lunes, 09 de diciembre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los mistertios del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Einstein tuvo pronto que modificar ligeramente sus ecuaciones de universo, pues estas no eran compatibles con la ley de la conservación de la energía. Esto constriñó a Einstein a modificar sus ecuaciones de Universo, que adquirieron su forma definitiva tras la publicación en 1915 del artículo Aplicación de la teoría de la relatividad general al campo gravitatorio:

Archivo:Star collapse to black hole.png

En la imagen se reproducen las ondas gravitatorias emitidas por una estrella durante su colapso. En las ecuaciones de Einstein se descubre el misterioso proceso que ocurre en las estrellas al final de sus vidas y de como se convierten en agujeros negros.

¿Qué sería de la cosmología actual sin la ecuación de Einstein de la Relatividad General? Es la ecuación de Einstein donde el tensor energía-momento mide el contenido de materia-energía, mientras que es el Tensor de curvatura de Riemann contraído nos dice la cantidad de curvatura presente en el hiperespacio. La cosmología estaría 100 años atrás sin esta ecuación.

Los físicos teóricos realizan un trabajo impagable. Con imaginación desbordante efectúan continuamente especulaciones matemáticas referidas a las ideas que bullen en sus mentes. Claro que, de tener éxito, no sería la primera vez que descubrimientos teóricos en la ciencia física terminan dando en el clavo y dejando al descubierto de manera espectacular lo que realmente ocurre en la naturaleza. Los ejemplos son muchos:

Resultado de imagen de Los físicos teóricos son seres superiores porque viven en las nubesResultado de imagen de Los físicos teóricos son seres superiores porque viven en las nubes

Alguna vez se dijo que, los físicos teóricos son seres superiores porque viven en las nubes. Ahí tenemos a Feynmann inmerso en su mundo de ecuaciones que quieren profundizar en el “universo” cuántico de las partículas subatómicas que se encuentran en las entrañas de la materia.

  • Planck, con su cuanto de acción, h, que trajo la mecánica cuántica.
  • Einstein, con sus dos versiones de la relatividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares. Además, nos dijo la manera de conseguir que el tiempo transcurriera más lentamente y nos avisó de la existencia de agujeros negros.
  • Heisemberg nos abrió los ojos hacia el hecho de que nunca podríamos saberlo todo al mismo tiempo, su Principio de Incertidumbre dejó al descubierto nuestras limitaciones.
  • Schrödinger, con su función de onda probabilística, que por medio de una ecuación matemática nos ayuda a encontrar la situación de una partícula.
  • P. Dirac, el físico teórico y matemático que predijo la existencia de la antimateria. Poco después de publicar su idea, descubrieron el positrón.
Resultado de imagen de Incertidumbre de HeisenbergResultado de imagen de Función de onda de SchrödingerResultado de imagen de Principio de exclusión de Pauli"

Así podríamos continuar elaborando una lista interminable de logros científicos que comenzaron con simples especulaciones deducidos de la observación sumada a la imaginación. Son muchas las cuestiones en las que, los físicos teóricos nos llevan a viajes alucinantes.

Esto es precisión en la medida: El electrón es una esfera perfecta, más o menos una parte en un billón. El resultado procede del último experimento en una larga lista para estudiar la forma de la partícula fundamental que porta la carga eléctrica.

Otros postulan que un electrón no es un “punto” sin estructura interna y de dimensión cero, sino una cuerda minúscula que vibra en un espacio-tiempo de más de cuatro dimensiones. Un punto no puede hacer nada más que moverse en un espacio tridimensional. De acuerdo con esta teoría a nivel “microscópico” se percibiría que el electrón no es en realidad un punto, sino una cuerda en forma de lazo. Una cuerda puede hacer algo además de moverse, puede oscilar de diferentes maneras. Si oscila de cierta manera, entonces, macroscópicamente veríamos un electrón; pero si oscila de otra manera, entonces veríamos un fotón, o un quark, o cualquier otra partícula del modelo estándar. Esta teoría, ampliada con otras como la de las supercuerdas o la Teoría M pretenden alejarse de la concepción del punto-partícula.

