Oct
18
¿Es la Tierra un Ente Vivo?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
https://www.youtube.com/shorts/ax-ooD5Fbi0?feature=share
Por lo menos, a mí sí me lo parece. Si observamos con atención todo lo que en ella sucede, las transformaciones que se producen y el por qué de esas transformaciones, se podría decir que, como todo lo demás en el Universo evoluciona y sigue las pautas que necesita para continuar efectuando su labor en el lugar que le tocó “trabajar” en este Universo.
Nosotros, como todas las criaturas que acoge, somos simples observadores y nada podemos hacer para frenar sus “necesidades” y si echamos una mirada hacia atrás en el tiempo, veremos que, como si de un Ser vivo se tratara, ella (la Tierra), también ha evolucionado y es muy distinta a la Tierra primigenia de los primeros millones de años.
La traslación alrededor del Sol, la rotación sobre su “eje”, la lluvia, las placas volcánicas, terremotos y Tsunamis… Todo esos fenómenos son la consecuencia de un ritmo natural que la hace ser como es para que nosotros, y, otras muchas criaturas podamos estar sobre ella y disfrutemos de tantas maravillas como los amaneceres o la puesta de Sol.
Por lo que no paso es por ese “cuento” del “Cambio Climático”. ¡La Tierra no ha dejado de cambiar nunca, para ella es una necesidad de supervivencia! Tratar de endosarnos a nosotros la “culpa” de esos cambios… ¡No tenemos capacidad para ello!
Oct
18
¡Qué bonito es saber!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Oct
18
Hace mucho que deseamos saber cómo llegó la Vida
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
El origen de la vida, un hecho asombros para el que el Universo, ha tenido que construir un escenario de una compleja y asombrosa cantidad de parámetros necesarios para que, dicho suceso, fuese posible. Las estrellas son protagonistas muy importantes en esta obra, y, no menos importante han sido “los personajes” representados por cada una de las cuatro fuerzas fundamentales y de todas esas constantes universales que hacen de nuestro Universo el que podemos observar y, que si fuese de otra manera, unas pequeñas variaciones, la Vida no podría estar presente.
Los elementos (CHON): Carbono, Hidrógeno, Oxígeno, Nitrógeno, la base de la vida en aquella primigenia sopa primordial de la que surgió aquella primera célula replicante de la que son descendientes todos los seres vivos.
La radiación del sol, la materia orgánica, las moléculas esenciales creadas en las grandes Nebulosas Moleculares. También la carga del electrón negativa y la positiva del protón que hacen posible el equilibrio en los átomos. El ajuste fino del Universo para que la Vida pudiera llegar, nos hace pensar que, el Universo sabía que íbamos a venir.
Oct
18
Charla entre dos Quarks
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
En el Blog Taringa, me encuentro este trabajo que tenía olvidado.


![]()



_ Oye, amigo up, ¿no te cansas de estar aquí confinado? ¿no te gustaría conocer qué mundo puede haber fuera de éste nuestro tan reducido espacio en el que vivimos?
_ Pues, si te digo la verdad, estimado down, si que estoy un poco frustrado de que, los persistentes Gluones, no me dejen alejarme mucho de la demarcación estipulada por la libertad asintótica. Y, si te he de ser sincero, preferiría mirar el mundo que, según indicios que me han llegado, es mucho mayor de lo que nosotros podemos contemplar.
_ Llevas toda la razón, a veces me desespera este “mar” de gluones que nos agarra impidiéndonos salir al exterior misterioso. ¿Qué cosas podríamos contemplar ahí fuera?
_ ¡Os queréis callar! (Dijo un protón) Con vuestra charla me estáis distrayendo y no puedo solucionar el problema que me he planteado de sí, en realidad, uno de ustedes puede ser más masivo que yo. Teniendo en cuenta que estoy conformado de tres de ustedes, ¿Cómo es posible que uno sólo pueda ser más masivo si estuviera en estado libre?

