sábado, 21 de febrero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Un rumor del saber del mundo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los pensadores del Renacimiento creían que todo el Universo era un modelo de la idea divina y que el hombre era “un creador que venía después del creador divino”. Esta concepción era el concepto de belleza, una forma de armonía que reflejaba las intenciones de la divinidad. ¡Cuánta ignorancia! que, por otra parte, debemos comprender en aquel contexto.

                                               Leonardo Da Vince y Miguel Ángel Buonarroti

Lo que era placentero para los ojos, el oído y la mente era bueno, moralmente valioso en sí mismo.  Más aún: revelaba parte del plan “divino” para la Humanidad, pues evidenciaba la relación de las partes con el todo.

Este ideal renacentista de belleza respaldaba la noción de que ésta tenía dos funciones, noción aplicable a todas las disciplinas.  En un nivel, la arquitectura, las artes visuales, la música y los aspectos formales de las artes literarias y dramáticas informaban a la mente; en segundo nivel, la complacían mediante el decoro, el estilo y la simetría en la Pintura y la escultura.  De esta forma se estableció una asociación entre belleza e ilustración.  También esto era lo que entonces significaba la sabiduría.

Filósofos,artistas y pensadores del renacimiento se plantearon retomar cánones de belleza establecidos pr las culturas clásicas dela antigüedad

El fin perseguido era el deseo de universalidad personal, la consecución de conocimientos universales, la conjunción de disciplinas diferentes como ramas del todo, del saber profundo que abarcaba desde el núcleo las distintas esferas del conocimiento universales, la conjunción de disciplinas diferentes como ramas del todo, del saber profundo que abarcaba desde el núcleo las distintas esferas del conocimiento como partes de ese todo.

           Nicolás Maquiavelo
Nicolás Maquiavelo fue uno de los más relevantes pensadores políticos del renacimiento. Su obra más conocida, El Príncipe, describe las argucias y los métodos empleados por los gobernantes para obtener y conservar el poder.

El reconocimiento de la belleza se funda en los dones divinos del intelecto humano.  Durante el Renacimiento se escribieron unos cuarenta y tres tratados sobre la belleza.  La idea de hombre universal es una idea común a casi todos ellos.

Peter Burke ha destacado a quince hombres universales del Renacimiento (“universales” en tanto evidenciaron su talento, más allá del mero diletantismo, en tres o más campos):

Bunelleschi.jpg

Escultura de Brunelleschi mirando Il Duomo de Florencia

– Antonio Filarete (1400-1465), arquitecto, escultor escritor.

                                Una muestra de su obra arriba

Leon Battista Alberti - ArkiplusBiografia de Leon Battista Alberti

  • León Battista Alberti (1404-1472), arquitecto, escritor, pintor.

Una muestra de su obra arriba

30 fotos e imágenes de Vecchietta - Getty ImagesLorenzo di Pietro Vecchietta

– Lorenzo Vecchietta (1405-1489), arquitecto, pintor, escultor, ingeniero.

Bernardo Zenale Fotos e Imágenes de stock - AlamyBernardo Zenale Fotos e Imágenes de stock - AlamyMadonna and Child — Bernardo Zenale

Una muestra de su obra

  • Bernard Zenale (1436-1526), arquitecto, pintor, escritor.

 

Italiano: el trittico Lampugnani Bernardo Zenale (1463-1526) Nombres  alternativos Bernardino Zenale; Bernardino Zenale da Treviglio, pintor y  arquitecto italiano Descripción Fecha de nacimiento/muerte 1464 1526 Lugar  de nacimiento/muerte Treviglio Milán :FOPPA, ZENALE, LUINI Lombard painters before and after Leonardo - 20 June -  17 August 2012 - Works | Robilant+Voena

Una muestra de su Obra

Sin Imagen personal

  • Francesco di Giorgio Martín (1439-1506), arquitecto, ingeniero, escultor, pintor.

Francesco di Giorgio MartiniReproducciones De Arte | st christopher, 1494 de Francesco Di Giorgio  Martini (1439-1502, Italy) |

Una muestra de su Obra

Portait de Donato Bramante, 1444 - 1514, un arquitecto italiano del  Renacimiento Fotografía de stock - Alamy

  • Donato Bramante (1444-1514), arquitecto, ingeniero, pintor, poeta.

 

Archivo:Donato Bramante - Heraclitus and Democritus - WGA3054.jpg -  Wikipedia, la enciclopedia libre

Biografia de Donato d'Angelo Bramanteel interior - Donato Bramante | Wikioo.org – La Enciclopedia de las Bellas  Artes

Muestra de su Obras arriba

  • Leonardo da Vinci (1452-1519), arquitecto, escultor, pintor, científico.