Actualmente, la teoría de cuerdas es la más considerada para tener una teoría unificada o Teoría del todo, es decir, una teoría capaz de describir todos los fenómenos ocurridos en la naturaleza debido a las cuatro fuerzas fundamentales: la fuerza gravitacional, la fuerza electromagnética y las fuerzas de interacción nuclear fuerte y débil.

El espacio-tiempo en el que se mueven las cuerdas y p-branas de la teoría no sería el espacio-tiempo ordinario de 4 dimensiones sino un espacio de tipo Kaluza-Klein, al que a las cuatro dimensiones convencionales se añaden 6 dimensiones compactificadas en forma de variedad de Calabi-Yau. Por tanto convencionalmente en la teoría de cuerdas existe 1 dimensión temporal, 3 dimensiones espaciales ordinarias y 6 dimensiones compactificadas e inobservables en la práctica.

La inobservabilidad de las dimensiones adicionales está ligada al hecho de que éstas están compactificadas, y sólo son relevantes a escalas tan pequeñas como la longitud de Planck. Igualmente con la precisión de medida convencional las cuerdas cerradas con una longitud similar a la longitud de Planck se asemejan a partículas puntuales.

Uno de los problemas ligados a las supercuerdas y que más resalta es el que tiene que ver con la propia pequeñez de las cuerdas, esos infinitesimales objetos vibrantes. Mientras más pequeño es algo, más difícil es de ver. Estas cuerdas son tan pequeñas que nuestra actual tecnología no es suficiente para bajar a esa escala microscópica para permitirnos experimentar en esas dimensiones; la energía necesaria para ello, no está a nuestro alcance en el mundo actual. Esa es la frustración de sus creadores y adeptos; no pueden demostrarla o ver si están equivocados. En la ciencia, no basta con sólo una bonita teoría bien elaborada y de fascinante presencia; hay que ir más allá, experimentar y comprobar con certeza lo que nos está diciendo.

             ¿Existen en nuestro Universo dimensiones ocultas?

La teoría es avanzada y tiene problemas que se encuentran dentro de los enunciados de sus propios conceptos. Para desarrollar su formulación es necesario aplicar al menos diez dimensiones y, en algunos casos, se ha llegado hasta un número de veintiséis: sólo vemos tres dimensiones de espacio y una de tiempo, el resto de dimensiones adicionales están enroscadas en el límite de Planck e invisibles para nosotros, ya que en el Big Bang, las dimensiones que podemos ver se expandieron, mientras que las otras permanecieron compactadas. Hay numerosas explicaciones que tratan de decirnos el motivo de que estas dimensiones permanecieran en su estado primitivo, pero ninguna parece muy convincente.

            ¿Sabremos alguna vez comprender la verdadera naturaleza del Universo?

Sin embargo, y a pesar de tantos inconvenientes, cada día que pasa la teoría M tiene más amigos. Parece la única candidata seria a que algún día se convierta en la teoría de Todo. En ella encontramos todas las fuerzas, explica todas las partículas y la materia, la relatividad, la mecánica cuántica y también la luz; están allí presentes, perfectamente encajadas en una perfecta simetría y sin que surjan infinitos sin sentido como ocurre con otras teorías. Es la esperanza de muchos, la llave que necesitamos para abrir la puerta hacia el futuro.

En el universo en que vivimos, nada desaparece; con el tiempo se cumplen los ciclos, todas las cosas y se convierten en otras distintas, es un proceso irreversible. Nada se destruye, simplemente cambia y, de esa manera, la materia “inerte” llega a convertirse en materia evolucionada hasta el punto de adquirir “vida” y ser consciente. Todo comienza en lugares como el que abajo podeis contemplar. Ahí se forman y nacen las estrellas que, más tarde, durante la secuencia principal y también al final de sus vidas, crean materiales complejos y rregresan a su origen de Nebulosas, mientras la mayor parte del material que la conforma, queda convertida (dependiendo de su masa) en una enana blanca, estrella de neutrones o agujero negro.

