viernes, 02 de junio del 2023 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los átomos… Las estrellas… ¡Nuestra curiosidad!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

    James and Katherine Maxwell,1869.

James Clerk Maxwell, el hombre sintiéndose poeta de la Naturaleza, inspirado escribió:

 

“En tiempos y lugares totalmente inciertos,

Los átomos dejaron su camino celeste,

Y mediante abrazos fortuitos,

Engendraron todo lo que existe.”

 

Y al menos en lo que conocemos y que esté hecho de materia bariónica (la que emite radiación), así resulta ser. En la materia, de una u otra manera, están presentes las fuerzas fundamentales que rigen en el Universo, como por ejemplo, la radiactividad, la fuerza nuclear débil, la Gravedad y, en los átomos, la fuerza nuclear fuerte.

 

En los albores del siglo XX se hacía cada vez más evidente que alguna clase de energía “atómica” tenía que ser responsable de la potencia del Sol y las otras estrellas del cielo. Ya por 1898, sólo dos años después del descubrimiento de la radiactividad por Becquerel, el geólogo norteamericano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de enormes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden… liberar una parte de su energía”. Pero nadie sabía cuál era ese mecanismo, ni cómo podía operar, hasta que no se llegó a saber mucho más sobre los átomos y las estrellas.

 

 

Semilleros de estrellas: Las Nebulosas. : Blog de Emilio Silvera V.

 

 

El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelazaba con la historia atómica y la estelar.

La clave para comprender la energía estelar fue, como previó Chamberlin, conocer la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios

 

 

 

5) Obtuvo dos Premios Nobel a pesar de muchos #MarieCurie150

 

de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían de ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”). Pero la física atómica aún debía recorrer un largo camino para llegar a comprender su estructura.

De los tres principales constituyentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear”, pues ni siquiera se había demostrado la existencia del núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados respectivamente, por Thomson en 1913 y James Chadwick en 1932.

 

 

 

El experimento de Rutherford

 

Rutherford, Hans Geiger y Ernest Marsden se contaban entre los más expertos entendidos sobre la cartografía atómica. En Manchester, de 1909 a 1911, sondearon el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de las partículas alfa se escapaban a través de las laminillas, pero, para asombro de los experimentadores, algunas rebotaban hacia atrás, Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase contra un pañuelo de papel. Finalmente, en una cena en casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside un un diminuto núcleo masivo. Midiendo las tasas de dispersión hacia atrás obtenida de laminillas compuestas de varios elementos, Rutherford pudo calcular la carga y el diámetro máximo del núcleo atómico del blanco. Esa era, pues, una explicación atómica de los pesos de los elementos. Los elementos pesados son más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

 

 

Best Atomo GIFs | Gfycat

 

 

El ámbito de los electrones fue explorado luego por el físico danés Niels Bohr, quien demostró que los electrones ocupan órbitas, o capas, discretas que rodean el núcleo. (Durante un tiempo Bohr concibió el átomo como un sistema solar en miniatura, pero este análisis pronto demostró ser inadecuado; el átomo no está regido por la mecánica newtoniana sino por la mecánica cuántica.) Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo.

Cuando un electrón cae de una órbita externa a una órbita interior emite un fotón. La longitud de onda de ese fotón está determinada por las órbitas partículas entre las que el electrón efectúa la transición. Y esta es la razón de que un espectro, que registra las longitudes de onda de los fotones, revele los elementos químicos que forman la estrella u otro objeto que estudie el espectroscopista. En palabras de Max Planck, el fundador de la mecánica cuántica, el modelo de Bohr del átomo proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral había desafiado obstinadamente todos los intentos de conocerlo”.

 

 

 

 

Las estrellas son enormes aglomeraciones de gas, principalmente Hidrogeno, cuya temperatura es tan alta debido a la fusión de este elemento, que irradian luz a lo largo de todo el espectro electromagnético. Poseen diferentes temperaturas que varían desde los 2000 grados Celsius hasta los 50000.