 

Leonardo Da Vinci o la infinita curiosidad500 años sin Leonardo Da Vinci: viaje a la mente más brillante de la mano  de expertos - InfobaeLeonardo da Vinci: Polémica alrededor de la autoría del Salvator Mundi

Muestra de su Obra arriba

Giovanni Giocondo (1457-1525), arquitecto, ingeniero, humanista.

Giovanni Giocondo - Wikipedia, la enciclopedia libre

Giovanni Giocondo

Muestra de su obra arriba

No tenemos imagen del personaje

  • Silvestre Aquilano (antes de 1471-1504), arquitecto, escultor, pintor.

 

Muestra dee su obra arriba

Nos falta su imagen

  • Sebastiano Serlio  (1475-1554), arquitecto, pintor, escritor.

 

Sebastiano Serlio - Wikipedia, la enciclopedia libreSet design for a tragic scene - Sebastiano Serlio en reproducción impresa o  copia al óleo sobre lienzo.Los siete libros de la arquitectura - Wikipedia, la enciclopedia libre

Muestra de su Obra arriba

                                            

  • Michelangelo Buonarroti (1475-1464), arquitecto, escultor, pintor, escritor.

Michelangelo Buonarrotti - Historia Arte (HA!)

Miguel Ángel Buonarroti: el genio del Renacimiento

Michelangelo Buonarroti Pieta (Lamentation Of Christ), 1499, 195×174 cm:  Descripción de la obra | ArthiveCuadros famosos, impresiones en lienzo, pósters vintage y decoración de  pared - ツ Legendarte - Cuadro Lienzo, Impresión Digital - Juicio Final - Michelangelo  Buonarroti - Decoración Pared

Pequeña parte de su obra arriba

Sin imagen del personaje

  • Guido Masón (antes de 1.477-1518), escritor, pintor, productor teatral.

Un Rumor del saber del mundo : Blog de Emilio Silvera V.

Muestra de la obra

Del siguiente no tenemos resultados

  • Piero Liborio (1500-1583), arquitecto, ingeniero, escultor, pintor.

                                         

Giorgio Vasari (1511-1574), arquitecto, escritor, escultor y pintor.

Archivo:Giorgio vasari, gregorio xi torna a roma da avignone, 1572-73,  01.jpg - Wikipedia, la enciclopedia libreGiorgio Vasari, el gran historiador del arte del Renacimiento

Giorgio VasariGiorgio Vasari and Workshop - Old Master Paintings II 2019/10/22 - Realized  price: EUR 50,300 - Dorotheum

El lector advertirá que de los hombres de arriba, 14 eran arquitectos, trece pintores, diez escueltores, seis ingenieros y seis escritores. Científicos, sólo había uno.

¿Qué tenía en particular la arquitectura para ocupar un lugar tan destacado frente a todas las demás actividades? En el Renacimiento, la aspiración de muchos artistas era el progreso arquitectónico.  En el siglo XV la arquitectura era una de las actividades que más se aproximaban a las artes liberales, mientras que la pintura y la escultura era sólo mecánica.  Esto cambiaría después, pero ayuda a explicar las prioridades en la Italia del quattrocento.

Las carreras de algunos de estos hombres universales fueron extraordinarias.  Francesco di Giorgio Martín, por ejemplo, diseñó un gran número de fortalezas y máquinas militares.  Y otra de sus ideas pueden apreciarse en los setenta y dos bajorrelieves que realizó dedicados todos a “instrumentos bélicos”.  Concejal en Siena y espía que informaba de los movimientos de las tropas papales y florentinas.  Escribió un importante tratado de arquitectura.

Giovanni Giocondo fue un fraile dominico, del que alguien dijo que era “un hombre de muchas facetas y maestro de todas las facultades nobles”.

Vasari lo describe principalmente como hombre de letras, pero añade que era también un muy buen teólogo y filósofo, un gran conocedor del griego (en un momento en que tal cosa no era corriente en Italia), un magnifico arquitecto y un excelente maestro de la perspectiva.

Adquirió fama en Verona, la ciudad en que vivía, por el papel que desempeñó en el rediseño del Ponte Della Pietra, un puente construido sobre terreno tan inestable que siempre estaba derrumbándose.  En su juventud pasó muchos años en Roma, lo que le permitió familiarizarse con las reliquias de la antigüedad, de muchas de las cuales se ocupó en un libro.

Mugellane llamó a Giocondo “profundo maestro de antigüedades”.  Escribió comentarios sobre Cesar y divulgó a Vitruvio entre sus contemporáneos y descubrió cartas de Plinio en una biblioteca parisina.

Construyó dos puentes sobre el Sena por encargo del rey de Francia.  Tras la muerte de Bramante se le encomendó completar, junto con Rafael, los trabajos de la Iglesia de San Pedro.

Con todo, es probable que su mayor logro fuera la solución que ideó para los grandes canales de Venecia, ya que al desviar las aguas del río Brenta  contribuyó a que La Serenísima sobreviviera hasta nuestros días.

