viernes, 29 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




COVID19

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Así funciona el coronavirus Covid-19: ¿cuánto dura? ¿Se contagia a ...El fallecimiento de un hombre de 62 años eleva a 27 el censo ...

 

Sobre el Covid19, nuestro contertulio  y amigo José German Vidal Palencia, nos envia un trabajo que quiere dar a conocer y, con mucho gusto, aquí os lo dejo para que sus ideas se transmitan y, si puede servir para ayudar, mucho mejor.

Sobre Covid-19

Carta Abierta

Ciudad de México

A 24 de mayo de 2020

Mi nombre es José Germán Vidal Palencia y soy investigador independiente desde hace años, a través de este medio estoy solicitando que cualquier país a través de su administración correspondiente, se interese en promover a nivel mundial un descubrimiento mío referido a la aplicación de una Fisioterapia Respiratoria Preventiva, que puede erradicar y/o controlar eficientemente la enfermedad COVID-19 tanto a nivel individual como a nivel mundial.

Mi edad es de 78 años. Conocida la fisioterapia arriba indicada desde hace varios años, la cual fue diseñada sólo para mí aplicación personal, ahora que se presenta esta pandemia generada por el virus Sars CoV2, tuve la oportunidad de aplicarla nuevamente en mi persona cuando se me presentó un cuadro de dicha enfermedad el día 17 de abril de este año. Aplicado el sistema correspondiente, quedó absolutamente controlada en dos horas.

Me aboqué al estudio vírico correspondiente, pretendiendo realizar un artículo que pudiera explicar a la población como aplicar dicha fisioterapia respiratoria para su beneficio. Tras varias semanas de investigación inicié la redacción de un informe sobre el tema. Como colofón a dicha investigación, decidí infectarme deliberadamente, haciendo caso omiso de los protocolos sanitarios establecidos por el gobierno, al visitar sin protección varios lugares comerciales, durante varios días.

Resulta que el día 18 de mayo del presente a las 5:30 de la mañana, se presentaron cuadros claros de la Covid-19 en mi persona. Diarrea, escurrimiento nasal y abundantes flemas en bronquios que iban drásticamente en aumento.

Como emergencia sanitaria aplicada a mi persona, utilice el procedimiento de Fisioterapia Respiratoria Preventiva 5 veces el día 18 de mayo del presente 2020. Dos horas de sesión con dos horas de descanso cada vez. A las 10 de la noche concluí el tratamiento. Se hizo así, ya que terminada cada sesión al cabo de dos horas se iniciaban nuevas crisis broncopulmonares. A partir de la primera sesión obtenía una mejoría cada vez, hasta llegar a la quinta sesión. En esta sesión final el sistema respiratorio se sentía bastante limpio y ausente de flemas. En los siguientes 6 días se obtuvo una recuperación de mi salud, se infiere esto, dado que se experimentó en todos ellos, no síntomas de la enfermedad, sino sólo debilidad extrema que fue disminuyendo paulatinamente hasta la recuperación total.

Por la premura mundial de encontrar una solución eficaz para detener rápidamente la pandemia correspondiente, y ante la esperanza clara de que esta Fisioterapia Respiratoria Preventiva pudiera detener su avance, propongo mi servicio a un solo país que esté interesado en proseguir dicha investigación, para lo cual ofreceré mis servicios sin costo alguno, solo los que sean necesarios durante mi estancia en el lugar del país interesado. El único requisito será que previamente se me extienda una constancia de que a mi nombre se estará aplicando el procedimiento fisiológico que llevará el título de FISIOTERAPIA RESPIRATORIA PREVENTIVA.

Las propuestas las recibo en mis correos:

unigerman42@gmail.com

unigerman@hotmail.com

FISIOTERAPIA RESPIRATORIA PREVENTIVA

Técnica de fisioterapia respiratoria diseñada para la prevención y tratamiento del Covid-19

16 de mayo de 2020

Ciudad de México

Derechos Reservados

José Germán Vidal Palencia

Introducción a la Cultura de la higiene respiratoria

Por milenios el ser humano se ha encargado de higienizar su cuerpo de muchas maneras imaginables, para ello ha implementado medios para mantenerse razonablemente pulcro la mayor parte del día, los conocidos cuartos de baño son ejemplo de ello. Sin embargo, estos no son suficientes para erradicar enfermedades respiratorias provocadas por varios tipos de virus que existen en el ambiente. Algunos de estos se han hecho muy eficientes para causar más daños que en épocas pasadas, cuando sólo provocaban resfríos o cuadros gripales, los cuales normalmente desaparecían al cabo de algunos días o semanas.

