martes, 16 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Teoría de Cuerdas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Desde que Kaluza (un oscuro matemático), le mandó a Einstein un escrito lleno de ecuaciones en el que pretendía unificar la teoría del maestro con la de Maxwell del electro magnetismo en la Quinta Dimensión, aquello funcionó como una semilla que no ha dejado de crecer hasta la Teoría M que unifica a las otras Teorías en una sola.

Parece que en la Teoría de cuerdas subyace una Teoría Cuántica de la Gravedad, pero para verificarla necesitamos la energía de Planck que está lejos de nuestro alcance.

Intrincada búsqueda: ¡La Gravedad cuántica!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                            Resultado de imagen de La Gravedad cuántica
                   No será nada fácil conseguir la unión de la relatividad general con la cuántica
Cuando hablamos de Gravedad cuántica, estamos tratando de abarcar mucho más, de lo que en realidad podemos. Esas sencillas palabras ¡Gravedad cuántica!, están apuntando hacia un horizonte hasta el momento presente inalcanzable y que, integra muchas ideas e intuiciones que los físicos teóricos han expuesto con generosidad.

                               

Nunca han importado muchos los peligros que tengamos que correr para buscar las respuestas de lo profundamente escondido en la Naturaleza, ni tampoco ha importado hasta donde ha tenido que viajar la imaginación para configurar modelos y teorías que, más tarde, queremos verificar.

 

Resultado de imagen de La naturaleza de la conciencia humana de Penrose

 

File:Roger Penrose at Festival della Scienza Oct 29 2011.jpg - Wikipedia

 

“La naturaleza de la conciencia humana”, que Penrose opina no es de naturaleza puramente algorítmica sino que incluiría elementos no computables. Penrose apunta que una teoría cuántica de la gravitación debería ser no lineal, y si bien podría ser realmente determinista sería claramente no computable lo que explicaría que los fenómenos cuánticos de medición nos parecieran impredecibles tal como realmente observamos.

También una teoría cuántica de la gravedad debería ampliar nuestro conocimiento de efectos cuánticos predichos por enfoques tentativos de otras teorías cuánticas, como la existencia de radiación de Hawking.”

 

La radiación de Hawking – abcienciade

               ¡Y mucho más sobre este mismo tema!

 

Resultado de imagen de La Gravedad cuántica

 

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “súper-simetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

Resultado de imagen de Es gran teoría del todo en la Física

“El concepto de una “teoría del todo” está arraigado en el principio de causalidad y su descubrimiento es la empresa de acercarnos a ver a través de los ojos del demonio de Laplace.  Aunque dicha posibilidad puede considerarse como determinista, en una “simple fórmula” puede todavía sobrevivir la física fundamentalmente probabilista, como proponen algunas posturas actuales de la mecánica cuántica. Esto se debe a que aun si los mecanismos que gobiernan las partículas son intrínsecamente azarosos, podemos conocer las reglas que gobiernan dicho azar y calcular las probabilidades de ocurrencia para cada evento posible. Sin embargo, otras interpretaciones de la ecuación de Schrödinger conceden poca importancia al azar: este solo se tendría importancia dentro del átomo y se diluiría en el mundo macroscópico. Otras no obstante la niegan completamente y la consideran una interpretación equivocada de las leyes cuánticas. En consecuencia, la mayor dificultad de descubrir una teoría unificada ha sido armonizar correctamente leyes que gobiernan solo un reducido ámbito de la naturaleza y transformarlas en una única teoría que la explique en su totalidad, tanto en su mundo micro como macroscópico y explique la existencia de todas las interacciones fundamentales:

las fuerzas gravitatoriaelectromagnéticanuclear fuerte y nuclear débil.”

 

Las CUATRO INTERACCIONES FUNDAMENTALES - YouTube

Si pasamos a las distintas teorías de cuerdas, desde el primer intento de las cinco dimensiones de Kaluza, nos encontramos con varias que han sido unificadas en la Teoría M.

