domingo, 14 de septiembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Todo lo grande está hecho de cositas pequeñas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Todo lo complejo se entiende mejor estudiando las partes que lo conforman. Todo lo grande está hecho de cosas pequeñas y, conociendo estas, podremos conocer aquellas.

La Naturaleza es compleja

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Así es el modelo más preciso del universo que existeFísica de Partículas - Infografía - Jaime Ferrero Revilla 2ºA Bach
Tenemos un Modelo para casi todo, dicho Modelo se “construye” a base de observaciones, experimentos y pruebas, y, con los resultados, se juntan las piezas y el Modelo toma “vida” propia y comienza a funcionar tal como nosotros lo hemos realizado, y, seguidamente, lo utilizamos como herramienta para que nos conteste a preguntas que le vamos realizando, y, cuando en alguna se “queda callado·, sabemos que algo le falta, que no está completo. Eso nos pasa con el Big Bang, con el Modelo Estándar…

                 The big bang GIF - Conseguir el mejor gif en GIFER

Si de una fluctuación del vacío, surgió aquella explosión de la energía contenida en una singularidad de densidad y energía infinita, que dio lugar a la creación del Universo con el nacimiento del Espacio y del Tiempo, y, a partir de ahí se fueron formando las familias de partículas conocidas, se separaron las cuatro fuerzas fundamentales para que se formaran los primeros átomos, y, con el paso del Tiempo la materia que formaron a las primeras estrellas….

 

                       

Hablar de una Naturaleza simétrica sería condenar a nuestro Universo a la monotonía de la igualdad, y, todos sabemos que en él se encuentra todo lo que existe, la Materia, el Tiempo y el Espacio, todo ello acompañado por fuerzas que hacen de nuestro universo el que conocemos y, dentro de toda esa inmensidad, también se encuentran la simetría y la asimetría, como en nuestro mundo el día y la noche. La riqueza de la diversidad que conforma ese todo que el Universo es.

 

Fotos de Naturaleza Simetrica, +1.000 Fotos de stock gratuitas de gran calidad

La exploración de la simetría y la asimetría en la Naturaleza comenzaba con el mayor de los objetos naturales: ¡El propio Universo! Y, hemos ido reduciendo gradualmente la escala de tamaños con estructuras cada vez más pequeñas. En otras ocasiones hemos tenido aquí mismo la oportunidad de hablar de la simetría que encontramos en la Naturaleza de las plantas y de los animales. Ahora, desvíamos nuestra atención hacia estructuras todavía menores, las diversas subunidades que constituyen todas las sustancias materiales, vivas o inertes.

Antes de continuar y para aquellos que lo puedan desconocer, será conveniente que tengan una conciencia clara de qué son exactamente estas unidades inferiores. Comenzando con las más pequeñas y yendo después en sentido ascendente, la escala sería:

 

                       

Las partículas elementales que están descritas en el Modelo estándar actual de la física de partículas que conforman la materia y las fuerzas con las que interaccionan y que, hasta donde hemos podido saber, están divididas en familias:

                                                   

 

 

 

Leptones: partículas puntuales con una dimensión espacial inapreciable. Los seis leptones conocidos  son el electrón, muón y tauón, y los neutrinos asociado a cada uno de ellos, el neutrino electrónico, muónico y tauónico.

 

Hadrón, partícula subatómica — Astronoo

Hadrones: Son aquellas partículas que se cree que están compuestas de pequeñas partículas puntuales llamadas quarks. Se han identificado cientos de hadrones, de los cuales los más importantes son el protón y el neutrón, ya que junto con el electrón forman la materia ordinaria.

 

 

Se ha descubierto una quinta fuerza fundamental del universo? | Enterarse

 

Bosones: Partículas de “cambio”, partículas “soporte”, partículas “mensajeras” o partículas “indicadoras”. Contienen o son intermediarias de las cuatro fuerzas: electromagnetismo (conducido por el fotón), la fuerza débil (conducida por los vectores bosones intermedios), la gran fuerza nuclear (por los gluones) y la gravedad (por el gravitón aún no detectado). A finales de lños años setenta, las fuerzas elecdtromagnética y débil se unificaron en lo que ahora llamamos la fuerza electrodébil. La teoría electrodébil predice un bosón masivo denominado partícula de Higgs que, según nos han dicho los del LHC, ha sido encontrado. Veremos que explicaciones nos facilitan sobre ese hallazgo que… ¡ha quedado huérfano de los datos precisos que nos convenzan de su existencia real!