_ Que pregunta más tonta, amigo protón, a estas alturas deberías saber que nadie sabe cuál es la masa de los quarks, ya que ningún quark puede ser observado de forma libre. Solo conocemos de forma precisa la masa del quark top (cima), ya que su gran masa hace que el error relativo en la medida permita un error absoluto pequeño. Sin embargo, muchos proclaman el descubrimiento de fórmulas matemáticas que permiten calcular la masa de todas (o casi todas) las partículas elementales (leptones y quarks). Pero, centrándonos en la pregunta que te atormenta, sí te puedo decir que, al menos en teoría, la masa del Quarks es mayor que la del Protón, toda vez que la energía potencial que se le atribuye si estuviera en estado libre, sería mayor que la tuya.
_ Sí, eso me temía. Hemos podido constatar que, ahí fuera, hay seres que se interesan por nosotros y últimamente, nos meten en máquinas enormes para hacernos chocar los unos contra los otros buscando qué puede haber dentro de nosotros. ¿Por qué lo harán? ¿Qué pueden conseguir con destruirnos?
_ Nuestra familia que está compuesta por tres generaciones, sabe que, esos extraños seres han llegado a conseguir, en sus estudios sobre nosotros que, los quarks (así nos llaman), somos partículas elementales y que os formamos a vosotros los protones y neutrones, hasta ahora habíamos sido notablemente difíciles de detectar, y aún más de pesar. Un grupo de investigación ha calculado, con un pequeño margen de error, la masa (expresada en su valor energético) de tres de nosotros, los quarks más ligeros, y por tanto más escurridizos: Up, Down y Strange.


_ Según parece, el resultado obtenido por estos experimentos, es que, el quark up pesa aproximadamente 2 Mega-electronvoltios (MeV), el quark down pesa alrededor de 4,8 MeV, y el quark strange pesa cerca de 92 MeV.
_ Bueno, lo cierto es que, junto con los que ellos llaman electrones conformamos toda la materia conocida (según les he podido oír comentar) y, al parecer, carecen de las herramientas necesarias que les permita llegar más lejos de nosotros, y, por tal motivo, desconocen a las pequeñas briznas luminosas y vibrantes de las que, nosotros los quarks, estamos hechos, y que los seres que nos estudian llaman “cuerdas” y, no tienen, en sus máquinas, la energía necesaria para llegar hasta ellas. Así que, están dando palos de ciego y teorizando no sin desbarrar en más de una ocasión pero, son tan persistentes que, terminarán conociendo la verdadera estructura del átomo y, en definitiva de la materia. ¡Qué gente tan extraña! Parece como si sólo supieran hacer preguntas.

_ Sí, eso parecen esos extraños seres que llaman humanos, ellos nos estudian a nosotros y no son conscientes de que nosotros, de la misma manera, podemos estudiarlos a través de las ondas electromagnéticas que emiten sus cerebros pensantes que, están determinados a llegar hasta el fondo de los Quarks. Bueno, también de los protones y Neutrones lo quieren saber todo y, de hecho, han llegado a saber muchas de sus peculiaridades y de los parámetros que los conforman, los llaman bariones y lo clasifican en la familia de los hadrones, y, al mismo tiempo, dicen que son fermiones con unas características determinadas distintas a la de los mesones, y, además, como forman parte del núcleo del átomo, lo llaman también nucleones.
_ Sí, pero estos bariones, en realidad están supeditados a nosotros los Quarks. Según nos combinamos será un protón o un neutrón. Existe otra diferencia entre el protón y el neutrón: dependiendo de qué combinación de quarks forma un hadrón, éste puede ser más o menos estable. Por ejemplo, ya dijimos que un protón libre podría no ser estable, pero de ser inestable su vida media probablemente es mucho mayor que la edad actual del Universo.

_ Sin embargo, debido a la combinación de quarks que forman el neutrón, un neutrón libre (no asociado al núcleo de un átomo) tiene una vida mucho más corta: unos 15 minutos. Ésa es la razón de que puedas encontrar muchos protones libres en el Universo (núcleos de hidrógeno sin el electrón), pero es muy difícil ver neutrones libres más de unos minutos. Cuando un neutrón se desintegra, lo hace en un protón, un electrón y un antineutrino.
_ Debido a que un neutrón libre sólo permanece como tal durante un cuarto de hora, es difícil disponer de ellos (a diferencia de otras partículas): hay que generarlos según se necesitan. La mayor parte de ellos se obtienen de reacciones nucleares espontáneas de elementos radiactivos, que sufren la fisión de forma natural (como el polonio o el radio), emitiendo neutrones en el proceso.
_ ¡Y los neutrones libres son muy peligrosos! De hecho, es uno de los productos de la desintegración radiactiva más peligrosos que hay. Piensa que otras partículas emitidas en las reacciones nucleares, como los electrones, aunque son peligrosas, son fáciles de parar. Las partículas cargadas, en cuanto entran en contacto con un medio material más o menos denso, empiezan a desviarse (debido a la fuerza eléctrica), a ionizar átomos arrancando electrones que se llevan parte de la energía y se mueven en otra dirección. Es decir, la energía de esas partículas se disipa relativamente rápido.