 

Supersimetría en superconductores | Actualidad | Investigación y CienciaQué es la supergravedad, la teoría por la que tres científicos recibieron el "Oscar de la ciencia" - BBC News Mundo

Dibujo201506004 10D non-susy heterotic string theory - arxiv org

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

¿Quién puede ir a la longitud de Planck para poder contemplar esas cuerdas vibrantes si es que están allí?

 

                                 

 

Ni vemos la longitud de Planck ni las dimensiones extra y, nos dicen que para poder profundizar hasta esa distancia, necesitamos disponer de la Energía de Planck, es decir 1019 GeV, una energía que ni en las próximas generaciones estará a nuestro alcance. Pero mientras tanto, hablamos de que, en 2.015, el LHC buscará las partículas de la “materia oscura”. ¡Qué gente!

 

Las dimensiones - PaperblogNo.6 LAS DIMENSIONES LAS SEIS... - Gnosis CURSO NIVEL II | FacebookPsiconautas | Enteodelia

                         Nunca pudimos encontrar esa puerta de la dimensiones más altas

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

                         

Nuestro universo ¿es tridimensional y no podemos esas dimensiones extra de las que tanto hablan en las teorías más avanzadas pero, no verificadas?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que con sus 14 TeV no llegaría ni siquiera a vislumbrar esas cuerdas vibrantes de las que antes os hablaba.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Ya sabéis lo que pasa cuando queremos juntar la relatividad con la cuántica: ¡Aparecen los infinitos que no son renor-malizables!

 

                     La Física De Partículas, Modelo Estándar, Partícula Elemental imagen png - imagen transparente descarga gratuita

Con sus 20 parámetros aleatorios (parece que uno de ellos ha sido hallado -el bosón de Higgs-), el Modelo estándar de la física de partículas que incluye sólo tres de las interacciones fundamentales -las fuerzas nucleares débil y fuerte y el electromagnetismo-, ha dado un buen resultado y a permitido a los físicos trabajar ampliamente en el conocimiento del mundo, de la Naturaleza, del Universo. Sin embargo, deja muchas preguntas sin contestar y, lo cierto es que, se necesitan nuevas maneras, nuevas formas, nuevas teorías que nos lleven más allá.

¡Necesitamos algo más avanzado!

 

Se ha dicho que la función de la partícula de Higgs  es la de dar masa a las partículas que conocemos y están incluidas en el Modelo estándar, se nos ha dicho que ha sido encontrada y el hallazgo ha merecido el Nobel de Física. Sin embargo… nada se ha dicho de cómo ésta partícula transmite la masa a las demás. Faltan algunas explicaciones.

El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

 

               

¿Es el efecto frenado que sufren las partículas que corren por el océano de Higgs, el que les da la masa?

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

 

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más

apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

 

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs(de ahí la expectación creada por el acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas –Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

 

El futuro del Gran Colisionador de Hadrones - Ciencia UNAM

No dejamos de experimentar para saber cómo es nuestro mundo, la Naturaleza, el Universo que nos acoge

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa –los W+, W, Zº fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébilse fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Hay otra descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

 

En qué consiste la teoría de los eones de Roger Penrose? - Quora
Relatividad y Gravedad Cuántica. Universidad de Cambridge.
Roger Penrose es uno de los nuevos humanistas del siglo que se ha interesado por los problemas de las matemáticas, de la física, de la biología, de la psicología y de la filosofía. Siguiendo el modelo de Popper de los tres mundos, ha trabajado sobre la flecha del mundo 1 de la física, al mundo 2 de la conciencia, y del mundo 3 de las matemáticas. Complejos mundos que finalmente están conectados por esos hilos invisibles que mantiene al universo unido en todas sus partes, ¡las que piensan también!