La Piel de Zorra, el Unicornio, y el Arbol de Navidad

Las Nebulosas como estas donde el gas hidrógeno es el protagonista al hacer posible el nacimiento de nuevas estrellas mediante la compleja unión del gas con nubes de polvo creando intensas zonas de radiación ultravioleta que ionizan toda la región circundante, todo ello, forma una amalgama con la rojiza emisión nebular excitada por la energética radiación de las estrellas nuevas que inciden en las oscuras nubes de polvo haciéndolas radiantes hasta formar una azulada nebulosa de reflexión.

En lo concerniente a cambios y transformaciones, el que más me ha llamado siempre la atención es el de las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

http://1.bp.blogspot.com/_rMKJIW2qoEg/THCWa9znCXI/AAAAAAAADeY/V8tml-iq_bQ/s1600/Nasa.+polvo+y+creaci%C3%B3n+espacial.jpg

              Sería asombroso el que pudiéramos contemplar como se forman las estrellas

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso de fusión se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

Para hacernos una idea y entender algo mejor la fuerza de gravedad que puede generar la singularidad de un agujero negro (que es el destino final las estrellas súper masivas), pongamos el ejemplo de un objeto más cercano, el planeta Tierra.

Resultado de imagen de La singularidad de un agujero negro"

La Tierra, un objeto minúsculo en comparación con esos objetos súper masivos estelares, genera una fuerza de gravedad que, para escapar de ella, una nave o cohete espacial tiene que salir disparado desde la superficie terrestre a una velocidad de 11,18 km/s; el sol exige 617’3 km/s. Es lo que se conoce como velocidad de escape, que es la velocidad mínima requerida para escapar de un campo gravitacional que, lógicamente, aumenta en función de la masa del objeto que la produce. El objeto que escapa puede ser una cosa cualquiera, desde una molécula de gas a una nave espacial. La velocidad de escape de un cuerpo está dada por , donde G es la constante gravitacional, M es la masa del cuerpo y R es la distancia del objeto que escapa del centro del cuerpo. Un objeto que se mueva con una velocidad menor que la de escape entra en una órbita elíptica; si se mueve a una velocidad exactamente igual a la de escape, sigue una órbita parabólica, y si el objeto supera la velocidad de escape, se mueve en una trayectoria hiperbólica y rompe la atadura en que la mantenía sujeto al planeta, la estrella o el objeto que emite la fuerza gravitatoria.

Resultado de imagen de La velocidad de la luz en el vacío"

La mayor velocidad que es posible alcanzar en nuestro universo es la de la luz, c, velocidad que la luz alcanza en el vacío y que es de 299.792.458 metros por segundo.

Pues bien, es tal la fuerza de gravedad que genera un agujero negro que, ni la luz. puede escapar de allí; la singularidad la absorbe, la luz desaparece en su interior, de ahí su nombre, agujero negro, cuando la estrella supermasiva se contrae, llega a un punto que desaparece de nuestra vista. De acuerdo con la relatividad general, cabe la posibilidad de que una masa se comprima y reduzca sin límites su tamaño y se auto confine en un espacio infinitamente pequeño que encierre una densidad y una energía infinitos. Allí, el espacio y el tiempo dejan de existir.

Las singularidades ocurren en el Big Bang, en los agujeros negros y (si finalmente se produjera -que parece que no) en el Big Crunch (que se podría considerar como una reunión de todos los agujeros negros generados por el paso del tiempo en el universo y que nos llevaría a un final del que emergería un nuevo comienzo).