Los talentos de Brunelleschi superan los mencionados con anterioridad.  Además de haber diseñado y dirigido la construcción de la maravillosa cúpula de la catedral de Santa María del Fiore en su ciudad, fue fabricante de relojes, orfebre y arqueólogo.  Amigo de Donatello y Massaccio, fue más polifacético que cualquier de ellos.

                                                Catedral de Santa Maria del Fiore (el “Duomo”), La Historia, La Cúpula de  la catedral, El Interior - Florencia.es

Cabria preguntarse si en realidad se ha exagerado la idea de hombre universal, de hombre renacentista.  En el siglo XII ciertos estudiosos, como Tomas de Aquino, estuvieron muy cerca de poseer un “saber universal”, ya que conocían todo lo que podía conocerse en la época.  Todo el conocimiento allí, el conocimiento total (al que se podía acceder) estaba resumido en poco más de un centenar de volúmenes, lo que hacía posible saberlo casi todo.

                                                                     Tomás de Aquino - Wikipedia, la enciclopedia libre

                                                                                 Tomas de Aquino

Acaso lo que resulta realmente significativo en la idea renacentista del hombre universal sea la actitud de los individuos que la encarnaron, su conciencia de sí mismos, su optimista punto de mira sobre la solución de problemas, lo que explica en buena medida la explosión de la imaginación que caracteriza el periodo.

                                                                 Antonio Averlino, Filarete | Teoría e Historia de la Arquitectura V

                                                                                               Filarete

Las ideas rivalizaban entre sí, íntimamente ligada a la idea de universalidad estaba la cuestión del paragone: si la pintura era superior a la escultura y viceversa.  El debate era enorme, en el siglo XV éste era un asunto intelectual de enorme actualidad.  Los escritos de Alberti, Filarete y el mismo Leonardo dejaron constancia de lo que pensaban sobre le tema.  Leonardo pensaba que el bajorrelieve era una especie de híbrido entre la pintura y la escultura, lo que podía hacerlo superior a ambos.

También había debate sobre pintura y poesía.  Durante un tiempo, se consideró que ambas actividades eran muy similares.

Leonardo escribió un tratado sobre pintura y en el decía que  “….la pintura era poesía muda y, por el contrario la poesía es pintura ciega… pero la pintura continúa siendo la más valiosa dado que sirve al sentido más noble”. ¡Lo que tú digas Leonardo!

Los círculos intelectuales de la época tenían en más alta consideración a los poetas que a los pintores.

                                                                    Miguel Ángel: retrato de un genio no tan «divino» como lo pintan

                                                                              Retrato de Miguel  Ángel

De todos los artistas del Renacimiento que escribieron poesía el de mayor mérito literario fue sin duda Miguel Ángel.

La misma idea de universalidad implicaba que el hombre universal era algo especial, diferente, un modelo del ideal.  Por tanto, es natural que los hombres universales a los que antes me he referido estuvieran a la vanguardia del movimiento que consiguió mejorar el estatus de los artistas en el siglo XV.

Una de las formas en que se manifestó este cambio la encontramos en la práctica del autorretrato.  Dada la autoconciencia que se había alcanzado hacia mediados de siglo sobre el valor del autorretrato y la imaginería asociada a la promoción intelectual y social, la labor de Antonio Filarete sin parangón.

Filarete incorporó no uno sino dos autorretratos suyos en la decoración de las puertas de bronce de San Pedro, que realizó por encargo del papa  Eugenio IV entre 1.435 y 1.445.  El segundo testimonio que dejó en su propia obra se aprecia en la cara interior de la puerta, en un relieve situado a nivel del suelo en el que aparecen Filarete y sus ayudantes, que ejecutan una danza, simbolizando así lo que pensaba de que, el trabajo en equipo tenía que ser como una danza en la que todos estaban en armonía para la consecución final y perfecta del trabajo a realizar.  El trabajo en equipo es como un grupo que baila en perfecta conjunción para la  buena realización del cometido final.

La Inquisición: ¿Perversión de la misión de la Iglesia?

Pero Veronece en 1.573 compareció ante la Inquisición, la Reforma de la Iglesia católica (el concilio de Trento que se reunión de forma intermitente de 1.544 1 1563 para decidir la política de Roma) fue que las obras de arte pasaron a ser objeto de censura.  8La ciencia también)

Veronece había pintado un inmenso y suntuoso lienzo para los cultos padres dominicos del Convento de SantiGiovanni e Paolo, en Venecia, en donde era necesario para reemplazar una pintura de la última cena de Tiziano que se había consumido en un incendio.

El trabajo de Veronece era en realidad un tríptico, tres arcos con Cristo en el centro al y escaleras que descienden del lienzo.  A pesar del tema religioso, la pintura es  muy viva y utiliza la perspectiva de forma sorprendente; representa una elaborada representación veneciana, en la que los asistentes aparecen vestidos con finas prendas y rodeados de jarras de vino, abundante comida, negros con vestidos exóticos, perros y monos.  La Inguisición lo reprendió por ello.