 

                   

            Representación de los tres bosones intermediarios en la fuerza electrodébil

Una vez descritas, muy someramente, las partículas de la materia y las fuerzas que rigen el universo conocido, tendríamos que pasar, de inmediato, al paso próximo que estaría representado por el átomo que, hasta donde conocemos, es la menor unidad estructural en la que puede dividirse la materia sin que pierda sus propiedades. En el centro de todo átomo está el núcleo, que debe contener al menos un protón, pero habitualmente está formado por una mezcla de protones y neutrones. Alrededor del núcleo, agrupados en “capas”, están los electrones. El átomo más sencillo, el de Hidrógeno, tiene un núcleo con un protón, alrededor del cual se mueve un único electrón. El átomo más complejo que se ha encontrado en la Naturaleza es el del Uranio, con 92 electrones. En el laboratorio se han encontrado algunos  elementos más complejos a los que se llaman transuránicos, es decir, que van más allá del uranio y que no se encuentran en la Naturaleza, son artificiales.

 

                      File:U-TableImage.png

Como podéis ver, el Uranio tiene 92 Protones y 146 Neutrones. Para equilibrar el átomo, el número de eletrones es también de 92, ya que al tener el electrón, carga negativa equivalente a la carga positiva del protón, se consigue el equilibrio entre ambas y se alcanza la estabilidad, es decir, que el átomo sea neutro. Si un átomo pierde un electrón de su capa más externa se convierte en un átomo con carga positiva. Si gana uno, queda con carga negativa. Los átomos con carga eléctrica reciben el nombre de iones.

 

                                                       

La molécula es una agrupación ordenada de átomos y constituye la mínima unidad de un elemento que puede subsistir de manera independiente. Mediante la afinidad química, los átomos están capacitados se unen entre sí y forman moléculas, que tienen un tamaño de alrededor de un millonésimo de milímetro. La afinidad de los átomos depende de la cantidad de electrones que giren alrededor del núcleo. Los átomos que tienen en la órbita externa ocho electrones no se unen a ningún otro elemento, dado que se encuentran equilibrados; estos constituyen los llamados gases nobles: helio, neón, argón, criptón, xenón y radón. Los demás átomos tratan de completar el número de ocho electrones hasta configurarse como los gases nobles. Es decir, los que tienen un electrón se combinan con los que tienen siete electrones.

 

 

Descubren moléculas orgánicas complejas en la Gran Nube de Magallanes

Un equipo de científicos del Instituto de Astrofísica de las Canarias (IAC) y la Universidad de Texas lograron identificar una de las moléculas orgánicas más complejas encontradas hasta ahora en la materia entre las estrellas, el llamado espacio interestelar. El descubrimiento del antraceno podría ayudar a resolver un misterio astrofísico de décadas de antigüedad sobre la producción de las moléculas orgánicas en el espacio.

 

ALMA: la mejor ventana al Universo | Ciencia | elmundo.es

Buscar moléculas de azucar en el espacio exterior, sería una manera de acercarnos a posibles formas de vida en las que, estas moléculas están presentes y, como sabéis (la imagen de arriba lo demuestra), han sido halladas tales moléculas por el potente radio telescopio ALMA en el norte de Chile que permitió detectarlas moléculas en torno a una estrella joven, similar al sol, un inédito hallazgo para la ciencia, según el Observatorio Europeo Austral (ESO).

 

Moléculas precursoras de la vida en el espacio | Ciencia | elmundo.es

Moléculas orgánicas observadas por Herschel en Orión. | ESA, HIFI, Bergin & HEXOS

Este espectro tomado por el telescopio espacial de infrarrojos HERSCHEL ilustra la variedad molecular existente en una nube interestelar como la de Orión. Agua, monóxido de carbono, metanol, formaldehído, cianuro de hidrógeno, óxidos de azufre y otras moléculas (de las cuales hay muchas aún sin identificar) dejan sus firmas inequívocas en la emisión del infrarrojo lejano que se origina en la nebulosa. El espectro se muestra superpuesto a una imagen (también infrarroja) tomada por el telescopio espacial Spitzer.