De la misma forma que al calentar una pieza de metal cambia de color, al principio rojo, luego amarillo hasta llegar al blanco, el color de una estrella varia según su temperatura superficial. Las estrellas más frías son las rojas, y las mas calientes las azules. Estos colores suelen percibirse a simple vista, como por ejemplo Antares (la estrella principal de Scorpius) que es de color rojo, o Rigel (en Orión) de color azul. En astronomía se utiliza la escala Kelvin para indicar temperaturas, donde el cero absoluto es -273 grados Celsius.

Para definir el color de una estrella, Johnson y Morgan (1950), crearon el sistema UBV (del inglés Ultravioleta, Azul, Visible). Las mediciones se realizaban mediante un fotómetro fotoeléctrico para medir la intensidad de la radiación el longitudes de onda específicas:

 

  • Ultravioleta: 3000 Å a 4000 Å
  • Azul: 3600 Å a 5500 Å
  • Visual: 4800 Å a 6800 Å

 

Con estos datos se pudo crear una serie de escalas: (B-V), (U-B) y (B-V). Cuanto mayor el número, más roja es la estrella. Para ver ejemplos de índices de color de diferentes estrellas, visite la sección de estrellas variables.

La tabla a continuación muestra el espectro electromagnético, con sus longitudes de onda.

 

Rolscience - Divulgación científica: ¿Qué es el electromagnetismo?Qué es el electromagnetismo - EspacioCiencia.com

 

Denominación Longitud de Onda
Rayos Gamma 0.00000007 a 0.001 Å
Rayos X 0.001 a 100 Å
Luz Ultravioleta 100 a 3900 Å
Luz Visible 3900 a 7500 Å
Luz Infrarroja (fotográfica) 7500 a 15000 Å
Infrarrojo Cercano 15000 a 200000 Å
Infrarrojo Lejano 0.002 a 0.1 cm.
Microondas (ondas de radar) 0.1 a 250 cm.
Frecuencias elevadas () 2.5 a 15 m.
Onda corta de radio 15 a 180 m.
Banda de control aeronáutico 750 a 1500 m.
Onda larga de radio 1500 m en adelante

Las escalas son las siguientes:

1 Å (Ångstron) = 1×10-8 cm (centímetros) = 1×10-10 m (metros)

El ojo humano solo es capaz de percibir la pequeña porción que corresponde a la luz visible, situada entre los 3900 Å y 7500 Å, donde la menor se encuentra cerca del violeta y la mayor del rojo. El Sol emite en todas las longitudes de onda, pero solo llegan a la superficie una pequeña porción de estas, las demás son frenadas por la atmósfera: el ozono absorbe las mas altas longitudes de onda hasta el ultravioleta, y el vapor de agua absorbe gran parte de las infrarrojas.

Observatorio del Harvard College - Wikipedia, la enciclopedia libre

En el Observatorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban elante de “calculadoras”, mujeres , la mayoría, empleadas como miembros del personal de una facultad que les impedía asistir a clases u obtener un título.

Henrietta Swan Leavitt - Wikipedia, la enciclopedia libreQuién fue Henrietta Swan Leavitt, cuyo trabajo permitió que Albert Einstein  y Edwin Hubble hicieran descubrimientos que cambiarían el mundo - BBC News  Mundo

Una de esas mujeres, Henrietta Leavitt (arriba en la primera imagen), fue la investigadora pionera de las estrellas variables cefeidas que tan útiles serían a Shapley y Hubble, ella fue una de esas “calculadoras” de Harvard que, se encargaban de examinar las placas y registrar los datos en una pulcra escritura victoriana para su compilación en volúmenes como el Henry Draper Catalog, así llamado en honor al primer astrofotógrafo y físico que tomó las primeras fotografías del espectro de una estrella. Como presos que marcan el paso de los días en los muros de su celda, señalaban su progreso en totales de estrellas catalogadas. Antonia Maury, sobrina de Draper, contaba que había clasificado los espectros de más de quinientas mil estrellas. Su labor era auténticamente baconiana, del tipo que Newton y Darwin instaban a hacer pero raramente hicieron ellos, y las mujeres se enorgullecían de ella. Como afirmaba la “calculadora” de Harvard Annie Jump Cannon: “Cada dato es un facto valioso en la imponente totalidad”.