Valiente servicio hizo la Iglesia, por aquella época a las artes y las ciencias.  Si acaso, habrá que reconocer la labor de conservación y reproducción de libros que se llevó a cabo en los conventos y monasterios.

Veronece presentó excusas ante el Tribunal Inquisidor y para defenderse de las preguntas llegó a decir:

“…. En efecto está mal, pero repito que me limito a seguir lo que mis superiores en el arte han hecho antes.

¿Qué han hecho ellos?

                                                               Capilla Sixtina. Desnudos

Miguel Ángel pintó en Roma al Señor, a Su Madre, a los Santos y a las Huestes Celestiales desnudos, incluso a la Virgen María.”

Salió del trance con muchos apuros y su arte, como el de tantos otros entonces, quedó amputado al no estarle permitido utilizar su imaginación.  Algunos menos afortunados fueron torturados y finalmente quemados en las Hogueras por herejes.

¡Tiempos de mal recuerdo! Pero, también de grandes artistas en las distintas profesiones como hemos podido comprobar más arriba.

Dejo aquí mi agradecimiento a Peter Watson que, con su obra Ideas, me ha permitido recopilar y tomar datos para que, con otros de imágenes y configuración, podais tener este trabajo.

emilio silvera

¡Sondas Espaciales!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El cohete Atlas-Centauro lanza el Surveyor I el 30 de Mayo  de 1966. La primera sonda espacial fue la soviética Lunik 2 que llegó a la Luna en 1959, después vinieron otras muchas no sólo a la Luna sino hacia otros planetas. Es cierto que la presencia de los seres humanos en la Luna fue un gran acontecimiento y un enorme trinfo, sin embargo, los mayores logros, son debidos a las sondas espaciales que, haciendo un trabajo para el que nosotros no estamos preparados, han conseguido poner a nuestro alcance conocimientos sobre planetas lejanos y lunas misteriosas.

Leer más

¿Será la G variable? ¿Será la vida un Principio de la dinámica del...

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Todos conocemos que una de las fuerzas fundamentales de la Naturaleza es la Gravedad que, se significa mediante el símbolo G, y, en alguna ocasión, se propuso la hipótesis de la posibilidad de una G variable que, finalmente, no llegó a florecer, ya que, las consecuencias hubieran sido inaceptables para la vida en la Tierra.

La Gravedad está presente en todo el Universo

Gamow tuvo varias discusiones con Dirac sobre estas variantes de su hipótesis de G variable. Dirac dio una interesante respuesta a Gamow con respecto a su idea de que la carga del electrón y con ella la constante de estructura fina era un número racional, literalmente le dijo:

“Es difícil formular cualquier teoría firme sobre las etapas primitivas del Universo porque no sabemos si hc/e² es constante o varía proporcionalmente a log (t). Si hc/e² fuera un entero tendría que ser una constante, pero los experimentadores dicen ahora que no es un entero, de modo que muy bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radioactividad también estaría afectada. Cuando empecé a trabajar sobre gravitación esperaba encontrar alguna conexión entre ella y los neutrinos, pero esto ha fracasado.”

Según esto, Dirac no iba a suscribir fácilmente una e variable como la solución al enigma de los grandes números. Su trabajo científico más importante había hecho comprensible la estructura de los átomos y el comportamiento del electrón.

Todo esto se basaba en la hipótesis, compartida por casi todos los demás, de que era una verdadera constante, la misma en todo tiempo y todo lugar en el Universo.

Impresionante demostración de lo que la Gravedad es capaz de hacer con dos galaxias

Si tenemos tendencia a sentirnos intimidados sólo por el tamaño del Universo, está bien recordar que en algunas teorías cosmológicas existe una conexión directa entre la cantidad de material en el Universo y las condiciones en cualquier porción limitada del mismo, de modo que en efecto puede ser necesario que el Universo tenga el enorme tamaño y la enorme complejidad que la Astronomía moderna ha revelado para que la Tierra sea un posible hábitat para seres vivos.

Esta simple observación puede ampliarse para ofrecernos una comprensión profunda de dos sutiles lazos que existen entre aspectos superficialmente diferentes del Universo que vemos a nuestro alrededor y las propiedades que se necesitan si un universo va a contener seres vivos de cualquier tipo.

El Universo: Grande, Viejo, Oscuro y Frío.

Y, Karl Jasper nos decía: “¿Por qué vivimos y desarrollamos nuestra historia en este punto concreto del espacio “infinito”, en un minúsculo grano de polvo en el Universo, un rincón marginal? ¿Por qué precisamente ahora en el tiempo infinito? Estas son cuestiones cuya insolubilidad nos hace conscientes de un enigma.

El hecho fundamental de nuestra existencia es que parecemos estar aislados en el Cosmos. Somos los únicos seres racionales capaces de expresarse en el silencio del Universo (bueno, al menos que sepamos, otra cosa es lo que presentimos).