Muchas son ya las moléculas de la vida ahí encontradas. Si una sustancia está formada por un único tipo de átomos, diremos que es un elemento. Cuando una molécula está formada por átomos de distintos tipos, la sustancia se llama compuesto. El agua es un compuesto: su molécula consta de dos átomos de hidrógeno unidos por un enlace químico (electromagnético) a un átomo de oxígeno. El número de átomos que constiruyen la molécula de un compuesto puede variar desde dos o tres hasta las decenas de miles que conforman la molécula de un complejo proteínico.

Si miramos esta imagen de visión de rayos X de un cristal de hielo que tiene simetría exagonal, es la equivalente a multiplicar el original por 100000000. Los átomos de oxíogeno se representan como bolas  rojas y los de Hidrógeno como bolas azules más pequeñas. Todos los enlaces entre estos átomos se representan como barras blancas para resaltar la red hexagonal en forma de colmena que forma el conjunto de moléculas de H2O.

 

 

 

Ilustración de H2o Molécula De Agua Figura y más Vectores Libres de Derechos de Agua - Agua, Molécula, Biología - iStock

 

En el agua líquida también hay moléculas de H2O, pero en ese caso se encuentran más calientes que en el hielo. Lo que significa que se mueven más libremente y de hecho esa es la razón de que el agua sea un líquido sin forma propia y se adapta al recipiente que lo contiene. Pero si el agua se congela, las fuerzas de interacción entre las moléculas de H2O ganan a las fuerzas derivadas del movimiento térmico y forman un conjunto rígido que presenta su estado más estable (de menor energía) cuando se ordenan… precisamente con simetría Hexagonal.

 

 

 

Cómo se Forma un Copo de Nieve? - Gaia Ciencia

Por eso los cristales de nieve son siempre hexagonales. La estructura de los cristales a nivel atómico determina su forma final. Y este no es un ejemplo aislado. La composición y la estructura a nivel atómico y molecular es la clave que determina la estructura, dureza y demás propiedades en general de todos los materiales que nos rodean. Hasta aquí llegan las escalas de estructuras básicas.

 

 

ROCAS Y MINERALES. GUIA V.DEFINIT. (GUIAS DEL NATURALISTA-ROCAS-MINERALES-PIEDRAS PRECIOSAS) : BONEWITZ, R.L.: Amazon.es: Libros

Naturalmente, podemos hablar de unidades todavía mayores, como los minerales  y las rocas. Un mineral es, simplemente un elemento o un compuesto en estado sólido que se encuentra en la Naturaleza y que no es el resultado de un proceso biológico; pero si un mineral presenta una, se trata de una estructura cristalina derivada de la colocación de sus moléculas. Las rocas son, sencillamente, mezclas de uno o más minerales diferentes. Como sabemos, las rocas presentan a veces algún tipo de dibujo , como los estratos horizontales de las rocas sedimentarias, pero el trazado es de tan bajo nivel que no se pueden llegar a tomar en consideración cuestiones de simetría como las que antes hemos referido.

 

Si comenzamos por la parte más alta de la escala, con la estructura de los cristales y seguir bajando por dicha escala hasta la selva  subatómica de las partículas elementales. Sólo los sólidos tienen estructura cristalina. Las moléculas de un gas están tan alejadas las unas de las otras que tienen la libertad de moverse al azar, y es imposible encontrar un modelo geométrico sistemático en su disposición. Os acordáis las formas arabescar de increíble belleza que adoptan, los gases en algunas Nebulosas.

 

Los fullerenos podrían ser los responsables de haber llevado a la Tierra sustancias capaces de impulsar el inicio de la vida. Los científicos han podido encontrar moléculas de fullerenos en las nubes espaciales que podrían ser, las precursorasa de la vida. ¡El Carbono! ¿Cuántas sorpresas nos tiene reservada este maravilloso elemento?

 

Si hablamos de las moléculas de un líquido, asl contrario de lo que ocurre con las moléculas de los gases, éstas están más juntas y próximas entre ellas, pero todavía son lo suficientemente libres en sus movimientos como para que no se puedan formar modelos fijos. Los sólidos, por otra parte, tienen moléculas que se aprietan estrechamente entre sí para poder crear una estructura rígida y estable. (En realidad, los átomos de un sólido siguen oscilando, pero las fuerzas electromagnéticas las enlazan tan estrechamente que sus oscilaciones son practicamente posiciones fijas. Para nuestro propósito supondremos que los átomos no tienen movimiento alguno.) En casi todos los casos se estereotipa esta dispoosición sistemática, que constituye la estructura cristalina del sólido.