Resultado de imagen de supercuerdas

La teoría de supercuerdas tiene tantas sorpresas fantásticas que cualquiera que investigue en el tema reconoce que está llena de magia. Es algo que funciona con tanta belleza… Cuando cosas que no encajan juntas e incluso se repelen, si se acerca la una a la otra alguien es capaz de formular un camino mediante el cual, no sólo no se rechazan, sino que encajan a la perfección dentro de ese sistema, como ocurre ahora con la teoría M que acoge con naturalidad la teoría de la relatividad general y la teoría mecánico-cuántica; ahí, cuando eso se produce, está presente la belleza.

 

 

 

 

Supercuerdas | Investigación y Ciencia | Investigación y Ciencia

Resultado de imagen de supercuerdas

Lo que hace que la teoría de supercuerdas sea tan interesante es que el marco estándar mediante el cual conocemos la mayor parte de la física es la teoría cuántica y resulta que ella hace imposible la gravedad. La relatividad general de Einstein, que es el modelo de la gravedad, no funciona con la teoría cuántica. Sin embargo, las supercuerdas modifican la teoría cuántica estándar de tal manera que la gravedad no sólo se convierte en posible, sino que forma parte natural del sistema; es inevitable para que éste sea completo.

¿Por qué es tan importante encajar la gravedad y la teoría cuántica? Porque no podemos admitir una teoría que explique las fuerzas de la naturaleza y deje fuera a una de esas fuerzas. Así ocurre con el Modelo Estándar que deja aparte y no incluye a la fuerza gravitatoria que está ahí, en la Naturaleza.

La teoría de supercuerdas se perfila como la teoría que tiene implicaciones si tratamos con las cosas muy pequeñas, en el microcosmos; toda la teoría de partículas elementales cambia con las supercuerdas que penetra mucho más; llega mucho más allá de lo que ahora es posible.

 

Teoría de supercuerdas - Wikipedia, la enciclopedia libreLos orígenes de la teoría de supercuerdas: la primera revolución - INVDES

 

La topología es, el estudio de aquellas propiedades de los cuerpos geométricos que permanecen inalteradas por transformaciones continuas. La topología es probablemente la más joven de las ramas clásicas de las matemáticas. En contraste con el álgebra, la geometría y la teoría de los números, cuyas genealogías datan de tiempos antiguos, la topología aparece en el siglo diecisiete, con el nombre de analysis situs, ésto es, análisis de la posición.

De manera informal, la topología se ocupa de aquellas propiedades de las figuras que permanecen invariantes, cuando dichas figuras son plegadas, dilatadas, contraídas o deformadas, de modo que no aparezcan nuevos puntos, o se hagan coincidir puntos diferentes. La transformación permitida presupone, en otras palabras, que hay una correspondencia biunívoca entre los puntos de la figura original y los de la transformada, y que la deformación hace corresponder puntos próximos a puntos próximos. Esta última propiedad se llama continuidad, y lo que se requiere es que la transformación y su inversa sean ambas continuas: así, trabajarnos con homeomorfismos.

 

Resultado de imagen de Principio y final del Universo

No son pocos los que creen que el Universo acabará convirtiéndolo todo en un Agujero negro inmenso

En cuanto a nuestra comprensión del universo a gran escala (galaxias, el Big Bang…), creo que afectará a nuestra idea presente, al esquema que hoy rige y, como la nueva teoría, el horizonte se ampliará enormemente; el cosmos se presentará ante nosotros como un todo, con un comienzo muy bien definido y un final muy bien determinado.

Para cuando eso llegue, sabremos lo que es, como se genera y dónde están situados los orígenes de esa “fuerza”, “materia”, o, “energía” que ahora no sabemos ver para explicar el anómalo movimiento de las galaxias o la expansión del espacio que corre sin freno hacia… ¿Otro universo que tira del nuestro, como ocurren con las galaxias que terminan por fusionarse?

emilio silvera

El micro mundo de los átomos y la información

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando por primera vez se puso este trabajo, dio lugar a comentarios que nos llevan hasta la realidad de hasta donde, resulta para nosotros incomprensible, ese micro mundo de la cuántica, ese “universo” infinitesimal donde ocurren cosas que, no llegamos a comprender.

