a través de E = mc2), requiere de una teoría cuántica de la gravedad. Como la masa de Planck es del orden de 10-8 Kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del orden de 10-27 Kg y las mayores energías alcanzables en los aceleradores de partículas actuales son del orden de 14 TeV, los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas.

 

 

Únicamente en un laboratorio aparecieron partículas que tenían energías del orden de la masa de Planck: en el universo primitivo, de acuerdo con la teoría del Big Bang, motivo éste por el que es necesaria una teoría cuántica de la gravedad para estudiar aquellas condiciones. Esta energía de la que estamos hablando, del orden de 1019 GeV (inalcanzable para nosotros), es la que necesitamos para verificar la teoría de supercuerdas.

Siempre, desde que puedo recordar, me llamó la atención los misterios y secretos encerrados en la naturaleza, y la innegable batalla mantenida a lo largo de la historia por los científicos para descubrirlos.

emilio silvera

¿Cómo quedar impasible?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

¿A quién no le gusta lo bueno?

Todos respiramos el mismo aire, también llegamos y nos vamos de la misma...

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hay respetar todas las costumbres de los distintos pueblos, respetarnos mutuamente y que todos podamos vivir en Paz en esta maravillosa Tierra que nos acoge. La vida es corta: ¿No es mejor disfrutar de lo mucho que la Naturaleza nos ofrece? Y, nosotros, somos parte de esa Naturaleza.

En la bonita canción que aquí nos ofrecen, nos dicen con sentimiento que… ¿La Paz esté con ustedes!

Hagamos caso al mensaje y comprémonos como seres racionales.

Los sentimientos… ¡Nos tocan el corazón!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 ¡Bienvenido a la aplicación “Canciones de Ayisha Abdul Basith“! Disfrute de la belleza y gracia de la voz de  esta chica tocada por la varita mágica de la Naturaleza que le ha dado el don de poder transmitirnos estos sentimientos. De vez en cuando nos sorprendemos al encontrar voces que tienen la facultad de expresar profundos sentimientos.

¡El Universo y la Vida! La materia evolucionada

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                 120 ideas de Gifs Naturaleza De Dios | gifs naturaleza ...

                              Observando la Naturaleza podremos llegar a comprender el por qué de sus comportamientos

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

La edad del universo visible ≈ 1060 tiempos de Planck: Por si alguien tiene curiosidad y la cifra le dice algo, el tiempo de Planck equivale a 5.39124 x 1044 segundos, es decir, a:

0,000000000000000000000000000000000000000000539124 segundos. Este número es el mínimo tiempo en el que puede ocurrir algo, digamos, con sentido

 

Tamaño del Universo visible ≈ 1060 longitudes de Planck

 

La masa del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que: La densidad de Planck es la unidad de densidad, denotada por PP, en el sistema de unidades naturales conocido como las unidades de Planck. Esta unidad es enorme. Equivale aproximadamente a 1023 masas solares comprimidas en el espacio de un solo núcleo atómico

 

{\displaystyle \rho _{P}={\frac {m_{P}}{l_{P}^{3}}}={\frac {c^{5}}{\hbar G^{2}}}\;\approx \;5.1\times 10^{96}\;{\cfrac {kg}{m^{3}}}}

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto: Aunque la temperatura más alta que puede alcanzar la materia se calcula en casi 1.420 quintillones de grados centígrados —la llamada Temperatura de Planck—, el límite del frío máximo nos queda mucho más próximo: el cero absoluto, cero kelvins en el sistema internacional de unidades, se estima en -273,15 grados centígrados.

 

{\displaystyle T_{P}={\frac {m_{P}c^{2}}{k}}={\sqrt {\frac {\hbar c^{5}}{Gk^{2}}}}=1.41679(11)\times 10^{32}\;K}

Ecuación de la Temperatura de Planck

 

Temperatura actual del Universo visible ≈ 10-30 de la T. de Planck

 

                               http://3.bp.blogspot.com/_Bd7IU3WyKXY/TPTrJtm-czI/AAAAAAAAAZg/n38Gtf4t2F8/s1600/futuro.jpg

                                     Siempre hemos querido “ver” lo que la Naturaleza esconde

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

 

Las estrellas de neutrones y quarks explicadas para todos los públicos: así se forman dos de los objetos más asombrosos del universoLa composición del Universo está cambiando en este mismo momentoCómo nace una estrella | National GeographicTelescopio Espacial James Webb detecta la molécula de la vida en la nebulosa de Orión – FayerWayer

Telescopio Espacial James Webb detecta la molécula de la vida en la Nebulosa molecular de Orión

Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida. Las Supernovas:  estas explosiones producen gran parte del material del universo, incluyendo elementos como el hierro, que conforma nuestro planeta e incluso a nosotros mismos.

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas.

 

Hallan en la Nebulosa de Orión todos los ingredientes claves para la vida

                                Hallan en la Nebulosa de Orión todos los ingredientes claves para la vida

Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

 

Viento solar - Wikipedia, la enciclopedia libre                                                                                                 Investigan viento solar para saber más del universo

 

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En la superficie de nuestro planeta el campo magnético ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo haciendo imposible la vida en su superficie. Aquí, algunas partículas llegan al planeta y causan hermosas auroras y también, fastidian los satélites que en órbitan nos dan información.

Probablemente no es fácil mantener una larga vida en un planeta del solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

 

                                 

 

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta.

La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución que tantos miles de millones de años le costó al Universo para poder plasmarla en una realidad que llamamos vida.

El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc. Al final de toda esta larga historia, la evoluciòn de la materia desembocará siempre hacia la vida que, según creo, es el nivel más alto que puede alcanzar cuando, en algunos casos, adquiere la consciencia.

 

                                                 1236701081359_f

 

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor .  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Solar que ella misma forma como objeto principal.

 

                                   

 

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono.

 

Diez últimas teorías científicas sobre extraterrestresCuántos tipos o especies de extraterrestres hay en el universo? Carl Sagan da una respuesta - El Sol de Tampico | Noticias Locales, Policiacas, sobre México, Tamaulipas y el MundoForma de vida extraterrestre devorando otras formas de vida extraterrestre más pequeñas creadas con ia generativa | Foto Premium

Podemos imaginar formas de vida de una gran variedad, ya que, dichas formas estarán supeditadas a las condiciones del planeta que las acoja. Sin embargo, una cosa es segura (creo), como la Naturaleza es igual en todas partes, y, en todas las regiones del Universo rigen las mismas leyes y constantes… ¡Dichas vidas estarán, como las nuestras, basadas en el Carbono!

La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

emilio silvera