                      El agua en sus tres estados: hielo, agua líquida y vapor en las nubes

Consideremos el agua. Tanto en su estado gaseoso (vapor) como líquido, sus moléculas están en una disposición caótica, pero cuando se hiela y pasa al estado sólido, las moléculas se agrupan entre sí en forma de figuras geométricas. El bello cristal de nieve, con simetría hexagonal, como el dibujo de un caleidoscopio, toma su forma directamente d ela forma cristalina subyacente de las moléculas de hielo de su congelador a los gigantescos Icebergs del Ártico, todos tienen la misma estructura cristalina.

Casi todas las sustancias sólidas son cristalinas, aunque el vidrio es una excepción sobresaliente; se origina al enfriarse determinados líquidos de manera tan rápida que las moléculas se agrupan estrechamente antes de tener la menor opción a disponerse de forma ordenada. Sólido o no no, un cristal no es  cristalino. El vidrio tallado de un bello jarrón que es “cristal” para el dependiente de la tienda, no es cristal para el físico.

 

Las pitonisas que utilizan esferas pulidas procedentes de grandes cristales de cuarzo simples para predecir el futuro mirando a su través, hoy en día lo hacen a menudo a través de esferas de vidrio, puesto que son más baratas. Sería interesante saber si el futuro parece más claro mirándolo por un material en desorden o bien a través de una estructura ordenada.

Los sólidos no cristalinos se llaman amorfos; algunos químicos hablan de ellos como sólidos líquidos ya que, igual que éstos últimos, , carecen de estructura cristalina. El carbón vegetal, las breas y ciertos plásticos, son ejemplos familiares, sustancias que participan con los líquidos en la tendencia a “fluir”, aunque la capacidad de flujo puede ser extremadamente lenta. Incluso el vidrio acabaría fluyendo fuera de su forma si no se tocara durante algunos cientos de años.

La forma geométrica subyacente de cualquier sustancia cristalina se denomina la red de la misma. Unas veces es una configuración de átomos; otras de moléculas. El dióxido de Carbono, por ejemplo, se encuentra en la naturaleza en forma de gas; cuando su temperatura disminuye lo suficiente, se solidifica y se convierte en lo que se llama hielo seco. (Recibe el nombre de seco porque nunca se convierte en líquido, como el hielo ordinario; pasa directamente de sólido a gas.) En él, las moléculas de dióxido de carbono se agrupan entre sí formando la red cúbica con estructura semejante a las vigas de acero de un edificio de oficinas. Las moléculas situadas en las caras de cada cubo dan a esta red concreta el nombre de red cúbica de caras centradas, es decir, así:

Por qué el dióxido de carbono es una molécula no polar a través del enlace carbono-oxígeno que es polar? - Quora

           Aquí, cada unidad es una molécula de Dióxido de Carbono.

Qué es el clorito de sodio y cuáles son sus usos « Blog Guybrush20Hipoclorito de sodio (NaClO): fórmula, síntesis, propiedades, usos

La sal es uno de los minerales que más abunda en la Tierra. Su nomenclatura química, Cloruro de Sodio, se debe a sus dos iones componentes: cloro y sodio. La estructura de este compuesto, es un cristal con forma de cubo, en la que los átomos de cloro y sodio, dispuestos alternadamente, forman una red cúbica que se va repitiendo con la misma orientación en toda la sustancia, formando una red cristalina.

La sal no sólo sirve para sazonar. Sus iones son fundamentales para la transmisión de impulsos nerviosos, para los latidos del corazón, para la contracción muscular y para desencadenar una respuesta inmune. ¡La próxima vez que aliñen una ensalada, piensen en esto!

 

Microscopio Electrónico - Banco de fotos e imágenes de stock - iStock

No se debe pensar que, por estar por debajo del campo de visión de un microscopio, estas estructuras reticulares no son sino construcciones teóricas que los físicos no han sido capaces de observar. Hubo un tiempo en que esto era así, pero en la actualidad existen muchas técnicas que permiten “ver” estructuras mucho más pequeñas que las que pueden ser vistas directamente. Hoy día, los microscopios electrónicos nos permiten ver lo que nunca pudimos.

 

 

Las heridas y su cicatrización | OffarmAnomalías de la cicatrizaciónCicatrización. – Título del sitio

 

Aprecien como se forma la red de fibras que hace posible la cicatrización de una herida.