La mayoría de las enfermedades respiratorias han podido ser controladas en tiempo y forma, pero, hoy, se nos ha presentado el virus Sars CoV-2 causante de la enfermedad Covid-19. Este virus ha resultado ser muy eficiente en su propagación, de tal forma que está propiciando que ahora mismo miles de personas mueran en la mayoría de los países. La solución actual más viable para este problema mundial, es promover una cultura de la higiene total. En este caso ahora debe agregarse a la cultura de la higiene tradicional, la aplicación generalizada de una higiene respiratoria. ¿En qué consiste la higiene respiratoria? ¿Cuál puede ser su eficacia?

Una higiene respiratoria consiste en dar un tratamiento de limpieza a las mucosas del sistema respiratorio, logrado ello con la misma eficacia que un correcto lavado de manos, un cotidiano baño corporal, o inclusive un buen lavado de dientes. Nunca se ha hecho a nivel general, pero aquí proponemos una manera de hacerlo.

Antes de ver su estudio y aplicación, será necesario que el lector conozca un poco sobre los estudios que se han hecho sobre los virus en general, así como el sistema inmunitario humano. Hay mucho material de estudio sobre el particular, pero sugerimos se enteren de una manera práctica a través de los siguientes enlaces a internet. Ellos son de invaluable valor didáctico. Agradecemos a los autores estos magníficos trabajos:

Organización acelular: Virus, viroides, priones from Departamento de Ciencias Naturales.- IES Alpajés

https://www.youtube.com/watch?v=BtNgoy9VOY&feature=emb_rel_end

https://www.youtube.com/watch?v=PzunOgYHeyg&feature=emb_rel_en d

(Trabajos del autor: https://www.jgermanvidalp.com/)

Todo lo grande está hecho de cosas pequeñas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Tiempo de Planck
Resultado de imagen de Tiempo de Planck
Beautiful places of Barcelona and Catalonia: LA GUERRA DE LOS ...
La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza para entender esos números tan endiabladamente pequeños.

El tiempo de Planck o cronón (término acuñado en 1926 por Robert Lévi) es una unidad de tiempo, considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planck representa el instante de tiempo más pequeño en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

 

 


t_P =
\sqrt{\frac{\hbar G}{c^5}}
\; \approx \quad
5,39106(32) \cdot 10^{-44}
segundos

donde:

\hbar es la constante de Planck reducida (conocida también como la constante de Dirac). 
G es la constante de Gravitación Universal;

es la velocidad de la luz en el vacío.

Los números entre paréntesis muestran la desviación estándar.

 

                 bito hablamos de las cosas muy pequeñas, las que no se ven

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck.  Está dado por , donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2л = 1,054589 x 10-34 Julios segundo), c, es la velocidad de la luz (299.792.458 m/s).

El valor del tiempo del Planck es del orden de 10-44 segundos.  En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo. Todo, desde Einstein, es relativo.  Depende de la pregunta que se formule y de quién nos de la respuesta.

                   ¿El Tiempo? Muchos Filósofos lo quisieron explicar pero… ¡No pudieron!

Si preguntamos ¿Qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio 133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Baricéntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc. etc.  Cada una de estas versiones del tiempo, tiene una respuesta diferente, ya que, no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo Universal.  Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.

                                    … Y que el mismo tiempo suele borrar

En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas, los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es solo uno; ese que comenzó cuando nació el Universo y que finalizará cuando este llegue a su final.

Lo cierto es que, para las estrellas supermasivas, cuando llegan al final de su ciclo y deja de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella.  Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella), y, la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa.  Queda comprimida hasta tal nivel que llega un momento que desaparece,  para convertirse en un Agujero Negro, una singularidad, donde dejan de existir el “tiempo” y el espacio.  A su alrededor nace un horizonte de sucesos que, si se traspasa, se es engullido por la enorme gravedad del Agujero Negro.

       En la singularidad no se distorsiona, se para

El tiempo, de ésta manera, deja de existir en estas regiones del Universo que conocemos como singularidad.  El mismo Big Bang -dicen- surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Singularidad espacio temporal * ExperienSenseQué pasaría si trajésemos un trozo de estrella de neutrones a la ...