_ Por eso, si vas a estar en un lugar en el que puede haber emisión de protones o electrones, un recubrimiento de plomo es una protección muy buena. De hecho, al ser un metal también absorbe muy bien los fotones, de modo que protege contra muchas clases de emisiones radiactivas (alfa, beta y gamma). Pero, ¿y los neutrones?
Al ser neutros, la única manera de que pierdan su energía es que choquen de cabeza con el núcleo de otro átomo. Por lo tanto, la protección contra neutrones requiere un espesor relativamente grande: y además, la masa atómica del núcleo de los átomos no influye mucho en su capacidad para pararlos, pues los núcleos son tan minúsculos comparados con el espacio entre ellos que un aumento de tamaño (por ejemplo, plomo en vez de hidrógeno) apenas influye. La mayor parte de los escudos contra neutrones son paredes espesas de cemento o parafina.

_ Por supuesto, la mayor parte de los neutrones que puedan llegar a tu cuerpo te atraviesan, pero tú también actúas de “escudo”: y cuando un neutrón golpea el núcleo de un átomo de una base nitrogenada de tu ADN…bueno, las consecuencias pueden ser muy desagradables, salvo que la dosis no sea muy intensa y sea breve, y además tengas suerte.
_ Es decir, que los neutrones son partículas algo anodinas cuando están en el núcleo de un átomo, pero si están libres tienen una vida relativamente corta y que puede ser peligrosa…y todo por tener un quark down en vez de uno up.
– Ellos, esos seres, hablan de los misterios de lo que llaman Mecánica Cuántica en la que nos tienen inmersos para comprender nuestros comportamientos e interacciones, así como nos desenvolvemos en situaciones distintas. Alguno de estos seres se ha llegado a preguntar por los misterios de la Mecánica Cuántica y se han preguntado si serán capaces de desvelarlos alguna vez.
_ La verdad es que están hechos un verdadero lío, y, no saben que la materia, se construye sobre fundamentos frágiles. Sus grupos de los que ellos llaman los físicos, acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interior de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común.
_ Hasta hace poco, los cálculos en lo que ellos llaman el enrejado QCD se concentraban en los gluones virtuales, e ignoraban otros componentes importantes del vacío como los pares de quarks y anti-quarks virtuales.

¿Perdido pero interesado? Los quarks forman hadrones, que pueden ser bariones o mesones. Los bariones son partículas formadas por tres quarks de valencia rodeados de un océano de pares quark-anti-quark y gluones virtuales. Los mesones están formados por un quark y un anti-quark de valencia rodeados de un océano de pares quark-anti-quark y gluones virtuales. Salvo el quark top (cuya vida media es demasiado corta para hadronizarse), todos los quarks pueden formar parte de los hadrones. El LHCb es el detector de partículas del LHC especializado en los hadrones formados por quarks b (bottom o beauty) de valencia.
![]()
LHCb
_ Los pares quark-anti-quark pueden emerger y transformar momentáneamente un protón en una partícula diferente y más exótica. De hecho, el verdadero protón es la suma de todas estas posibilidades sucediendo al mismo tiempo.
_ Nuestros parientes del vacío, los quarks virtuales hacen mucho más complicados los cálculos, implicando la utilización de una matriz de más de 10.000 billones de números, comenta el Quark up.
_ Down le responde: “No existe ninguna computadora en la Tierra que pueda almacenar una matriz numérica tan enorme en su memoria”. Así que han tenido que hacer algunos trucos para evaluar la masa de un protón”. No, si ingenio no se les puede negar.
– La verdad es que ese ingenio al que te refieres (dice Up), es lo que los ha llevado a los experimentos, que tratan de suplir su falta de energía para llegar más lejos y para ello tratan de aproximarse a los experimentos que no pueden realizar mediante simulaciones informáticas que, bien planteadas, pueden ser muy reveladoras de lo que pudiera ser.
_ Eso permitirá a los físicos someter a prueba a la QCD y buscar sus efectos más allá de la física conocida. Por ahora, sus cálculos demuestran que la QCD describe partículas basadas en nosotros los quarks de forma precisa, y que la mayor parte de nuestra masa viene de quarks virtuales y gluones que burbujean en el vacío cuántico.
_ Me parece casi imposible que, estemos aprendiendo tanto de nosotros a través de los estudios que hacen unos seres que están tan alejados de nosotros, hasta el punto de no poderlos ver y que, gracias a las señales electromagnéticas que nos envían, hemos podido contactar, que son una maravilla.
Una partícula subatómica es realmente una partícula?
_ Si, así es, y, además, creen que eso que ellos denominan el campo de Higgs hace también su pequeña contribución, dándonos masa a nosotros los quarks individuales, así como a los electrones y a otras varias partículas. Ese campo de Higgs también crea masa a partir del vacío cuántico, en forma de bosones virtuales de Higgs. De modo que si el “mostruo” que han creado, al que llaman el LHC confirma la existencia del bosón de Higgs (que tan familiar nos resulta a nosotros), eso significará que toda la realidad es virtual.