Biografía de Annie Jump Cannon (Su vida, historia, bio resumida)Annie Jump Cannon (1863-1941) | HipnosNews

Precisamente fue Cannon quien,  en 1915, empezó a discernir la forma de esa totalidad, cuando descubrió que la mayoría de las estrellas pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación (ahora generalizado en la astronomía estelar), ordena los espectros por color, desde las estrellas O blanco-azuladas, pasando por las estrellas G amarillas como el Sol, hasta las estrellas rojas M. Era un rasgo de simplicidad debajo de la asombrosa variedad de las estrellas.

Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacto danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, Las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiasmado cuando recorre con el telescopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta el amarillo apagado.

                                                                     Las Pléyades

                                                Las Híades

Puesto que puede suponerse que todas las estrellas de un cúmulo están a la misma distancia de la Tierra, toda diferencia observada en sus magnitudes aparentes pueden atribuirse, no a una diferencia en las distancias, sino en las magnitudes absolutas. Hertzsprung aprovechó este hecho para utilizar los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell. Claro, como cabía esperar, la aplicabilidad del método pronto se amplió también a estrellas no pertenecientes a cúmulos.

Henry Norris Russell

Henry Norris Russell

(1877/10/25 – 1957/02/18) Astrofísico estadounidense

 Henry Norris Russell, un astrofísico de Princeton con un enciclopédico dominio de su campo, pronto se puso a trabajar justamente en eso. Sin conocer siquiera el trabajo de Hertzsprung, Russell diagramó las magnitudes absolutas en función de los colores, y halló que la mayoría están a lo largo de una estrecha zona inclinada: el “tronco del árbol” de estrellas. El árbol ha estado creciendo desde entonces y hoy, está firmemente grabado en la conciencia de todos los astrónomos estelares del mundo. Su tronco es la “serie principal”, una suave curva en forma de S a lo largo de la cual se sitúan entre el 80 y el 90 por 100 de todas las estrellas visibles. El Sol, una típica estrella amarilla, está en la serie principal a poco menos de la mitad del tronco hacia arriba. Una rama más fina sale del tronco y se extiende hacia arriba y a la derecha, donde florece en un ramillete de estrellas más brillantes y más rojas: las gigantes rojas. Debajo y a la izquierda hay una cantidad de mantillo de pálidas estrellas entre azules y blancas: las enanas.

                 El Diagrama de  Hertzsprung-Russell resumido

Este diagrama proporcionó a los astrónomos un registro congelado de la evolución, el equivalente astrofísico del registro fósil que los geólogos estudian en los estratos rocosos. Presumiblemente, las estrellas evolucionan de algún modo, pasan la mayor parte de su tiempo en la serie principal (la mayoría de las estrellas en la actualidad, en el brevísimo tiempo que tenemos para observar, se encuentran allí), pero empiezan y terminan su vida en alguna otra parte, entre las ramas o en el mantillo. Por supuesto, no podemos esperar para ver que esto sucede, pues el tiempo de vida, aun de estrellas de vida corta, se mide en millones de años. Hallar las respuestas exigirá conocer toda la física del funcionamiento estelar.

Coulomb Barrier for Nuclear FusionTunneling, Barrier Penetration

El progreso de la Física, mientras tanto, estaba bloqueado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como la barrera de Coulomb, y por un tiempo frustró los esfuerzos de los físicos teóricos para comprender cómo la fusión nuclear podía producir energía en las estrellas…Pero eso, amigos, es otra historia que os contaré en otro momento.

emilio silvera

Creando modelos científicos para saber

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 Isaac Newton VS Gottfried Leibniz - YouTubeNewton : Blog de Emilio Silvera V.