Enana blanca - Wikipedia, la enciclopedia libre

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y Agujeros Negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico.  Han sido detectados vacíos con menos de una décima de la densidad promedio del Universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala.  Estas regiones son a menudo esféricas.  El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea.  La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble.  Su densidad es de 1017 kg/m3, los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del Universo.

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del Universo.  Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

“Magia es cualquier tecnología suficientemente avanzada”

Arthur C. Clarke

 

Pero también es magia el hecho de que, en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver, estructuras complejas matemáticas que hacen posible que la Humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: La teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Gotinga en Alemania.  Aquello fue como abrir de golpe, todas las ventanas cerradas durante 2.000 años, de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante.  Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Su ensayo de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios.  La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas.  La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias.

Quién fue Riemann? : Blog de Emilio Silvera V.Desde el Tensor de Riemann a la Topología : Blog de Emilio Silvera V.

Curvatura del espacio-tiempo - Wikipedia, la enciclopedia libreProfe Alex - Clases de Matemáticas y Fisica en Cúcuta | Facebook

El Tensor métrico de Riemann y sus Espacios Curvos, le dieron otro sentido a la geometría del Universo. Einstein lo podría certificar, ya que, con el Tensor métrico de Riemann pudo(al fin) publigar la Teoría General de la Relatividad.

En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la Literatura en toda Europa.  Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del Universo y su evolución mediante su asombrosa teoría de la relatividad general Ciento treinta años después de su conferencia, los físicos utilizarían la geometría decadimensional para intentar unir todas las leyes del Universo.  El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico.  Era huraño, solitario y sufría crisis nerviosas.  De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.

Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde predicador  para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte.  La madre de Riemann también murió antes de que sus hijos hubieran crecido.

A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público.  Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.

La Geometría de los espacios curvos de Riemann que dejó atrás a Euclides con sus lineas y puntos

Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia.  En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas.  Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura.  Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado.  El libro era la Teoría de números de Adrien-Marie Legendre, una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números.  Riemann devoró el libro en seis días.

Legendre: Sobre la teoría de los números

Cuando el director le preguntó: “¿Hasta dónde has leído?”, el joven Riemann respondió: “Este es un libro maravilloso. Ya me lo sé todo”.

Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.

Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que, a los 19 años pudiera acudir a la Universidad de Gotinga, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos.   Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.

                                                                             Hannover, Alemania

Los estudios de Riemann no fueron un camino de rosas precisamente.  Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.

En aquel ambiente el problema que captó el interés de Riemann, fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).

Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo.  En ninguna parte vería Riemann las figuras geométricas planas idealizadas por Euclides.  Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita.  Riemann, ante aquella realidad se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos., descubrió el, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.

1 Algunas figuras propias de la geometría de Euclides. El punto no ...

Euclides nos habló de la obviedad de que un punto no tiene dimensión.  Una línea tiene una dimensión: longitud.  Un plano tiene dos dimensiones: longitud y anchura.  Un sólido tiene tres dimensiones: longitud, anchura y altura.   Y allí se detiene.  Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible.  En Sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas.”  Además, en el año 150 d. C. el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.

Qué es la cuarta dimensión? - ARISTóTELES al iNFINITO - YouTube

En realidad, lo único que Ptolomeo demostraba era que, era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen).  Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.

La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”.  Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.

Riemann desarrolló su teoría de dimensiones más altas.

Parte real (rojo) y parte imaginaria (azul) de la línea crítica Re(s) = 1/2 de la función zeta de Riemann. Pueden verse los primeros ceros no triviales en Im(s) = ±14,135, ±21,022 y ±25,011. La hipótesis de Riemann, por su relación con la distribución de los números primos en el conjunto de los naturales, es uno de los problemas abiertos más importantes en la matemática contemporánea.

Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta.  Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas.  Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante los milenios.

Riemann creó el tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresar a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2.  El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él.  Claro que, es una herramienta para utilizar en un mundo tridimensional.)

Formatos do tensor de Einstein. (1) depende do tensor de Ricci ...

Formatos del tensor de Einstein

El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas.  Precisamente, el tensor de Riemann, permitió a Einstein formular su teoría de la gravedad y, posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de supergravedad, supersimetría y, finalmente las supercuerdas.

Para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854, que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema.  Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio.  Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de a relatividad general.  Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E=mc2.  La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.

emilio silvera

Guardar