La-Tierra-Desde-El-Espacio

En la historia del Sistema Solar se ha dado en la Tierra, durante un período de tiempo infinitesimalmente corto, una situación en la que los seres humanos evolucionan y adquieren conocimiento de sí mismo y de existir…

Marte

El planeta Marte no tiene la protección del campo magnético de la Tierra

Dentro del Cosmos ilimitado, en un minúsculo planeta, durante un minúsculo período de tiempo de algunos milenios, algo ha tenido lugar como si este planeta fuera lo que abarca todo, lo auténtico. Este es el lugar, una mota en la inmensidad del Cosmos, en el que el SER ha despertado con el hombre.”

"El

El “mundo” de lo muy pequeño… ¡Es tan extraño!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo. Simplemente con que su carga fuera distinta en una pequeña fracción… ¡El mundo que nos rodea sería muy diferente! Y, ni la vida estaría presente en el Universo.

           EXPERIMENTO CON POSITRONES GENERA COMPORTAMIENTOS ATOMICOS INEXPLICABLES –  UNIVERSITAMEl origen del Universo

            Experimentos con electrones y positrones nos enseñaron cómo funciona el universo

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

       Qué es y cómo te afecta la radiación electromagnética? | Prevencionar Perú  | Prevencionar PerúRadiacióN Electromagnetica

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Imágenes de Forja de metal al rojo vivo, fotos de Forja de metal al rojo  vivo sin royalties | DepositphotosPiezas de metal: ¿Forja o fundición? – Codam S.A.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

   La CONSTANTE de PLANCK: definición sencilla - ¡¡RESUMEN FÁCIL!!La radiación del cuerpo negro. Hipótesis de Planck | FisicoQuímica

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza, pero esto lo veremos más adelante.

   Dualidad onda corpúsculo - Wikipedia, la enciclopedia libre

La primera es la imagen obtenida por los físicos en el laboratorio y, la segunda es la Imagen ilustrativa de la dualidad onda-partícula, con la cual se quiere significar cómo un mismo fenómeno puede tener dos percepciones distintas. Lo cierto es que, el mundo de lo muy pequeño es extraño y no siempre lo podemos comprender.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

 Función de onda cuántica (video) | Khan AcademyLa función de onda, su ecuación y su interpretación. Postulados. – Física  cuántica en la red

                    La función de onda de Schrödinger nos acercó a ese mundo infinitesimal

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿Qué significan realmente estas ecuaciones?, ¿Qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero para los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

El “universo de las partículas nunca ha sido fácil de comprender y su rica diversidad, nos habla de un vasto “mundo” que se rige por su propias reglas que hemos tenido que ir conocimiendo y seguimos tratando de saber, el por qué de esos comportamientos extraños y a veces misteriosos. Así, la pregunta anterior, de ¿qué puede significar todo eso?…

La pudo contestar Niels Bohr, de forma tal que,  con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planckh, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

                                                    Espectro electromagnético: Descubre qué es

Mucho ha sido el camino andado hasta nuestros tratando de conocer los secretos de la naturaleza que, poco a poco, nos van siendo familiares. Sin embargo, es más el camino que nos queda por recorrer. Es mucho lo que no sabemos y, tanto el micro-mundo como en el vasto mundo de muy grande, hay que cosas que aún, no hemos llegado a comprender.

                El detector ATLAS funcionó, y rastrearon las partículas subatómicas

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los “trucos” ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a esta interpretación. Quizá funcione bien, pero ¿Dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿Dónde está en realidad?, y ¿Cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

 http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpg

     Es cierto que, localizar y saber en qué punto exacto están esas pequeñas partículas… no es fácil

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos ahora se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

                                        

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, para el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

“(El teorema de Bell o desigualdades de Bell se aplica en mecánica cuántica para cuantificar matemáticamente las implicaciones planteadas teóricamente en la paradoja de Einstein-Podolsky-Rosen y permitir así su demostración experimental. Debe su nombre al científico norirlandés John S. Bell, que la presentó en 1964.

El teorema de Bell es un metateorema que muestra que las predicciones de la mecánica cuántica (MC) no son intuitivas, y afecta a temas filosóficos fundamentales de la física moderna. Es el legado más famoso del físico John S. Bell. El teorema de Bell es un teorema de imposibilidad, que afirma que:

Ninguna teoría física de variables ocultas locales puede reproducir todas las predicciones de la mecánica cuántica.)”

 

                                  ¿Cómo saber el número que saldrá cuando lanzamos los dados?