Federico el Grande decía que Leibniz “…era una academia por sí mismo”. La disputa con Newton por llevarse el mérito de la invención del cálculo infinitesimal. Newton se llevó la gloria (parece que haciendo trampas). También al astrónomo Flamsteed le jugo una mala pasada. Además el gran público desconoce el interés de Newton por la Alquimia con la que jugaba a escondidas según revelaron viejos documentos hallados en un viejo baúl encontrado en su casa y subastado después de su muerte.

Redes de neuronas, misterio para los estudiosos del cerebro - Ciencia UNAM
¿Sabemos si son ciertas, las cosas que pensamos que sabemos? ¡El ADN, las Neuronas, las Estrellas! Todo en el Universo sigue un patrón bien definido, desde el comportamiento de una partícula elemental hasta la complejidad del cerebro. La inmensa fuente química de los elementos que, mezclados en la debida proporción y bajo ciertas condiciones… ¡Hacen surgir la Vida!

▷ Niveles de Organización de la MATERIA VIVA - EspacioCiencia.comNiveles de organización de la materia

¿A qué se refieren los científicos cuando dicen que ellos “conocen” lo que hay dentro del un átomo, por ejemplo, o lo que pasó en los tres primeros minutos de “vida” del Universo? En realidad, se refieren a que tienen lo que ellos denominan un modelo del átomo, o del universo temprano, o lo que sea en que ellos estén interesados, y que este modelo encaja con el resultado de sus experimentos, o sus observaciones del mundo. Este tipo de modelo científico no es una representación física de la cosa real, del mismo modo que un modelo de avión representa un avión de tamaño natural, sino que es una imagen mental que se describe mediante un grupo de ecuaciones matemáticas lo que se piensa que “aquello” es, y, nos dice como se comporta la Naturaleza

Los átomos y las moléculas que componen el aire que respiramos, por ejemplo, se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica (una diminuta bola de billar), con todas las pequeñas esferas rebotando unas contra las otras y contra las paredes del recipiente.

Ésa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace un modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, estas son esencialmente las leyes del movimiento descubiertas por Isaac Newton hacen más de 300 años.

Quizá nuestro cerebro sea un ordenador cuántico". Entrevistas a la física  cuántica Sonia Fernández-Vidal - El Blog Alternativo

Sí, en aquel año 2012 muchos esperaban el final predicho por los Mayas. Sin embargo, como dije en aquellos días en estas mismas páginas, todo siguió igual y nada de aquellas predicciones sucedieron. En una de mis trabajos quedó bien explicado el significado de la predicción.

Átomo - Wikipedia, la enciclopedia libreEl atomo - Historia del ÁtomoEl núcleo atómico : Blog de Emilio Silvera V.Partículas subatómicas: DEFINICIÓN y CARACTERÍSTICAS

                                                  Mirando dentro del átomo

Utilizando estas leyes matemáticas es posible predecir, por ejemplo, qué le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, el resultado que se obtiene encaja con la predicción del Modelo (en este caso la presión se doblará), lo que lo convierte en un buen modelo.

Naturalmente, no deberíamos sorprendernos de que el modelo estándar de un gas que lo describe en términos de pequeñas bolas que rebotan unas contra otras de acuerdo con las leyes de Newton haga esta predicción en concreto correcta, porque los experimentos fueron hechos primero, y el modelo fue diseñado o construido, para hacer encajar los resultados de esos experimentos.

                                  Tenemos modelos para todo

El siguiente paso en el proceso científico es utilizar el modelo que se ha desarrollado desde las medidas efectuadas en un grupo de experimentos para hacer predicciones (predicciones precisas, matemáticas) sobre lo que le pasará al mismo sistema cuando se hacen experimentos diferentes. Si el modelo hacer predicciones “correctas” bajo nuevas circunstancias, demuestra que es un buen modelo; si fracasa al hacer las predicciones correctas, no se puede descartas completamente, porque todavía nos dice algo útil sobre los primeros experimentos; pero en el mejor de los casos tiene una aplicabilidad limitada.