– Down comenta: Parece que los científicos del CERN, la Organización Europea para la Investigación Nuclear, han anunciado que, por primera vez, han observado que el bosón de Higgs se transforma en partículas elementales conocidas como quarks del fondo a medida que se descompone. Los físicos han predicho que esta es la forma más común en que la mayoría de los bosones de Higgs deberían descomponerse, pero hasta ahora, ha sido extremadamente difícil distinguir las señales sutiles de la descomposición. El descubrimiento es un paso significativo hacia la comprensión de cómo el bosón de Higgs da masa a todas las partículas fundamentales en el universo. Si pudieran comunicarse con nosotros… ¿Cuántos experimentos les podríamos ahorrar? Siendo conocedores de todo lo que aquí pasa.
Son tan grandes que los infinitesimal queda fuera de su alcance y, es la base de todo lo que existe
_ Cuándo descubran la realidad del mundo en el que están inmersos, ¿crees amigo up que lo podrán soportar?
_ Bueno, estimado down, estos seres han demostrado que, pocas son las cosas que les arredran, su osadía no tiene límites y, desde luego, desde el llamado Demócrito, han podido avanzar en muy poco tiempo lo que nunca podríamos haber esperado.
_ En cualquier caso es muy difícil determinar el valor de nuestras masas (dice up), ya que a los quarks no se nos pueden tener aislados. Por otro lado, nuestra carga eléctrica es fraccionaria de la unidad fundamental de carga. Así, por ejemplo, yo tengo una carga igual a 2/3 de la unidad elemental, aunque no se pueden observar tampoco cargas fraccionadas aisladas, ya que los quarks siempre están combinados. Es decir, nosotros formamos partículas compuestas llamadas que denominan hadrones, una palabra (según dicen) derivada de la griega hadrys (fuerte); de modo que la suma de las cargas eléctricas de los quarks que constituyen un hadrón es siempre un número entero.

_ Los diversos quarks se pueden combinar entre sí para dar lugar a todas las partículas conocidas, salvo los leptones y los bosones, y con este modelo se puede llegar a una buena aproximación en el conocimiento de las partículas elementales. Sin embargo, esta concepción, basada principalmente en la carga eléctrica, deja sin explicar numerosas cuestiones. Por ejemplo, que no existan partículas formadas sólo por dos quarks ni tampoco quarks aislados. Para abordar éstas y otras cuestiones relativas a la estructura más íntima de la materia fue necesaria la introducción de un nuevo número cuántico, el color, cuyos tres valores caracterizan las partículas con mayor precisión.
_ Oye, amigo Down, la charla me está agotando y siento la necesidad de estirarme y tratar de burlar la vigilancia de los 8 gluones que nos acechan y, aunque sé que mi paseo será muy limitado, lo intentaré. Hasta luego amigo.
_ Está bien, por mi parte haré lo mismo y me daré un paseo por la región contraria a la tuya, de esa manera trataré de dividir la fuerza atractiva que nos tiene confinado.

Claro que, el paseo de Up y Down fue de muy corto trayecto, ya que, la fuerza nuclear fuerte que intermedian los Gluones, trabaja de manera distinta a las otras fuerzas y, cuando más se alejan los Quarks los unos de los otros, más fuerte es la fuerza que los atrae.
Dejaremos aquí está simpática charla que han tenido estos dos minúsculos “personajillos” y, como alguien que sabía mucho más que yo, dijo alguna vez que: “todas las cosas son” y elevó la categoría de la materia (por muy pequeña que fuese) a la categoría de SER, he confeccionado esta reunión de Up y Down con la breve intromisión de Protón, para que, dejaran aquí sus “pensamientos”.
El responsable de la publicación en Taringa finalizaba así:
“Hace un par de días me encontré esta joya, al menos para mi, es una bonita forma de explicar cosas que son difíciles de entender. A mi me gustó espero que a alguno de vosotros también.”
Autor del trabajo: Emilio Silvera.
Oct
17
¿La masa perdida, o, que no entendemos nada?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)

“NGC 7129 é unha nebulosa de reflexión situada a 3.300 anos luz de distancia na constelación de Cepheus. Un cúmulo aberto é o responsable da iluminación de esta nebulosa. Una reciente investigación apunta a que este cúmulo contiene más de 130 estrellas de menos de un millón de anos de edad. NGC 7129 está situada a menos de medio grao do cúmulo NGC 7142.