 

Cerámica Ensueños: Buscando CristalizacionesCurso de cristalizaciones - Infocerámica

 

Aquí podemos ver un cristal de óxido de zinc, unido a una malla amorfa de carbono.

Lo que vemos aquí es el cuerpo tratando de curarse a sí mismo. Los objetos con forma de cigarro de color amarillo son las bacterias de la tuberculosis. En torno a ella aparecen los macrófagos. Un macrófago es un fagocito, son células que nos protegen de objetos extraños.

 

 

Aspergillus flavus. - Agentes Biológicos - HongoAspergillus flavus. - Agentes Biológicos - HongoEspora - Wikipedia, la enciclopedia libre

Las esferas que pueden verse aquí son las esporas creadas por el hongo Emericella nidulans. Producen la hidrofobina proteína que hace que las esporas resistentes al agua.

microscopio-electronico-17

¿Ha tenido caries en los dientes? Caries es causada por la bacteria Streptococcus mutans que convierte el azúcar queda en la superficie de sus dientes a los ácidos. Ese ácido corroe el esmalte dental provocando la caries. Aquí en color azul los Streptococcus mutans está atacando la superficie de un diente.

Explorar el misterio del spin del protón ha sido uno de los objetivos de la investigación científica fundamental en el RHIC

Hemos podido alcanzar a “ver” objetos y figuras estacionadas en esas distancias infinitesimales, nuestros ingenios tecnológicos pueden aumentar, en millones de veces, las proporciones físicas de pequeños objetos y sistemas. Hasta tal punto es así que, si pudiéramos tener delante de nuestros ojos lo que esos experimentos han logrado, nos parecería estar, en un mundo diferente, tan extraña y figuras podríamos contemplar en ese ámbito de lo muy pequeño.

Descendiendo muchísimo en la escala y si consideramos las moléculas como unidades individuales, completamente diferenciadas en los que puedan estar sumergidas, ¿tienen siempre una estructura simétrica? Si es así, cuando un compuesto dse halla en la Naturaleza o bien se crea en el laboratorio, sus moléculas serán siempre iguales y el compuesto tendrá siempre las mismas propiedades, pero si una molécula está formada por una estructura asimétrica de átomos, sería posible encontrar, o crear en el laboratorio, dos formas completamente distintas del mismo compuesto. Una de ellas contrendría exclusivamente  moléculas orientadas hacia la derecha; la otra, moléculas orientadas hacia la izquierda. Las dos imágenes serían la imagen especular de las de la otra.

 

          Una molécula con n estereocentros tiene un máximo de 2n estereoisómeros.

Me gustaría contaros aquí y en este momento, la sensacional historia del descubrimiento de los esteroisómeros pero, no teniendo mucho espacio para finalizar el trabajo, lo dejaré para otra ocasión. Digamos, sin embargo que, el descubrimiento de las moléculas con orientación izquierda o derecha comenzó en Francia durante la primera parte del siglo XIX. Jean Baptiste Biot, un renombrado físico y químico francés, había descubierto la propiedad de los cristales de cuarzo de desviar un plano de luz polarizada. Una sustancia que tenga esa propiedad se dice que es ópticamente activa.

 

 

Bloques básicos de construcción de moléculas biológicas | Khan Academy en Español - YouTube

                                                           Complejas moléculas biológicas

Bueno amigos lectores, no siempre tenemos que hablar de grandes galaxias y espacios inconmensurables, y, de vez en cuando, conviene bajar a las profundidades del “universo infinitesimal” en el que viven partículas, átomos y moléculas que, como todo en la Naturaleza están sometidas a una serie de leyes que rigen sus comportamientos y, conocerlos, saber lo que allí pueda pasar, es bastante lucrativo para poder aplicar, dichos conocimientos a este mundo macroscópico nuestro y saber, por qué ocurren ciertas cosas en nuestro “gran mundo”.

Ya sabéis: ¡Todo lo grande está hecho de cosas pequeñas!

emilio silvera

El Agua de Marte

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El día que se pueda enviar una expedición humana a Marte… ¡Tendremos muchas sorpresas!