¡¡La mecánica cuántica!!, o, la perplejidad de nuestros sentidos ante lo que ese “universo cuántico” nos ofrece que, generalmente, se sale de lo que entendemos por sentido común. Ahí, en el “mundo” de los objetos infinitesimales, suceden cosas que no siempre podemos comprender. Y, como todo tiene una razón, no dejamos de buscarla en cada uno de aquellos sorprendentes sucesos que en ese lugar se producen. Podríamos llegar a la conclusión de que, la razón está en todo y solo la encontramos una vez que llegamos a comprender, mientras tanto, todo nos resulta extraño, irrazonable, extra-mundano y, algunas veces…imposible. Sin embargo, ahí está.

El futuro es incierto | DesmotivacionesFuturos inciertos no son razones para arruinar presentes de oportunidades -  La Mente es Maravillosa

                                     Por mucho que miremos nunca sabremos qué será del mañana

Dos elementos actúan de común acuerdo para garantizar que no podamos descorrer el velo del futuro, de lo que será después (podemos predecir aproximaciones, nunca certezas), el principal de esos elementos es la ignorancia nunca podremos saber el resultado final de éste o aquél suceso sin tener la certeza de las condiciones iniciales. En la mayoría de los sistemas físicos son, en mayor o menor medida dada su complejidad, del tipo caótico es tal que, el resultado de las interacciones entre elementos eso sumamente sensibles a pequeñísimas variaciones de los estados iniciales que, al ser perturbados mínimamente, hacen que el suceso final sea y esté muy alejado del que se creía al comienzo.

emilio silvera

Conociendo la Materia I

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entre 1.906 y 1.908 (hace ahora un siglo) Rutherford realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos.  La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol).  Pero no todos.  En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado.  Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido.

                                               Un paseo por el Cosmos: Experimento de Rutherford.

Rutherford supuso que aquellas “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad, desviaban los proyectiles que acertaban a chocar contra él.  Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica.

Era lógico suponer, pues, que los protones constituían ese núcleo duro.  Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo.).

Premio Nobel de Química - EcuRedRama Estudiantil IEEE PUCP - El 30 de agosto de 1871 nació Ernest Rutherford,  físico y químico que se dedicó al estudio de las partículas radioactivas,  logrando clasificarlas en alfa (α), beta (

En 1.908 se concedió a Rutherfor el premio Nóbel de Química, por su extraordinaria labor de investigación sobre la naturaleza de la materia.  El fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.

Desde entonces se pueden descubrir con términos más concretos los átomos específicos y sus diversos comportamientos.  Por ejemplo, el átomo de hidrógeno posee un solo electrón.  Si se elimina, el protón restante se asocia inmediatamente a alguna molécula vecina; y cuando el núcleo desnudo de hidrógeno no encuentra por este medio un electrón que participe, actúa como un protón -es decir, una partícula subatómica-, lo cual le permite penetrar en la materia y reaccionar con otros núcleos si conserva la suficiente energía.

                                                  átomo De Helio, Helio, átomo imagen png - imagen transparente descarga  gratuita

El helio, que posee dos electrones, no cede uno con tanta facilidad.  Sus dos electrones forman un caparazón hermético, por lo cual el átomo es inerte.  No obstante, si se despoja al helio de ambos electrones, se convierte en una partícula alfa, es decir, una partícula subatómica portadora de dos unidades de carga positiva.

                                                 Átomo De Litio Con Núcleo Detallado Y Sus 3 Electrones Stock de ilustración  - Ilustración de litio, elemento: 172676920

Hay un tercer elemento, el litio, cuyo átomo tiene tres electrones.  Si se despoja de uno o dos, se transforma en ion.  Y si pierde los tres, queda reducida a un núcleo desnudo, con una carga positiva de tres unidades.

Las unidades de una carga positiva en el núcleo atómico deben ser numéricamente idéntica a los electrones que contiene como norma, pues el átomo suele ser un cuerpo neutro y esta igualdad de lo positivo con lo negativo, es el equilibrio.  Y, de hecho, los números atómicos de sus elementos se basan en sus unidades de carga positiva, no en las de carga negativa, porque resulta fácil hacer variar el número de electrones atómicos dentro de la formación iónica, pero, en cambio, se encuentran grandes dificultades si se desea alterar el número de sus protones.

Apenas esbozado este esquema de la construcción atómica, surgieron nuevos enigmas.   El número de unidades con carga positiva en un núcleo no equilibró, en ningún caso, el peso nuclear ni la masa, exceptuando el caso del átomo de hidrógeno.  Para citar un ejemplo, se averiguó que el núcleo de helio tenía una carga positiva dos veces mayor que la del núcleo de hidrógeno; pero, como ya se sabía, su masa era cuatro veces mayor que la de este último.  Y la situación empeoró progresivamente a medida que se descendía por la tabla de elementos, e incluso cuando se alcanzó el uranio, se encontró un núcleo con una masa igual a 238 protones, pero una carga que equivalía sólo a 92.