Evolución de los modelos cosmológicos - ppt descargarModelos cosmológicos

De hecho, todos los modelos científicos tienen aplicabilidad limitada. Ninguno de ellos es “la verdad”. El modelo de un átomo como una pequeña esfera perfectamente elástica funciona bien en cálculos de cambio de presión de un gas bajo circunstancias diferentes, pero si queremos describir el modo en que el átomo emite o absorbe luz, necesitamos un modelo de átomo que al menos tenga dos componentes, un núcleo central diminuto (que se puede considerar él mismo como una pequeña esfera perfectamente elástica para determinados fines) rodeado por una nube de electrones.

Creamos un Modelo en nuestra Mente y tratamos de comprobarlo con una y mil pruebas, y cuando los resultados coinciden, lo damos por bueno. Sin embargo, no siempre el Modelo es ajusta fielmente a la realidad de la Naturaleza, del Universo, toda vez que, nos quedan cuestiones por comprobar a las que no podemos tener acceso por falta de conocimientos intelectuales, por no tener la tecnología adecuada… Pero vamos avanzando.

Método Actitud Leyes y teorías Modelos científicos - ppt video online  descargarLos modelos en la ciencia

Los modelos científicos son representaciones de la realidad, no la realidad en sí misma, y no importa lo bien que funcionen o lo precisas que sean sus predicciones bajo circunstancias apropiadas, siempre se considerarán aproximaciones y ayudas a la imaginación, más que la verdad absoluta. Cuando un científico afirma, por ejemplo, que el núcleo de un átomo está compuesto por partículas denominadas protones y neutrones (nucleones) lo que en realidad debería decir es que el núcleo de un átomo se comporta, bajo determinadas circunstancias, como si estuviera formado de protones y neutrones. Los mejores científicos toman el “como si” como se lee, pero entienden que sus modelos son, efectivamente, sólo modelos; científicos menores a menudo olvidan esta diferencia crucial.

Los científicos menos y muchos no-científicos, tienen otra idea equivocada. A menudo piensan que el papel de los científicos hoy en día es llevar a cabo experimentos que probarán la exactitud de un modelo con una precisión cada vez mayor -hacia posiciones con más y más decimales- ¡En absoluto! La razón para llevar a cabo experimentos que demuestren predicciones previas no comprobadas es descubrir (como decía Feynman) donde fallan los modelos.

Cuál puede ser el final del universo? | astrodidácticaFriedmann EquationDensidad Crítica : Blog de Emilio Silvera V.Sobre el final del Universo y otros temas : Blog de Emilio Silvera V.

Aquí nos dicen que Omega (Ω), es decir, de la materia contenida en el Universo, depende como éste pueda estar conformado: Plano, Abierto o Cerrado y, según sea el universo en el que vivimos, así será su final. Parece que, de todas las maneras que ha sido observado, la Densidad Crítica del Universo, es decir, la cantidad de materia que contiene, es la que hace de nuestro universo un universo plano que se expandirá para siempre, y, la “muerte” térmica podría ser el fin. La expansión hace que las galaxias se alejen las unas de las otras y el universo sea cada vez más frío, y, cuando alcance el Cero Absoluto (-273,144 ºC)… ¡Ni los átomos se moverán!

 

Encontrar defectos en sus modelos es la esperanza abrigada por los mejores científicos, porque esos defectos -cosas que los modelos no pueden predecir o explicar en detalle- destacarán los lugares donde necesitamos una nueva comprensión, con modelos mejores, para progresar…

El arquetipo ejemplo de esto es la Gravedad. La ley de la gravedad de Newton se consideró la pieza clave de la física durante más de doscientos años, desde la década de 1680 hasta comienzos del siglo XX. Pero había unas pocas, aparentemente insignificantes, cosas que el modelo newtoniano no podía explicar (o predecir), referente a la órbita del planeta Mercurio y al modo como la luz se curva cuando pasa cerca del Sol.