Queremos saber más sobre Marte

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

LO CONFIRMÓ LA NASA (en sus últimas noticias).
La Sonda Maven alcanza con éxito la órbita del planeta rojo.
Sonda MAVEN estudiar la atmósfera de Marte | RTVE.es

La sonda Maven ayudará a conocer mejor las capas altas de la atmósfera marciana y como funciona la ionosfera del planeta y el efecto que tiene el viento solar. Se podrá certificar así si Marte, como se cree, era un planeta repleto de océanos que fue perdiendo el agua por la acción constante de los vientos solares y la carencia de un campo electromagnético

Sonda Maven entró en la órbita del planeta Marte | Ciencia y Ecología | DW | 22.09.2014
               La sonda Maven alcanzaóla órbita de Marte | Foto: NASA
Las noticias sobre el planeta Marte no dejan de renovarse y siempre, estas iniciativas tratan de dar un paso más, que nos lleve hacia el pleno conocimiento de aquel planeta y nos cuente lo que allí pudo pasar para que, de ser un planeta amigable, con atmósfera y océanos, y… ¡Posiblemente alguna forma de vida! Se convirtiera en el planeta que hoy conocemos.
                                                   Sonda Maven entra na órbita de Marte para descobrir o que aconteceu com sua atmosfera - Jornal O Globo
Al final lo conseguiremos, sabremos lo que allí pasó y, posiblemente, dentro de algunas décadas, tengamos allí alguna base que nos servirá para partir hacia el Espacio exterior más lejano.
emilio silvera

Físicos y Cosmólogos: Buscando conocer el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

A finales de los años 70, los físicos de partículas decidieron acudir a los seminarios de cosmología para escuchar los que los cosmólogos tenían que decir sobre las galaxias y los quásar y, los cosmólogos (para no ser menor), alquilaron máquinas del CERN y el FERMILAB para trabajar en física de de altas energías en instalaciones subterráneas desde donde no se podían ver las estrellas.

 

http://circuitoaleph.files.wordpress.com/2012/07/higgs_boson.jpeg

 

Los experimentos que se producen en tan descomunales máquinas, llevan sus resultados hasta las pantallas de los ordenadores provistos de programas bien elaborados que recogen todos y cada uno de los sucesos del acontecimiento allí ocurrido cuando dos haces de muones, por ejemplo, chocan lanzados en direcciones opuestas a velocidades cercanas a la de la luz, y, en el choque, las partículas dan lugar a otras más elementales que están ocultas en el corazón de la materia y, con esta fórmula de altas energías, pueden salir a la luz para que las podamos conocer.

 

 

Colisiones protón-protón en el LHC

 

“La Física de partículas elementales y el estudio del Universo primitivo, las dos ramas fundamentales de la ciencia de la Naturaleza, se habían fundido esencialmente.” Declaró Gell-Mann, cuando físicos y cosmólogos unieron sus conocimientos para saber sobre el todo desde lo puy pequño hasta lo muy grande: El átomo y la Galaxia.

 

Encierran y tienen tantos secretos las galaxias que, existen multitud de familias, de formas y colores, y, todas ellas, son portadoras de la esencia del Universo, las galaxias, son retazos del Universo en las que están presentes todos los elementos y objetos que son son, también allí residen las fuerzas y las constantes y, para que no falte de nada, podríamos suponer que también, está la vida presente.

En encuentra que buscaron físicos y cosmólogos fue el Big Bang. Loa físicos habían identificaron simetrías en la Naturaleza que hoy están rotas pero que estuvieron intactas en el entorno de las inmensas energías, en el entorno de aquellos primeros momentos en los que se cree nació el universo. Los cosmólogos informaron de que el universo estuvo entonces en tal estado de alta energía, durante las etapas iniciales del Big Bang. Unidas ambas cosas, aparece el cuadro de un universo perfectamente simétrico y cuyas simetrías se quebraron a medida que se expandió y se enfrió, creando las partículas de materia y energía que encontramos hoy a nuestro alrededor y estampándoles las pruebas de su genealogía.

 

                                         File:Spontaneous symmetry breaking.jpg

Gráfica de la ruptura de simetría espontánea de la función

En el modelo estándar,  la ruptura espontánea de simetría se complementa por el uso del bosón de Hihhs, que es responsable de las masas de los bosones W y Z.  Todo esto puede verse de forma más técnica en la interacción de Yucawa donde se muestra cómo obtienen masa los fermiones  mediante la ruptura de simetría. Este mecanismo se aplica al caso de una ruptura de simetría gauge local local.