                                                           Uranio - Protones - Neutrones - Electrones - Configuración electrónica

¿Cómo era posible que un núcleo que contenía cuatro protones (según se suponía del núcleo de helio) tuviera sólo dos unidades de carga positiva? Según la más simple y primera conjetura emitida, la presencia en el núcleo de partículas cargadas negativamente y con peso despreciable, neutralizaba dos unidades de su carga.  Como es natural, se pensó también –en el electrón-.  Se podría componer el rompecabezas si se suponía que el núcleo de helio estaba integrado por cuatro protones y dos electrones neutralizadores, lo cual deja libre una carga positiva neta de dos, y así sucesivamente, hasta llegar al uranio, cuyo núcleo tendría, pues, 238 protones y 146 electrones, con 92 unidades libres de carga positiva.

El hecho de que los núcleos radiactivos emitieran electrones (según se había comprobado ya, por ejemplo, en el caso de las partículas beta) reforzó esta idea general.

Dicha teoría prevaleció durante más de una década, hasta que, por caminos indirectos, llegó una respuesta mejor, como resultado de otras investigaciones.

                                                   Ãtomo De Cloro Imágenes vectoriales de stock - Alamy

Pero entretanto se había presentado algunas objeciones rigurosas contra dicha hipótesis.  Por lo pronto, si el núcleo estaba constituido esencialmente de protones, mientras que los ligeros electrones no aportaban prácticamente ninguna contribución a la masa, ¿Cómo se explicaba que las masas relativas de varios núcleos no estuvieran representadas por números enteros? Según los pesos atómicos conocidos, el núcleo del átomo cloro, por ejemplo, tenía una masa 35’5 veces mayor que la del núcleo del hidrógeno. ¿Acaso significaba esto que contenía 35’5 protones? Ningún científico (ni entonces ni ahora) podía aceptar la existencia de medio protón.

Este singular interrogante encontró una respuesta incluso antes de solventar el problema principal.  Y ello dio lugar a una interesante historia.

ÍSOTOPOS

Ya podemos “viajar” desde el núcleo atómico hasta las galaxias : Blog de  Emilio Silvera V.Isótopo [isotope] (Astronomía)

                            Construcción de bloques uniformes

Allá por 1.816, el físico inglés William Prout había insinuado ya que el átomo de hidrógeno debía de entrar en la constitución de todos los átomos.  Con el tiempo se fueron desvelando los pesos atómicos, y la teoría de Prout quedó arrinconada, pues se comprobó que muchos elementos tenían pesos fraccionarios (para lo cual se tomó el oxígeno, tipificado a 16).  El cloro (según dije antes) tiene un peso atómico aproximado de 35’5, o para ser exactos, de 35’457.  Otros ejemplos son el antimonio, con un peso atómico de 121’75; el bario, con 127’34; el boro, con 10’811, y el cadmio, con 112’40.

                                    Impennata dei prezzi dell'uranio sullo sfondo delle proteste in Kazakistan

Hacia principios de siglo se hizo una serie de observaciones desconcertantes, que condujeron al esclarecimiento.  El inglés William Crookes (el del “tubo Crookes) logró disociar del uranio una sustancia cuya ínfima cantidad resultó ser mucho más radiactiva que el propio uranio.  Apoyándose en su experimento, afirmó que el uranio no tenía radiactividad, y que esta procedía exclusivamente de dicha impureza, que él denomino “uranio X”.  Por otra parte, Henri Becquerel descubrió que el uranio purificado y ligeramente radiactivo adquiría mayor radiactividad con el tiempo, por causas desconocidas.  Si se dejan reposar durante algún tiempo, se podía extraer de él repetidas veces uranio activo X. Para decirlo de otra manera: por su propia radiactividad, el uranio se convertía en el uranio X, más activo aún.

                                           Qué es Torio? » Su Definición y Significado [2022]

Por entonces, Rutherfor, a su vez, separó del torio un “torio X” muy radiactivo, y comprobó también que el torio seguía produciendo más torio X. Hacia aquellas fechas se sabía ya que el más famoso de los elementos radiactivos, el radio, emitía un gas radiactivo, denominado radón.  Por tanto, Rutherford y su ayudante, el químico Frederick Soddy, dedujeron que, durante la emisión de sus partículas, los átomos radiactivos de transformaban en otras variedades de átomos radiactivos.

Varios químicos, que investigaron tales transformaciones, lograron obtener un surtido muy variado de nuevas sustancias, a los que dieron nombres tales como radio A, radio B, mesotorio I, mesotorio II y Actinio C.  Luego los agruparon todos en tres series, de acuerdo con sus historiales atómicos. Una serie de originó del uranio disociado; otra, del torio, y la tercera, del actinio (si bien más tarde se encontró un predecesor del actinio, llamado “protactinio”).

En total se identificaron unos cuarenta miembros de esas series, y cada uno se distinguió por su peculiar esquema de radiación.  Pero los productos finales de las tres series fueron idénticos: en último término, todas las cadenas de sustancias conducían al mismo elemento, estable: PLOMO.