Diagrama De La Infografía De La Ley Universal De La Gravedad De Newton Con  Fórmula Y Ejemplo De La Atracción De La Tierra Y La Luna Entre Sí Según Sus  Masas ParaQué es la gravedad?

                                                                         La gravedad desde el punto de vista de la Relatividad General

El modelo de la Gravedad de Einstein, basado en su teoría general de la relatividad, explica lo mismo que el modelo de Newton, pero también explica los detalles sutiles de órbitas planetarias y curvatura de la luz. En ese sentido, es un modelo mejor y más completo que el anterior, y hace predicciones correctas (en particular, sobre el Universo en general) que el viejo modelo no hace. Pero el modelo de Newton todavía es todo lo que se necesita si se está calculando el vuelo de una sonda espacial desde la Tierra hasta la Luna. Se podrían hacer los mismos cálculos empleando la relatividad general, pero sería más tedioso por su complejidad y daría la misma respuesta, así que, en muchos casos donde no existe la complejidad, se utiliza el modelo más sencillo de Newton.

En realidad, Einstein con su Relatividad General, nos trajo una nueva Cosmología.

Modelos y métodos científicos - fisioEducaciónLos modelosLos modelos en la ciencia

Así que, amigos, los modelos (todos los modelos) han sido y serán buenos en su momento y, también, como ocurrió con el de la Gravedad, vendrán otros nuevos que los superarán y servirán mejor y de manera más profunda en el conocimiento de las cosas que traten, llegando así un poco más lejos en nuestros conocimientos sobre la Naturaleza, ya que, a medida que observamos el Universo, nuestras mentes se abren al saber del mundo que nos rodea y cada vez, podemos comprender mejor lo que realmente ocurre en él.

COSMOS: Índice: modelos y teorías del UniversoAsí es el modelo más preciso del universo que existe

Nuestras percepciones del Universo son, la mayoría de las veces, equivocadas, y nos formamos una idea de lo que allí está o de lo que allí ocurre que, en la realidad, es otra muy diferente. Y, eso, es así debido a que nuestros conocimientos son muy limitados sobre las cosas, y, está aconsejado por ideas preconcebidas que, muchas veces, entorpece la comprensión de esa realidad que incansables buscamos.

Cuando se consiguen describir de manera exitosa las cosas que ocurren en la Naturaleza, como es el caso de la Relatividad, tanto especial como General, a los físicos, les encanta definirlos como “modelo estándar”. El modelo de los gases de las bolas de billar (que también es conocido como teoría cinética, ya que trata de partículas en movimiento) es un modelo estándar. Pero cuando los físicos hablan de “el modelo estándar”, se están refiriendo a uno de los grandes triunfos de la ciencia del siglo XX.

Gravedad y Mecánica cuántica son los dos modelos prevalentes hoy en la física del mundo, de la Naturaleza, del Universo. Ahí están las explicaciones que de la materia, del espacio tiempo y de las fuerzas universales y las constantes podemos dar y, estamos tratando de abrir camino a nuevas teorías y modelos que nos lleven más allá pero, necesitamos saber matemáticas que no se inventaron aún y también, disponer de energías imposibles, ya que, la energía de Planck de 1019 GeV necesaria para llegar hasta las cuerdas… ¡es sólo un suelo del futuro lejano!

MODELO MECANO – CUÁNTICO - ppt descargarModelo Mecanocuántico - YouTube

Teoría de la relatividad: relatividad especial – The walrus was PaulTeoría de la relatividad - Wikipedia, la enciclopedia libre

Así ocurre con los modelos que describen la Mecánica Cuántica y la Relatividad, son Modelos Hitos en la Historia de la Ciencia de la Humanidad. Ambos modelos han sido explicado aquí, en mis comentarios muchas veces y, además, no es este el motivo del presente trabajo que, se circunscribe a explicar lo que es un modelo científico y como funciona, al mismo tiempo de cómo se valora su validez que, en realidad, nunca será definitiva, que es lo que ocurre con nuestros conocimientos.

emilio silvera