 

El toro es un ejemplo de grupo de Lie homeomorfo a \scriptstyle S^1\times S^1.

En física la ruptura espontánea de la simetría ocurre cuando un sistema definido por una lagrangiana simétrica respecto a un grupo de simetría  cae en un estado vacío que no es simétrico.  Cuando eso sucede el sistema no se comporta más de forma simétrica.

El grupo de simetría puede ser discreto como el grupo espacial  de un cristal, o continuo como un grupo de Lie,  como la simetría rotacional del espacio. Sin embargo, si el sistema solo tiene una dimensión espacial entonces solo las simetrías discretas pueden romperse en un estado vacío de la teoría cuántica, aunque también una solución clásica puede romper una simetría continua.

La ruptura de la simetría conlleva la aparición de nuevas partículas (asociados a nuevos términos de masas en el nuevo lagrangiano como los bosones de Nambu-Goldstone  o los bosones de Higss) y la aparición de términos de masas de partículas ya existentes en el lagrangiano. Claro que la teoría electrodébil se describió por Steven Weinberg unificada en términos de su relación con el universo primitivo.

 

 

Lo que resulta tan especial en la Teoría electrodébil  es que las partículas (portadoras de la fuerza) forman una familia estrechamente unida, con cuatro miembros: la W+, la W , la Z neutra, y el cuarto miembro es nuestro viejo amigo el Fotón, portador del electromagnetismo. Son todas hermanas, estrechamente relacionadas por el principio de simetría que nos dice que son, todas las misma cosa pero, que la simetría se ha roto. La simetría está allí, en las ecuaciones subyacentes de la teoríam, pero no es evidente en las partículas mismas. Por eso las W y la Z son mucho más pesadas que el fotón.

 

El universo temprano pudo tener más galaxias que las observadas

                           El Universo temprano

Hubo un tiempo, en el universo temprano, en que la temperatura estaba por encima de algunos cientos de veces de la masa del protón, cuando la simetría aún no se había roto, y la fuerza débil y la electromagnética, no sólo eran la misma matemáticamente, sino realmente la misma. Un físico que hubiera podido estar allí por aquel entonces, lo que no es fácil de imaginar, no habría contemplado ninguna diferencia real entre las fuerzas producidas por el intercambio de estas cuatro partículas: las W, la Z y el Fotón.

 

                                         

De la misma manera, aunque menos clara, las nacientes teorías ee la supersimetría conjeturan que las cuatro fuerzas tal vez estaban ligadas por una simetría que se manifestaba en aquellos niveles de energías aún mayores que caracterizaban al universo incluso ya antes del Big Bang.

La introducción de un eje de tiempo histórico en la cosmología y la física de partículas, benefició a ambos campos. Los físicos proporcionaron a los cosmólogos una serie de herramientas útiles para saber como se desarrolló el universo. Evidentemente, el Big Bang no fue la muralla de fuego de la que se burló Hoyle, sino un ámbito de sucesos de altas energías que muy posiblemente pueden ser comprensibles en términos de la teoría de campo relativista y cuántica.

 

 

En busca de una teoría unificada | UNIFY Project | Results in brief | FP7 | CORDIS | European Commission

 

La cosmología por su parte, le dio un tinte de realidad histórica a las teorías unificadas. Aunque ningún Acelerador concebible podría alcanzar las titánicas energías supuestas por las grandes teorías unificadas y la supersimetría, esas exóticas ideas aún pueden ser puestas a prueba, investigando su las partículas constituyentes del universo actual son compatibles con el tipo de historia primitiva que implican las teorías.

Las partículas elementales aparentemente proporcionan la clave de algunos de los misterios fundamentales de la cosmología temprana… y, resulta que la cosmología nos brinda una especie de terreno de prueba para alguna de las ideas de la física de partículas elementales.”

 

 

A pesar de todo, de lo mucho que hemos avanzado y de los descubrimientos ciertos que se han podido conquistar y que están debidamente contrastados una y mul veces para estar seguros de que, todo eso es así. A pesar de ello, digo, no creo que aún sepamos, a ciencia cierta, lo que las fuerzas son, y, nos quedan algunos flecos que añadir a “ese traje” para que, la niña (en este caso la Naturaleza), se nos pueda mostrar con toda su belleza y esplendor.

¿Qué son las fuerzas?