He leído en alguna parte, en relación a los agujeros negros, cosas como éstas: “…las condiciones únicas que se dan más allá del horizonte de sucesos (el punto de no retorno pasado el cual nada, ni siquiera la luz, puede escapar de su gravedad) de ciertos agujeros negros hace posible, en teoría, la existencia de vida y que ésta evolucione hasta dar lugar a civilizaciones avanzadas.” Bueno, sabemos poco pero, que dentro del agujero negro pueda existir y evolucionar la vida…es muy dudoso.

Las singularidades de los agujeros negros están rodeados por una circunferencia invisible a su alrededor que marca el límite de su influencia. El objeto que traspasa ese límite es atraído, irremisiblemente, hacia la singularidad que lo engulle, sea una estrella, una nube de gas o cualquier otro objeto cósmico que ose traspasar la línea que se conoce como horizonte de sucesos del agujero negro.

Un gran agujero negro tragándose una estrella fue observado por primera vez con un telescopio de la Nasa, en la constelación del Dragón, a cuatro mil millones de años luz de la Tierra.

j164449.357345 <a href=

“El objeto fue llamado Swift J164449.3+57345. Fenómenos como este suceden cada 100 millones de años y son conocidos como “chorros relativísticos”, que pueden tener una dimensión de cientos de años luz.” Está claro que, cuando se escribe sobre estos temas, muchos son los que se toman licencias literarias que nada tienen que ver con la realidad, ya que, no tenemos forma de saber con qué frecuencia se producen estos fenómenos que, según creo, son más cotidianos y habituales de lo que algunos puedan pensar.

            Karl Schwarzschild.

La existencia de los agujeros negros fue deducida por Schwarzschild, en el año 1.916, a partir de las ecuaciones de Einstein de la relatividad general. Este astrónomo alemán predijo su existencia, pero el nombre de agujero negro se debe a Wehleer.

Así, el conocimiento de la singularidad está dado por las matemáticas de Einstein y más tarde por la observación de las señales que la presencia del agujero generan. Es una fuente emisora de rayos X que se producen al engullir materia que traspasa el horizonte de sucesos y es atrapada hacia la singularidad, donde desaparece para siempre sumándose a la masa del agujero cada vez mayor.

En el centro de nuestra galaxia, la Vía Láctea, ha sido detectado un enorme agujero negro, ya muy famoso, llamado Cygnus X-1.

¡Agujero Negro a la vista!

 

Resultado de imagen de La singularidad de un agujero negroResultado de imagen de La singularidad de un agujero negro

 

Usando un vasto conjunto de radiotelescopios, han realizado una medida directa de la distancia a Cygnus X-1, permitiéndoles concluir la masa de la estrella oscura que resulta ser tan grande que solo puede ser un A.N. También han descubierto que gira más rápido que la mayor parte de sus compañeros.

Fue identificado por primera vez como posible anfitrión de un agujero negro en 1971, Cygnus X-1 fue una de las primeras fuentes de rayos-X descubiertas por los astrónomos. Por fortuna, Cygnus X-1 emite ondas de radio y un equipo de estudiosos apuntaron al objeto con el conjunto de Líneas Muy Grandes (VLBA) que consta de diez radiotelescopios de 25 metros dispersos desde Nueva Inglaterra y las Islas Vírgenes a California y Hawai. Este enorme conjunto mide posiciones 100 veces mejor que el Telescopio Espacial Hubble.

Resultado de imagen de Signus X-1"

Resultado de imagen de Signus X-1Resultado de imagen de Signus X-1

Cygnus X-1 produjo resultados maravillosos y, el equipo pudo lograr una distancia de mucha precisión. La Paralaje indicó que Cygnus X-1 está a 6.050 años ñuz de la Tierra, con una incertidumbre de sólo 400 años-luz. A partir de esto, los astrónomos dudeucen que la estrella oscura es 14,8 veces más masiva que el Sol; la incertidumbre es sólo de una masa solar, por lo que el objeto está muy por encima de la linea divisoria de las estrellas de neutrones y los agujeros negros. La estrella Azul que la orbita es aún más masiva, con unas 19 masas solares.