Un estudio en el que participan científicos españoles detecta un tenue brillo estelar que se distribuye de forma casi idéntica a este tipo de materia que supone el 80% del universo
“Aunque no se puede observar, supone un 80% de toda la materia que existente en el universo . Se trata de la materia oscura , de cuya existencia el hombre sabe desde la década de los años 30 por los movimientos de las galaxias dentro de los cúmulos formados centenares de ellas. Ahí se esconde esta fuerza gravitatoria invisible que la ciencia aún no ha conseguido comprender del todo. Recibe su nombre porque se creía compuesta de materia ordinaria que no emitía ni refleja la luz. Sin embargo, en la actualidad se sabe que, en realidad, su naturaleza es distinta, «exótica» y es transparente en todos los rangos del espectro electromagnético . Aún así, el término «oscuro» se ha quedado en su denominación.”
Recreación artística del WHIM en la Pared del Escultor. Fuente: NASA.
Un equipo de astrónomos ha conseguido encontrar una vasta reserva de gas intergaláctico situada a unos 400 millones de años luz de la Tierra en la que podría encontrarse la “materia perdida” del Universo que los científicos llevan años buscando.
La idea de la masa perdida se introdujo porque la densidad observada de la materia en el universo está cerca del valor crítico (10-29 g/cm3). Sin embargo, hasta comienzo de los ochenta, no hubo una razón teórica firme para suponer que el universo tenía efectivamente la masa crítica. En 1981, Alan Guth, publicó la primera versión de una teoría que desde entonces se ha conocido como “universo inflacionista”. desde entonces la teoría ha sufrido cierto número de modificaciones técnicas, pero los puntos centrales no han cambiado. Lo cierto es que la idea del universo inflacionista, estableció por primera vez una fuerte presunción de que la masa del universo tenía realmente el valor crítico.

Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no. ( Ω es lo que los cosmólogos llaman el Omega Negro, es decir, la cantidad de materia que hay en el Universo).
La predicción de Guht viene de las teorías que describen la congelación de la fuerza fuerte en el segundo 10-35 del Big Bang. Entre los muchos otros procesos en marcha en ese tiempo estaba una rápida expansión del universo, un proceso que vino a ser conocido como inflación. Es la presencia de la inflación la que nos lleva a la predicción de que el universo tiene que ser plano.






Se ha tratado de medir la Densidad Crítica del Universo pars poder saber en qué clase de universo estamos y, parece que es plano

Universo cerrado
Si Ω>1, entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del universo es, al menos en una escala muy grande, elíptico.
En un universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del universo, después de lo que empezará a contraerse hasta que toda la materia en el universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.

Si Ω<1, la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del universo sería hiperbólica.
Incluso sin energía oscura, un universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un universo abierto es, o la muerte térmica” o “Big Freeze” o “Big Rip”, dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.
Universo plano
Si la densidad media del universo es exactamente igual a la densidad crítica tal que Ω=1, entonces la geometría del universo es plana: como en la geometría euclidiana, la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.
Sin energía oscura, un universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamentre a cero. Con energía oscura, la tasa de expansión del universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del universo es el mismo que en un universo abierto, la muerte caliente del universo, el “Big Freeze” o el “Big Rip”. En 2005, se propuso la teoría del destino del universo Fermión-Bosón, proponiendo que gran parte del universo estaría finalmente ocupada por condensado de Bose-Einstein y la quasipartícula análoga al fermión, tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un universo plano.


La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler. El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados -se aconseja mirar en Gravedad-Cuántica-..
Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica:
La Entropía aumenta en todos sistemas cerrados (una galaxia, el Universo, nosotros…)
la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.
Como podéis comprobar por todo lo anteriormente leído, siempre estamos tratando de saber en qué universo estamos y pretendemos explicar lo que pudo pasar desde aquel primer momento que no hemos podido comprender de manera exacta y científicamente autosuficiente para que sea una ley inamovible del nacimiento del universo. Simplemente hemos creado modelos que se acercan de la mejor manera a lo que pudo ser y a lo que podría ser.

















Totales: 82.439.445
Conectados: 46