 

 

Sí, más o menos, aunque con ciertas carencias y faltas de completitud, podemos dar una idea de lo que las fuerzas son y, para andar por casa, podría ser una explicación suficiente pero, si queremos dar un paseo más largo, y llegar hasta los confirnes de la Galaxia, entonces, no podemos confiar en esta exigua explicación a la que, como antes decía, le faltan esos flecos que la adornan y completan y las acercarían a nuestra total comprensión.

 

 

Sabemos del nacimiento de las estrellas, la acumulación de estas en galaxias, que a la vez se agrupan en cúmulos y por si fuera poco,  esparciéndose en forma uniforme mientras el Universo sigue  y sigue expandiéndose. La formación de nebulosas en todas partes, de ellas las nacientes estrellas, blancas, azules, rojas y amarillas, y a su alrededor la formación de planetas. Todo un ciclo que se repite y se repite por miles de millones de años, entregándonos un formato claro y que podemos aventurarnos a predecir sin temor a fallar y, sabemos que, todo eso es posible gracias a que, las cuatro fuerzas fundamentales del universo están presentes y, el ritmo que imponen, hacen posible que las cosas sean tal como las podemos contemplar.

 

 

Quarks que se unen para formar nucleones, estos que conforman los núcleos, la llegada de los electrones atraídos por la carga eléctrica positiva de los núcleos hacen que se formen los átomos del universo que, unidos forman moléculas que, a su vez, se unen para formar cuerpos como las estrellas y los mundos que las rodean, grupos de estrellas que dan lugar a enormes galaxias y estas, reunidas, forman cúmulos que son las estructuras más grandes del universo y, todo ello, es posible gracias a esas fuerzas y a esas “insignificantes” partículas que conforman la materia.

         Descubren una de las estructuras más grandes del universo: el Muro del Polo Sur

 

Ahí los tenéis y aunque pueda parecer sencillo, el lidiar con estas tres familias de partículas que son, en realidad las que conforman todo lo que existe en el mundo (entendiéndose por el mundo el universo entero), no es fácil y de ellas, surgen muchas implicaciones, algunas que no hemos podido llegar a entender aunque, en honor a la verdad tendremos que decir que, en lo más básico, podemos formular hipótesis y teorías que las implican y que están acordes con la realidad observada en el laboratorio experimental. Sin embargo, muchos son, todavía, los secretos que nos esconden y al que nuestro intelecto no ha podido llegar aún. Sin embargo, si nos dan más tiempo, todo llegará.

Y, a todo esto, no debemos olvidar que, aparte de las propiedades que dichas partículas pueden tener de manera individual, todas tienen que convivir con las cuatro fuerzas fundamentales de la Naturaleza que, de alguna manera, inciden en ellas de mil maneras diferentes.

No sólo toda la materia del Universo, nosotros también, supeditamos nuestros comportamientos a lo que rige la norma que establen esas cuatro fuerzas fundamentales del Universo que, junto con las constantes universales, hacen de nuestro universo lo que es y permite, que la vida esté presente para observar todas estas maravillas.

 

   

 

Ayer por la tarde (como hago tantas veces por estas fechas), acompañado de mi inseparable esposa, me di una vueltecita por todos estos parajes y, nos paramos en un “chiringuito” situado en un lugar solitario ya en estas fechas en la que los turistas se han marchado. Ella, mu mujer, después de tomarnos un café, se marcha un rato a la playa a tomar un baño y echarse en la fina arena a tomar el Sol, y, mientras tanto, saco mi libreta (que siempre me acompaña) y, mirando ese inmenso horizonte escribo de todo esto que antes habéis podido leer.

Realmente, cuando te acercas a la Naturaleza, las cosas se ven diferentes, te sientes más cerca de lo verdadero y puedes llegar a comprender algunas cosas que, la simbiosis del momento te acercan a la comprensión. Recordé que desede estos mismos lugares desde los que partio Colón para “las Américas” lo que después llamamos el nuevo mundo, y, aunque él creía que se dirigida a Cipango, el país del Sol descrito por Marco Polo, el hombre llegó a ese nuevo Mundo que ahora (a pesar de todo), sentimos hermanos.

¿Cuándo llegaremos a comprender? ¿Entenderemos alguna vez por qué hicimos las cosas? ¿Sabremos perdonar? y, sobre todo, comprenderemos de una vez por todas que todos somos uno… ¡falta mucho para que eso sea una realidad!

emilio silvera