Después de todo, la velocidad de la luz, la máxima del universo, no puede vencer la fuerza de gravedad del agujero negro que la tiene confinada para siempre. En nuestra galaxia, con cien mil años luz de diámetro y unos doscientos mil millones de estrellas, ¿cuántos agujeros negros habrá? Para mí, la cosa está clara: el tiempo es imparable, el reloj cósmico sigue y sigue andando sin que nada lo pare, miles o cientos de miles, millones y millones de estrellas súper masivas explotarán en brillantes supernovas para convertirse en temibles agujeros negros. Si eso es así como parece, llegará un momento que el número de agujeros negros en las galaxias será de tal magnitud que comenzarán a fusionarse unos con otros hasta que todo el universo se convierta en un inmenso agujero negro, una enorme singularidad, lo único que allí estará presente será: la gravedad. Así dice que era al principio, cuando surgió el Big bang.

Resultado de imagen de Descubren una estrella supermasiva con más de 150 masas solares"

 

Aquí tenemos una estrella supermasiva con más de 150 masas solares. Dentro de ese conglomerado de gas y polvo se esconde Eta Carinae que, eyecta material al Espacio Interestelar para no morir.

 

¡La Gravedad! Esa fuerza de la naturaleza que ahora está sola, no se puede juntar con las otras fuerzas que, como se ha dicho, tienen sus dominios en la mecánica cuántica, mientras que la gravitación residen en la inmensidad del cosmos; las unas ejercen su dominio en los confines microscópicos del átomo, mientras que la otra sólo aparece de manera significativa en presencia de grandes masas estelares. Allí, a su alrededor, se aposenta curvando el espacio y distorsionando el tiempo. La Gravedad es la que determina la geometría del Universo.

Resultado de imagen de Fusión de agujeros negros"

Esa reunión final de agujeros negros (si finalmente sucediera) sería la causa de que la Densidad Crítica sea superior a la ideal. La gravedad generada por el inmenso agujero negro que se irá formando en cada galaxia tendrá la consecuencia de parar la expansión actual del universo. Todas las galaxias que ahora están separándose las unas de las otras se irán frenando hasta parar y, despacio al principio pero más rápido después, comenzarán a recorrer el camino hacia atrás. Finalmente, toda la materia será encontrada en un punto común donde chocará violentamente formando una enorme bola de fuego, el Big Crunch. Otra singularidad inicial de la que surgirá, un nuevo Universo.

Algunos objetos del Universo pueden llegar a ser inmensos. Comparación de planetas en tamaños, tenemos aquí a la Tierra que supera a Venus, Marte, Mercurio y el pequeño Plutón.

Claro que, la inmensa Tierra nos está dando una imagen engañosa de su grandeza que, al ser comparadas con otros objetos planetarios, no queda bien parada. Aquí vemos a la tierra diminuta al lado de neptuno, Urano, Saturno y la gigante Júpiter…

Si hablamos del Sol, nuestra estrella, y lo comparamos con el tamaño de la Tierra,podemos ver que incluso Júpiter, el gigante gaseoso, resulta ser minúsculo al lado de la estrella.

Pero no ya nuestro Sol, una simple estrella mediana, sino que, el mismo Sirius, esa estrella blanca enorme y luminosa, se nos queda pequeña al compararla con Pollux o Arcturus, no digamos en qué se nos queda nuestro Sol ante estas gigantescas estrellas pero, hay mucho más.

Si miramos la imagen de abajo, ya no se ve donde quedó el Sol,el mismo arcturus parece rídiculo al lado de las grandes Rigel y Aldebaran, y, si nos detenemos en Betelgeuse o Antares, nos podemos marear ¡Qué enormidades!