 

                          Sí, existe otro mundo que no vemos pero, ¡está en éste!

La mecánica cuántica domina en el micro-mundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. Esta onda no es como una onda de agua.  Es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

 

 

Función de OndaLa función de onda, su ecuación y su interpretación. Postulados. – Física cuántica en la red

  • El punto de partida de la denominada Mecánica Ondulatoria, desarrollada por Schrödinger, es la onda de materia de de Broglie y la consideración del átomo como un sistema de vibraciones continuas.

“En sus comunicaciones, obtuvo primero la hoy denominada «ecuación de Schrödinger independiente del tiempo para un estado estacionario de energía«, a partir de la ecuación de Hamilton-Jacobi para un sistema cuyo Hamiltoniano sea constante del movimiento y coincida con la energía; finalmente, derivaba la desde entonces famosa «ecuación de Schrödinger» general, dependiente del tiempo, que es una ecuación de ondas.”

 

Cuestionando fundamentos, los 100 años de la Relatividad General de Einstein

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza para describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros. Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables como planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

                                    http://elojocondientes.files.wordpress.com/2011/03/la-tierra-no-es-redonda.png

 

La Gravedad hace que la Tierra se vea como un mapa. Es una vista altamente exagerada, pero ilustra a las claras cómo la atracción gravitatoria que se manifiesta desde la masa de roca bajo nuestros pies no es la misma en todo lugar. La gravedad es más fuerte en áreas amarillas y más débil en las azules. (Imagen tomada por el satélite Goce)

 

 

 

Cuántica y relatividad por todas partes — Cuaderno de Cultura Científica

                      Cuántica y relatividad por todas partes pero, no se llevan bien

Como resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.

                                                  Universo observable - Wikipedia, la enciclopedia libre

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento esta longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33  centímetros, más joven que el Tiempo de Planck, 10-43 segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. Para comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. Para entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

 

Parece que para verificar la teoría de cuerdeas necesitamos la energía de Planck (10 con exp. 19 GeV), esa energía no la tienen ni los mayores aceleradores de partículas, y, según parece, en la Teoría de cuerdas subyace una Teoría cuántica de la Gravedad

En los intentos más recientes de crear una teoría nueva para describir la naturaleza cuántica de la gravedad ha emergido un nuevo significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”.  La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes.

 

Los tiempos cambian y la manera de informar también, lejos nos queda ya aquellos toscos aparatos impresores del pasado, ahora, en espacios muy reducidos, tenemos guardada más información que antes había en una colección de libros.

 

                                   

 

Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1.975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuitería de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.

 

How Grid Computing Works | HowStuffWorks

 

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1.981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El número máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta ahora. Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.

 

El número de usuarios de internet en el mundo crece un 1,9% y alcanza los 5.160 millones (2023) - Marketing 4 Ecommerce - Tu revista de marketing online para e-commerce

                                   La información llega a todos los rincones del Mundo

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, desde el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias.

 

                             

Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

α = 2πehc ≈ 1/137

αG = (Gmp2)/ hc ≈ 10-38

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro.

 

                                 

 

Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

 

                          Resultado de imagen de Números puros adimensionalesResultado de imagen de Números puros adimensionales

 

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el número 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos. Con los adelantos actuales, estudiando la luz lejana de cuásares muy antiguos, se estudia si la constante de estructura fina (α) ha variado con el paso del tiempo.

 

                                    Resultado de imagen de La inmensidad del Universo

          Ninguna imagen podrá nunca reflejar la realidad del Universo, su grandeza

El Universo es muy grande, inmensamente grande y, probablemente, todo lo que nuestras mentes puedan imaginar podrá existir en alguna parte de esas regiones perdidas en las profundidades cósmicas, en los confines del Espacio- Tiempo, en lugares ignotos de extraña belleza en los que otros mundos y otras criaturas tendrán, su propio hábitat que, siendo diferente al nuestro, también, sus criaturas, estarán buscando el significado de las leyes del Universo.

emilio silvera