100cia Química - Datos de los elementos▷ Protactinio | De Química

Ahora bien, esas cuarenta sustancias no podían ser, sin excepción, elementos disociados, entre el uranio (92) y el plomo (82) había sólo diez lugares en la tabla periódica, y todos ellos, salvo dos, pertenecían a elementos conocidos.

En realidad, los químicos descubrieron que aunque las sustancias diferían entre sí por su radiactividad, algunas tenían propiedades químicas idénticas.  Por ejemplo, ya en 1.907, los químicos americanos Herbert Newby Mc Coy y W.H. Ross descubrieron que el “radio-torio” (uno entre los varios productos de la desintegración del torio) mostraba el mismo comportamiento químico que el torio, y el “radio D”, el mismo que el del plomo; tanto, que era llamado a veces “radio plomo”.  De todo lo cual se infirió que tales sustancias eran en realidad variedades del mismo elemento: el radio-torio, una forma de torio; el radio-plomo, un miembro de una familia de plomos, y así sucesivamente.

                                                              Plomo - Tabla periódica y Propiedades atómicas

En 1.913, Soddy esclareció esa idea y le dio más amplitud.  Demostró que cuándo un átomo emitía una partícula alfa, se transformaba en un elemento que ocupaba dos lugares más abajo en la lista de elementos, y que cuando emitía una partícula beta, ocupaba, después de su transformación, el lugar inmediatamente superior.  Con arreglo a tal norma, el “radio-torio” descendería en la tabla hasta el lugar del torio, y lo mismo ocurría con las sustancias denominadas “uranio X” y “uranio Y”, es decir, que los tres serían variedades del elemento 90.  Así mismo, el “radio D”, el “radio B” el “torio B” y el “actinio B” compartirían el lugar del plomo como variedades del elemento 82.

Soddy dio el nombre de “isótopos” (del griego iso y topos, “el mismo lugar”) a todos los miembros de una familia de sustancias que ocupaban el mismo lugar en la tabla periódica.  En 1.921 se le concedió el premio Nóbel de Química.

                                                   Protones, neutrones y electrones - Diferenciador

El modelo protón-electrón del núcleo concordó perfectamente con la teoría de Soddy sobre los isótopos. Al retirar una partícula de dicho núcleo, exactamente lo que necesitaba para bajar dos lugares en la tabla periódica.  Por otra parte, cuando el núcleo expulsaba un electrón (partícula beta), quedaba sin neutralizar un protón adicional, y ello incrementaba en una unidad la carga positiva del núcleo, lo cual era como agregar una unidad al número atómico, y, por tanto, el elemento pasaba a ocupar la posición inmediatamente superior en la tabla periódica de elementos.

¿Cómo se explica que cuando el torio se descompone en “radio-torio” después de sufrir no una, sino tres desintegraciones, el producto siga siendo torio?  Pues bien, en este proceso el átomo de torio pierde una partícula alfa, luego una partícula beta y, más tarde, una segunda partícula beta.  Si aceptamos la teoría sobre el bloque constitutivo de los protones, ello significa que el átomo ha perdido cuatro electrones (dos de ellos, contenidos presuntamente en la partícula alfa) y cuatro protones.  (La situación actual difiere bastante de este cuadro, aunque, en cierto modo, esto no afecta al resultado.)

Torio - Tabla periódica y propiedades atómicas

El núcleo de torio constaba inicialmente (según se suponía) de 232 protones y 142 electrones.  Al haber perdido cuatro protones y otros cuatro electrones, quedaba reducido a 228 protones y 138 electrones.  No obstante, conservaba todavía y el número atómico 90, es decir, el mismo antes.

Así, pues, el “radiotorio”, a semejanza del torio, posee 90 electrones planetarios, que giran alrededor del núcleo.  Puesto que las propiedades químicas de átomo están sujetas al número de sus electrones planetarios, el torio y el “radiotorio” tienen el mismo comportamiento químico, sea cual fuere su diferencia en peso atómico (232 y 228, respectivamente).

Los isótopos de un elemento se identifican por su peso atómico, o “número másico”.  Así, el torio corriente se denomina torio 232, y el “radiotorio”, torio 228.  Los isótopos radiactivos del plomo se distinguen también por estas denominaciones:

Plomo 210 – Plomo 214-Plomo 212 y Plomo 211

“radio D” – “radio B” – “Torio B” y “Actinio B”

Se descubrió que la noción de isótopos podía aplicarse indistintamente tanto a los elementos estables como a los radiactivos.  Por ejemplo, se comprobó que las tres series radiactivas anteriormente mencionadas terminaban en tres formas distintas de plomo.  La serie del uranio acababa en plomo 206; la del torio, en el plomo 208, y la del actinio, en el plomo 207.  Cada uno de estos era un isótopo estable y “corriente” del plomo, pero los tres plomos diferían por su peso atómico.

emilio silvera