Antes de comentar el muestrario de estrellas de arriba, hablábamos del posible Big Crunch y el final del Universo pero, antes de que eso llegue, tendremos que resolver el primer problema: la muerte del Sol. Los científicos se han preguntado a veces qué sucederá eventualmente a los átomos de nuestros cuerpos mucho tiempo después de que hayamos muerto. La posibilidad más probable es que nuestras moléculas vuelvan al Sol. En trabajos anteriores he explicado el destino del Sol: se agotará su combustible de hidrógeno y fusionará helio; se hinchará en gigante roja y su órbita es probable que sobrepase la Tierra y la calcine; las moléculas que hoy constituyen nuestros cuerpos serán consumidas por la atmósfera solar. Bueno, eso será si aún estamos aquí y no hemos sido capaces de escapar a otros mundos.

http://jelbas.files.wordpress.com/2009/11/sunspot_cycle_from_1995_to_2009.jpg

El final de nuestro Sol cuando finalice su ciclo en la secuencia principal, será convertirse primera en gigante roja, expulsar material que formará nebulosa planetaria y, finalmente, se contraerá hasta que se degeneren los electrones y frene su implosión, quedando como una enana blanca masiva de alta radiación ultravioleta que se irá apagando con el paso del tiempo.

Carl Sagan pinta el cuadro siguiente:

Resultado de imagen de El Sol  como Gigante Roja"

Dentro de algunos miles de millones de años, el pequeño Sol que vemos en el recuadro abajo a la izquierda, se transformará en la Gigante roja de la imagen, Engullirá Mercurio y Venus y propçbablemente la Tierra, antes las temperaturas subirán tanto que los océanos se evaporarán, y, la vida, tal como la conocemos… ¡Desaparecerá! Antes de que eso llegue… ¡Habrá que buscar nuevos alojamientos en otros mundos!

“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable. Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

En una escala de tiempo de varios miles de millones de años, debemos enfrentarnos al hecho de que la Vía Láctea, en la que vivimos, morirá. Más exactamente, vivimos en el brazo espiral Orión de la Vía Láctea. Cuando miramos al cielo nocturno y nos sentimos reducidos, empequeñecidos por la inmensidad de las luces celestes que puntúan en el cielo, estamos mirando realmente una minúscula porción de las estrellas localizadas en el brazo de Orión. El resto de los 200 mil millones de estrellas de la Vía Láctea están tan lejanas que apenas pueden ser vistas como una cinta lechosa que cruza el cielo nocturno.

Resultado de imagen de El sistema solar en la Galaxia"

Por aquí andamos nosotros, una región relativamente tranquila y preciosa. En el Brazo espiral de Orión a 30.000 a.l. del Centro Galáctico

Aproximadamente a dos millones de años luz de la Vía Láctea está nuestra galaxia vecina más cercana, la gran galaxia Andrómeda, casi dos veces mayor que nuestra galaxia. Las dos galaxias se están aproximando a 125 km/s, y chocarán en un periodo de 5 a 10.000 millones de años. Como ha dicho el astrónomo Lars Hernquist de la Universidad de California en Santa Cruz, esta colisión será “parecida a un asalto. Nuestra galaxia será literalmente consumida y destruida”.

Así las cosas, no parece que la Humanidad del futuro lo tenga nada fácil. Primero tendrá que escapar, dentro de unos 4.000 millones de años del gigante rojo en que se convertirá el Sol que calcinará al planeta Tierra. Segundo, en unos 10.000 millones de años, la escapada tendrá que ser aún más lejana; la destrucción será de la propia galaxia que se fusionará con otra mayor sembrando el caos cósmico del que difícilmente se podría escapar quedándonos aquí. Por último, el final anunciado, aunque para más largo tiempo, es el del propio universo que, por congelación o fuego, tiene los eones contados.

emilio silvera

 

 

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting