miércoles, 08 de octubre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Tendrá Memoria el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Resultado de imagen de Lo que pasó siempre deja rastros que nos cuentan la historia"

             Lo que pasó siempre deja rastros que nos cuentan la historia

 

Resultado de imagen de Lo que pasó siempre deja rastros que nos cuentan la historiaResultado de imagen de Lo que pasó siempre deja rastros que nos cuentan la historiaLas nebulosas planetarias también pueden - Naukas

Esas imágenes de arriba nos cuentan la historia de lo que pasó. Las dos primeras son explosiones de estrellas masivas en super-novas, la de abajo nos muestra cuatro Nebulosas planetarias que llevan en su centro una estrella enana blanca que será el destino del Sol.

Bueno, en cierta manera sí. El Universo tiene y conserva (como ocurre en la Tierra), las reliquias de su pasado. A lo largo y a la ancho del Cosmos podemos encontrar muestras de objetos que nos cuentan lo que antes pasó en el Universo. Una supernova es el momento de la explosión de una estrella masiva, debido a que la presión para mantener todos los átomos nucleares es insostenible. “La simetría es la armonía de posición de las partes o puntos similares unos respecto de otros, y con referencia a un punto, línea o plano determinado. Una estrella tiene forma esférica, por lo tanto se espera que si la explosión es en todas las direcciones, su remanente también presente la misma apariencia simétrica. Sin embargo los remanentes de las supernovas no son simétricos. Una posible causa de asimetría en remanentes de supernovas consiste en la variación de masas de los elementos de la estrella.

Origen y evolución del Universo

 

Los restos de una estrella que explotó hace casi mil años forman la nebulosa del Cangrejo, una de los objetos más bellos del cielo y cuyos filamentos de plasma son estudiados por los Astrónomos que, de esta manera, llegan a comprender la evolución de la materia a partir de los sucesos más energéticos del Universo. En su interior encierra un púlsar (una especie de estrella de neutrones que gira a velocidades increíbles.

 

Resultado de imagen de El púlsar oculto en la Nabuloisa del CangrejoResultado de imagen de El púlsar oculto en la Nabuloisa del Cangrejo

 

Si observamos el Universo como un todo, podemos localizar que en él se manifiestan correlaciones bien afinadas que desafían todo lo que nos dicta nuestro sentido común. Unas de esas correlaciones pueden estar situadas en el nivel cuántico, donde, cada partícula que haya ocupado alguna vez el mismo nivel cuántico de otra partícula permanece relacionada con ella, de una misteriosa manera no energética.

Sabemos que, la teoría de la evolución post-darwiniana y la biología cuántica descubren enigmáticas correlaciones similares en el organismo y entre el organismo y su entorno. Todas las correlaciones que salen a la luz en las investigaciones más avanzadas sobre la conciencia vienen a resultar igual de extrañas: tienen la forma de conexiones temporales entre la conciencia de una persona y el cuerpo de otra. Al parecer, las redes de conexiones que constituyen un Cosmos Evolutivo Coherente, para el enmarañamiento cuántico, para la conexión instantánea entre organismos y entornos y entre las conciencias entre distintos e incluso distantes seres humanos, tienen una única explicación, que es la misma en todos los casos.

 

 

La mayor parte de las neuronas posee una estructura arbórea formada en su mayor parte por dendritas que, conectadas a otras neuronas, se encargan de recibir y enviar información mediante conexiones sin fin. Esta obra de la Naturaleza, no siempre tiene explicación para nosotros, los humanos, tan ignorantes aún. Muchas veces hemos dicho aquí que a partir de la “materia inerte” llegamos a los pensamientos.

¿Será posible que, además de materia y energía, en el Universo pueda existir algún otro elemento muy sutil, aunque no por eso menos real: información en forma de “in-formación” activa y efectiva que puede conectar todas las cosas presentes en el espacio-tiempo, de manera tal que, exista una especie de memoria en el Universo que, cuando ahondamos en la observación y el estudio, allí se nos aparece y la podemos “ver” tan real como podemos ver a las estrellas.

 

Resultado de imagen de En nuestro Universo, nada permanece para que todo siga iugual"

 

Nada permanece para que todo siga igual. Lo más constante del Universo son los cambios. Estamos en un Universo dinámico. La energía se transforma y da lugar a los distintos escenarios que podemos observar. Es la Entropía que nació con el Tiempo en el Big Bang la que hace posible los cambios en los sistemas cerrados. El Universo en su conjunto es un sistema cerrado como cualquiera de nosotros.

Algunos dicen que; “Las interacciones en los dominios de la Naturaleza, así como en los de la Mente, están medidas por un campo fundamental de información en el corazón del Universo”. Así, todo el Universo es un contenedor de información dinámico que evoluciona y acumula más información a medida que el tiempo transcurre y su dinámica “viva” no deja de crear para que nada permanezca y todo se transforme.

Nebulosa de Orión - Concepto, descubrimiento y características

La Nebulosa de Orión (cuyo material una vez, formó parte de una estrella masiva) y, se trata de una enorme nube de turbulencia del gas, con una formación de hidrógeno, que es iluminada por brillantes estrellas jóvenes y calientes, incluyendo una estrella llamada Trapezium, que están en vías de desarrollo dentro de la nebulosa. Esa es la dinámica a que antes me refería y que, en el Universo está presente de mil formas distintas.

Pero claro, el Universo es grande y complejo, muchas son las cosas que de él desconocemos, y, si nos preguntamos, por ejemplo, ¿qué es el vacío cuántico? podemos responder conforme a la información que actualmente tenemos pero, ¿es la respuesta la adecuada?

 

Resultado de imagen de El EspaciotiempoResultado de imagen de El EspaciotiempoEspacio-tiempo

 

El concepto de espacio-tiempo como medio físico lleno de energía virtual fue emergiendo gradualmente a lo largo del siglo XX. Al comienzo del siglo se pensaba que el espacio estaba ocupado por un campo energético invisible que producía rozamiento cuando los cuerpos se movían a través de él y ralentizaba su movimiento. Todos conocemos eso como la Teoría del Éter Lumínico o Luminífero. Cuando ese rozamiento no se pudo detectar con el experimento de Michelson-Morley, el éter quedó rechazado de la imagen del mundo físico. Sin embargo, se cree que algo permea todo el espacio.

 

Max Planck and Albert Einstein - Stock Image - C029/0678 - Science Photo  Library

sus Teorías han dominado el mundo de la Física durante más de 100 años

 Sus genios quedaron atrás, ahora el mundo necesita nuevos caminos, nuevos conceptos, nuevas energías. ¿Podrán, algún día, las energías llamadas de Punto Cero,  suplir a estas otras de origen  fósil que se agotaran en unas pocas décadas? Claro que las cosas no siempre son lo que parecen y, lo único que necesitamos es la capacidad intelectual para saber “ver” lo que hay. Siempre ha pasado igual, hemos creado teorías que más tarde, cuando se adquirieron nuevos conocimientos, tuvieron que ser desechadas y tomar las nuevas que nos decían otra realidad de cómo funcionaba la Naturaleza.

 

             El vacío perfecto no existe… ¡Siempre hay!

Hace tiempo que se llegó a demostrar que, el vacío cósmico estaba lejos de ser espacio vacío. En las Teorías de Gran Unificación (GUT) que fueron desarrolladas durante la segunda mitad de ese siglo XX, el concepto de vacío se transformó a partir del espacio vacío en el medio que transporta el campo de energías de punto cero que, son energías de campo que han demostrado estar presentes incluso cuando todaqs las formas clásicas de energía desaparecen: en el cero absoluto de temperatura. En las teorías unificadas subsiguientes, las raíces de todos los campos y las fuerzas quedan adscritas a ese mar de energía misterioso denominado “vacío unificado”.

 

Resultado de imagen de Fluctuaciones de vacío"

                      Si algo surge de la “nada”, le llaman fluctuación cuántica

Allá por los años sesenta, Paul Dirac demostró que las fluctuaciones en los campos fermiónicos producían una polarización de vacío, mediante la cual, el vacío afectaba a la masa de las partículas, a su carga, al spin o al momento angular. Esta es una idea revolucionaria, ya que, en este concepto el vacío es más que el continuo tetradimensional de la Teoría de la Relatividad: no es sólo la geometría del espacio-tiempo, sino un campo físico real que produce efectos físicos reales.

La interpretación física del vacío en términos del campo de punto cero fue reforzada en los años 70 , cuandoPaul Davis y William Unruth propusieron la hiótesis que diferenciaba entre el movimiento uniforme y el acelerado en los campos de energía de punto cero. El movimiento uniforme no perturbaría el ZPF, dejándolo isotrópico (igual en todas las direcciones), mientras que el movimiento acelerado produciría una radiación térmica que rompería la simetria en todas las direcciones del campo. Así quedó demostrado durante la década de los 90 mediante numerosas investigaciones que fueron mucho más allá de la “clásica” fuerza Casimir y del Desplazamiento de Lamb, que han sido investigados y reconocidos muy rigurosamente.

 

 

De las Placas Casimir ¿que podemos decir? es bien conocido por todos que dos placas de metal colocadas muy cerca, se excluyen algunas longitudes de onda de las energías del vacío. Este fenómeno, que parece cosa de magia, es conocido como la fuerza de Casimir. Ésta ha sido bien documentada por medio de experimentos. Su causa está en el corazón de la física cuántica: el espacio aparentemente vacío no lo está en realidad, sino que contiene partículas virtuales asociadas con las fluctuaciones de campos electromagnéticos. Estas partículas empujan las placas desde el exterior hacia el interior, y también desde el interior hacia el exterior. Sin embargo, sólo las partículas virtuales de las longitudes de onda más cortas pueden encajar en el espacio entre las placas, de manera que la presión hacia el exterior es ligeramente menor que la presión hacia el interior. El resultado es que las placas son forzadas a unirse.

 

Resultado de imagen de La misteriosa fuerza gravitatoriaResultado de imagen de La misteriosa fuerza gravitatoria

 

También aparecen otros efectos, algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF. Es todo tan misterioso.

Debido a que el Universo es finito, en los puntos críticos dimensionales, las ondas se superponen y crean ondas estacionarias duraderas. Las ondas determinan interacciones físicas fijando el valor de la fuerza Gravitatoria, la Electromagnética, y las fuerzas nucleares Débil y Fuerte. Estas son las responsables de la distribución de la materia a través del Cosmos pero, a quién o a qué responsabilizamos de esa otra clase (hipotética) de materia que, al parecer está por ahí oculta. ¿Tendrá, finalmente el vacío algo que ver con ella?

 

El Observatorio de rayos X Chandra, el tercero de los grandes observatorios de la NASA, ha descubierto un excepcional objeto según la página web de la propia NASA, y, de la misma manera, hay descubrimientos recientes que confirman la presencia de ondas de presión en el vacío. Utilizando el Observfatorio de rayos X Chandra, los Astrónomos han encontrado una onda generada por el agujero negro supermasivo en Perseus, a 250 millones de años luz de la Tierra. Esta onda de presión se traduce en la onda musical Si menor. Se trata de una nota real, que ha estado viajando por el espacio durante los últimos 2.500 millones de años. Nuestro oído no puede percibirla, porque su frecuencia es 57 octavas más baja que el Do medio, más de un millón de veces más grande de lo que la audición del hombre puede percibir.

 

Los siete colores del Arco Iris: Rojo, Naranja, Amarillo, Verde, Azul, Añil y Violeta. El arco iris es un fenómeno óptico y meteorológico que produce la aparición de un espectro de frecuencias de luz continuo en el cielo cuando los rayos del sol atraviesan pequeñas gotas de agua contenidas en la atmósfera terrestre.

 

 

Recuerdos de la niñez y los Siete pecados capitales: Lujuria, Gula, Avaricia, Pereza, Ira, Envidia, Soberbia. Los siete pecados capitales son una clasificación de los vicios mencionados en las primeras enseñanzas del cristianismo para educar a sus seguidores acerca de la moral cristiana. En los colegios de entonces, nos predicaban estas cosas que, como suele ocurrir, cuando de niño te machacan una y otra vez con estos cánticos… ¡Set te quedan grabados!

 

CANCIÓN CON PICTOGRAMAS: Siete notas son.

Las Siete notas musicales: Do, Re, Mi, Fa, Sol, La y Si Los nombres de las notas musicales se derivan del poema Ut queant laxis del monje benedictino friulano Pablo el Diácono, específicamente de las sílabas iniciales del Himno a San Juan Bautista. Las frases de este himno, en latín, son así: Ut queant laxis/Resonare..

 

La creación del mundo según la Biblia - ¡¡RESUMEN CORTO!!

Se dijo que Dios creó el mundo en siete días: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado y Domingo. Los siete cuerpos celestes que dieron lugar a estos nombres fueron la Luna, Marte, Mercurio, Júpiter, Venus, Saturno y el Sol. En español, sábado procede de la fiesta hebrea “Sabbat” y domingo de la palabra latina “Dominus”, el señor…

Dados y Paridad - MAGIA Y MATEMÁTICAS

        Las sumas de las caras opuestas de un Dado, siempre es igual a Siete: 1+6; 2+5; 3+4

 Los gatos tienen siete vidas

También decimos que un gato tiene Siete vidas: En el mundo hispano hablante se dice que los gatos tienen siete vidas. La creencia en las siete vidas del gato tiene un origen tanto supersticioso como esotérico. No cabe duda de que la excepcional resistencia del gato, su capacidad de salir indemne ante las situaciones más complicadas.

Muchas más serían las cosas relacionadas con el Número Siete. De todas las maneras, ¡cómo somos los humanos! a todo le tenemos que sacar punta… Lo dicho, nuestra curiosidad que nos lleva en volandas hacia la Casa de la Sabiduría que, ¡está en tantos lugares!

Emilio Silvera V.

¡El Universo! A veces pienso, ¡que sabe lo que hace!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él, fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.

La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el big bang y a una posterior fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.

Hay procesos en el Universo que, si pudiera ser posible contemplarlos en directo, serían dignos del mayor asombro. Por ejemplo, a mí me maravilló comprender como se podía formar Carbono en las estrella y, de cómo éstas se valían del llamado “Efecto Triple Alfa” para conseguirlo.

La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno  hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.

En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO ). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.

Imagen relacionada

                        Cadena Protón-Protón

La cadena protón-protón es una de las dos reacciones de fusión que se producen en las estrellas para convertir el hidrógeno en helio, el otro proceso conocido es el ciclo CNO. Las cadenas protón-protón son más importantes en estrellas del tamaño del Sol o menores. El balance global del proceso es el equivalente de unir cuatro nucleones y dos electrones para formar un núcleo de helio-4 (2 protones + 2 neutrones).

Primer paso (dos veces)

    Segundo paso (dos veces)


  

El ciclo Carbono Nitrógeno Oxígeno:

Las reacciones internas que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón(carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.

Archivo:Keplers supernova.jpg

En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía  sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.

Pero, en las estrellas masivas y supermasivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara  arriba a través del gas que entran, el resultado es el choque más violento del Universo.

La imagen es un zoom del centro de la galaxia M82, una de las más cercanas galaxias con estrellas explosivas a una distancia de sólo 12 millones de  luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.

Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y , con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.

El más conocido remanente estelar, la Nebulosa del Cangrejo cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio  saber sobre los procesos estelares en este tipo de sucesos.

El pulsar de la nebulosa del cangrejo, en rojo del hubble

 dejámos una relación de materiales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitan Cook negociaban por el afecto de las tahitianas.

La muerte de una estrella supergigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.

¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y,  más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio. ¡Que maravilla!

El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planete Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creación de esos materiales complejos  los que se encuentran la química biológica para la vida.

 

Si a partir de las Nebulosas que se forman cuando las estrellas masivas llegan al final de sus vidas, pueden surgir planetas  la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plagado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuantas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?

¡Qué gran secreto tiene el Universo! ¿Cómo se las arregla para crear, las precisas condiciones que dan lugar al surgir de la Vida?

emilio silvera

¡La Naturaleza! Sabemos como se comporta la de la Tierra pero…

Autor por Emilio Silvera    ~    Archivo Clasificado en La Tierra se recicla    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Los nudos para el topólogoImagen relacionada

 

Para el topólogo, un nudo es una curva continua, cerrada y sin puntos dobles. Esta curva está situada en un espacio de tres dimensiones y se admite que pueda ser deformada, estirada, comprimida, aunque está “prohibido” hacerle cortes. Cuando se puede, a través de diversas manipulaciones, se pasa de un nudo a otro y se dice que son equivalentes. Claro que, algunos se abstraen en cuestiones con otras, al parecer, no relacionadas.

La Topología es la geometría de la goma elástica. Con una goma elástica (de pelo) podemos formar un triángulo, un cuadrado, una circunferencia o una elipse, la estiramos, la encojemos…

La Física y el Tiempo

 

Resultado de imagen de Imágenes del blog de emilio silvera VResultado de imagen de Átomos en movimiento en imagenes GIFs

 

 

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo. Simplemente con que su carga fuera distinta en una pequeña fracción… ¡El mundo que nos rodea sería muy diferente! Y, ni la vida estaría presente en el Universo.

 

El “mundo” de lo muy pequeño… ¡Es tan extraño!

 

 

Varias neuronas teñidas por medio de técnicas de fluorescencia

 

 

 

Varias neuronas teñidas por medio de técnicas de fluorescencia. Científicos se acercan al lugar donde se guardan los recuerdos, un lugar de intrincada maraña de nervios y neuronas en el que se forjan los pensamientos, las ideas  y, los sentimientos.

“El estudio demuestra por primera vez que, con la suficiente información sobre el código neuronal de los recuerdos, una prótesis neural puede re-establecer e incluso potenciar los procesos de cognición mnemotécnica”, asegura el profesor responsable del proyecto, el doctor Theodore Berger.

¡La Memoria!

 

 

 

 

¡La Naturaleza! Sabemos como se comporta la de la Tierra pero…

 

 

Resultado de imagen de Imágenes del Blog De emilio silvera

 

Conocemos de las maravillas de nuestro mundo, de los paisajes y regiones en las que podemos disfrutar de mil formas diferentes y sentir sensaciones que aceleran los latidos de nuestros corazones- Asombrarnos ante el inmenso Océano, sentir como sube la adrenalina, o, estar relajados y en pàz acompañado por el rumor de las hojas de los árboles al ser mecidas por la suave brisa, mientras un rayo de Sol se cuela entre el espeso bosque y, el trino de los pajarillos resuenan por todas partes.

 

Resultado de imagen de El Sil se cuela entre la espesura del Bosque

 

Recorrer la montaña rodeando escarpados riscos y disfrutar de un paisaje inédito en las tierras bajas, allí donde las águilas tienen sus nidos y el viento suena con fuerza.

 

Resultado de imagen de Los más bellos paisajes de  montañaResultado de imagen de Los más bellos paisajes de  montañaResultado de imagen de Los más bellos paisajes de  montañaResultado de imagen de Los más bellos paisajes de  montañaResultado de imagen de Los más bellos paisajes de  montañaResultado de imagen de Los más bellos paisajes de  montaña

 

Los más bellos y pintorescos lugares que, al subir una loma aparecen ante nuestros ojos para asombrarnos con su extraordinaria configuración, en presencia de hermosos lagos y del bullir de la vida.

 

Resultado de imagen de El más asombro recuerdo del Gran Cañón

 

La Naturaleza ha configurado el paisaje de manera que, no pocas veces, ante lo que vemos ante nosotros, nos tenemos que sentir pequeños. Grandes estructuras naturales que, ni el mejor arquitecto podría haber imaginado.

 

Imagen relacionadaImagen relacionada

Imagen relacionada

 

El recorrido que podríamos hacer por las distintas regiones del planeta nos llevarían a lugares que, ni en sueños podríamos haber imaginado-

 

 

Resultado de imagen de Los más bellos paisajes de la Patagonia

 

Algunos de estos bellos lugares están en peligro de extinción por la actividad Humana

 

Resultado de imagen de Los más bellos paisajes de la PatagoniaResultado de imagen de Los más bellos paisajes de la PatagoniaResultado de imagen de Los más bellos paisajes de la PatagoniaImagen relacionadaResultado de imagen de Los más bellos paisajes de la PatagoniaImagen relacionada

 

Durante milenios ningún ser humano pasó por estos lugares, no tenían medios para recorrer distancias en medio tanhóstil. Pasado el Tiempo, los nuevos inventos posibilitaron que se pudiera llegar a lugares como estos para que el mundo se asombrara ante tales imágenes.

Resultado de imagen de Inmensos desiertos

De la misma manera, inmensos desiertos de arena ocupan grandes extensiones del planeta. Allí la vida es precaria y, con un enorme esfuerzo, ayudado por animales especiales para ello, puede el hombre recorrer esas regiones que parecen el fin del mundo.

Resultado de imagen de Inmensos desiertosImagen relacionadaResultado de imagen de Inmensos desiertosResultado de imagen de Inmensos desiertos

Para más dificultad, en cualquier momento inesperado, aparecen temibles tormentas de arena que ponen en peligro la integridad del viajero que, de no ser experto en evitar su furia… podría perecer en el intento.

Imagen relacionadaImagen relacionadaImagen relacionadaImagen relacionadaImagen relacionadaImagen relacionada

En contraste con esos inhóspitos lugares del desierto, podemos encontrar lugares de ensueño en Islas perdidas de exuberante belleza en las que, la Naturaleza ofrece todo aquello que un ser vivo podría desear.

Resultado de imagen de Grandes y bellos coralesResultado de imagen de Grandes y bellos coralesResultado de imagen de Grandes y bellos coralesResultado de imagen de Grandes y bellos corales

En esas aguas transparentes y cálidas se pueden observar los más bellos corales y toda la variedad de peces que hacen la delicia de los reporteros de la Naturaleza.

Resultado de imagen de VolcanesResultado de imagen de VolcanesResultado de imagen de VolcanesResultado de imagen de Volcanes

También, como era de esperar, en nuestro planeta suceden hechos naturales que (aunque parezcan otra cosa), vienen a reciclar el mundo en el que vivimos que, a veces, se comporta como si de un ser vivo se tratara.

Resultado de imagen de Grandes Tsunamis

Resultado de imagen de La Caída de un Gran meteorito

Es cierto que suceden y se producen acontecimientos que no podemos evitar, y, cuando eso pasa, el mundo cambia y muchas personas pueden morir pero… ¡La Vida sigue.

Resultado de imagen de ¿Cómo serían otros mundos?

Todo lo anterior (y mucho más), es nuestro Mundo, la Tierra. Sin embargo, sólo en nuestra Galaxia existen miles de millones de mundos que, aunque algunos se puedan parecer al nuestro, la mayoría, son inhabitables para nuestra especie, y, desde luego, al no haber podido visitarlos, no sabemos, qué clase de criaturas los puedan habitar, o, que clase de estrella lo pueda alumbrar.

Imagen relacionadaImagen relacionadaResultado de imagen de ¿Cómo serían otros mundos?Resultado de imagen de las crónicas de riddick el mundo Helión

Los humanos en mundos distintos a la Tierra lo pasarían muy mal, no estamos preparados para habitarlos y, cuando se habla de viajar a las estrellas (situadas a varios años luz de la Tierra, a veces a decenas, cientos, miles y millones de kilómetros de distancia, simplemente expresamos un deseo irrealizable por el momento.

Con lo bien que estamos en casa! Además, ya conocemos la Naturaleza de nuestra casa… La Tierra,

emilio silvera

¿Quiénes somos? ¡Quién puede saber eso!

Autor por Emilio Silvera    ~    Archivo Clasificado en El origen    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Ni las ciencias, ni ningún otro sistema es capaz de determinar qué es la conciencia. Desde la psicología, la filosofía o incluso la biología, recibimos diversas teorías, sin embargo, no existe una respuesta científica a esta pregunta y siguiendo el mismo razonamiento, en este punto bien podemos señalar algunas preguntas más, tales como”

¿Quiénes somos? ¿De dónde venimos? ¿Hacia dónde vamos?

 

 

                   mural de Ricardo Carpani

 

Esas preguntas que han estado en la mente de los seres humanos desde que en ellos estuvo presente el pensamiento en aquellas primeras Civilizaciones antiguas que todos tenemos en mente y que dejaron su huella que, de una u otra manera, nos hablan de una evolución mental que, a veces, profundizaba en terrenos situados más allá de lo material. Cuando no se sabía entender los hechos ni se encontraban las respuestas, con frecuencia, se acudió a la mitología y a divinidades que eran portadoras de mágicos poderes y, de esa manera hemos estado caminando hasta llegar a los orígenes de la Ciencia que, comenzó una nueva etapa y en lugar de adjudicar lo inexplicable a los dioses, se empezó a investigar y observar empleando la lógica para acercarnos a lo desconocido, a los misterioso secretos de la Naturaleza y, ¡nuestro origen! puede ser calificado del mayor secreto que el Universo esconde.

 

 

http://upload.wikimedia.org/wikipedia/commons/c/c0/Stromatolites.jpg

 

 

“Estromatolitos del precámbrico en la Formación SiyehParque Nacional de los GlaciaresEstados Unidos. En 2002, William Schopf de la UCLA publicó un artículo en la revista Nature defendiendo que estas formaciones geológicas de hace 3.500 millones de años son fósiles debidos a cianobacterias y, por tanto, serían las señales de las formas de vida más antiguas conocidas.”

 

 

 

 

Ciertamente, cuando hablamos del origen de la vida, aún hoy en la segunda década del siglo XXI, las opiniones son diversas y siempre nos encontramos con dos grupos que la sitúan en diferentes lugares. En un pequeño libro, no por ello menos importante, del ruso A. Oparin, publicado en Moscú, en su lengua original en 1894 y denominado El Origen de la vida, nos habla de ese espinoso y trascendente tema sin necesidad de permanecer anclados en ideas ya desfasadas, entre los irreversibles adelantos científicos y el creacionismo bíblico que está fuera de lugar en nuestra época del big bang o primitiva explosión cósmica, la expansión del universo, el conocimiento del átomo y los primeros vuelos espaciales, donde ya no hay lugar para “mitos” y son los hechos los que deben prevalecer.

 

 

Resultado de imagen de El Origen de la Vida de Oparin

 

 

Está claro que contestar a las preguntas: ¿Que es la vida? ¿Cómo llegó hasta aquí? ¿Está sólo en el planeta Tierra? ¿Cómo pudo hacer acto de presencia, eso que llamamos conciencia? No resulta nada fácil y, hasta tal punto es así que hasta el momento, nadie la supo contestar de una manera convincente y se dan respuestas que, más o menos originales y agudas, no dejan de ser conjeturas. La que más me gusta es que la vida, es la materia evolucionada hasta su más alto nivel, dado que, de alguna manera, nosotros mismos estamos hechos de los mismos materiales que todo lo que nos rodea.

 

 

Monografias.com

 

 

Existen dos puntos de vista que nos llevan al origen de la vida: El enfoque materialista y el otro idealista y espiritual, el primero es el que adopta A. Operin y el otro es el que muestra la doctrina del P. Teilhard de Chardin, ni uno ni otro tiene porqué abandonar los grandes descubrimientos científicos y tecnológicos. Sin embargo y a medida que ha ido transcurriendo el tiempo, ambas posturas se han alejado la una de la otra como consecuencia de que la Ciencia, nos ha ido mostrando los posibles caminos que la vida tomó para hacerse presente y, desde luego, nada tiene que ver con el espíritu que la vida hiciera su aparición en este mundo nuestro y, seguramente, en otros muchos mundos de la Galaxia y de otros mundos dispersos por el Cosmos.

 

 

Monografias.com

 

 

POSIBLE ORIGEN CÓSMICO DE LA VIDA Según esta hipótesis, la vida se ha generado en el espacio exterior y viaja de unos planetas otros y de unos sistemas solares a otros. El filosofo griego Anaxágoras fué el primero que propuso un origen cósmico para la vida. Esta Hipótesis de la panspermia postula que la vida es llevada al azar de planeta en planeta. Su máximo defensor fué Svante Arrhenius, que afirmaba que la vida provenía del espacio exterior.

 

 

Monografias.com

 

 

LA APARICIÓN DE LA VIDA EN LA TIERRA PRIMITIVA Las hipótesis mas acertadas afirman que la vida se generó hace millones de años, de forma espontánea gracias a las particulares condiciones que hubo en la primera etapa de la Historia de la Tierra. El bioquímico ruso Aleksandr Oparin y el genetista británico John B.S. Haldane propusieron que la vida se originó en la tierra como resultado a la asociación de moléculas inorgánicas sencillas. En 1953, Stanley Miller simuló las condiciones de la supuesta atmósfera primitiva y la sometió a descargas eléctricas. Obtuvo compuestos orgánicos (aminoácidos). Este

 

resultado sirvió para apoyar la hipótesis de Oparin y Haldane.

 

 

 

Monografias.com

 

 

Independientemente de todas las grandes hipótesis que los grandes pensadores y especialistas han elaborado, lo cierto es que, al día de hoy, todavía, nadie sabe decirnos qué es la vida y cómo puedo llegar hasta aquí.

Desde el punto de vista de la Biología, que es el más usado, hace alusión a aquello que distingue a los reinos animal, vegetal, hongos, protistas, arqueas y bacterias del resto de manifestaciones de la Naturaleza. Implica las capacidades de nacer, crecer, reproducirse y morir, y, a lo largo de sucesivas generaciones, evolucionar.

Sin embargo, no parece que todo eso, sea exclusivo de lo que conocemos por vida, ya que, de alguna manera, si nos fijamos en una estrella desde que “nace” hasta que muere”, viene a enseñarnos que sigue el mismo camino que los seres vivos y ella también, nace, muere y se reproduce… a su manera. ¡Es todo tan complicado!

Claro que, cuando hablamos de la vida hay que ser respetuosos con las ideas que cada cual pueda tener al respecto. Será la fe de cada uno quien pueda llevarle a una u otra conclusión, o incluso, dejar esta en el aire con un gran signo de interrogación dentro de un agnosticismo (no ateísmo) latente que está aconsejado por los hechos más relevantes que la Ciencia nos pone delante de los ojos cuando de la vida se trata y lo que de ella, hemos podido llegar a saber.

 

 

Resultado de imagen de Encíclica Humani Generis

 

 

A estas alturas, ni la propia Iglesia Católica  excluye la teoría del mutacionismo moderado o evolucionismo dirigido que no excluye aquella idea de un primer y Supremo Hacedor. Ya en 1950, Pio XII en la Encíclica Humani Generis, recomendaba prudencia y no apasionamiento por una u otra tesis para aquellos que se dedicaban al estudio de tan delicados problemas y que, si no aparecía todo claro, se esperaba siempre a que nuevos descubrimientos iluminaran el remoto pasado de la vida y del universo.

Si nos centramos en el ser humano, los restos fósiles más antiguos confirman que durante la Era Cuaternaria, la Humanidad poseía fuertes restos morfológicos de las especies animales de las que pudo derivar. También algunos fósiles de simios que se acercaban, cada vez más, en su morfología, a las formas humanas.

 

 

 

 

Sin embargo aún el más antiguo de los hombres fósiles, hubo de poseer una capacidad cerebral mucho mayor que la de los simios actuales. Por tal motivo incluso los más acérrimos partidarios de la evolución rechazaron pronto que el hombre pudiera descender directamente del mono y se alinearon en dos escuelas fundamentales:

 

– La de los que afirmaban que el mono y el ser humano tenían un origen común en otro ser que no era ni Homo ni Pan, cuyo rastro se ha perdido por completo, o, al menos, nunca se ha podido encontrar. Las especies de los simios contemporáneos nuestros, “serían una degeneración”, mejor que una evolución de este antecesor común del ser humano y el mono.

– Y la de los que opinaban que el ser humano y el simio se parecen en lo somático, pero manifestaban que su antecesor no era el mismo, sino que el ser humano descendía de un ser distinto del antepasado del mono.

 

 

 

 

“Una de las especies humanas extintas mejor conocidas es el Homo erectus. Los restos de esta especie que proceden de China, se les dio el popular nombre de “hombre de Pekín”. A pesar que ninguna persona instruida negaría la existencia de estos seres en el pasado, los creacionistas les restan importancia diciendo mentiras sobre ellos.

La publicación creacionista “¿Abuelito?” de CHICK PUBLICATIONS dice respecto al hombre de Pekín: “Supuestamente databa de hace 500.000 años. Pero toda la evidencia ha desaparecido”

Pero, ¿Desapareció realmente toda la evidencia del “hombre de Pekín”? ¿No hay más restos del Homo erectus en Asía?

Los restos del “Hombre de Pekín” se hallaron entre 1921 y 1937, en el periodo entreguerras en un yacimiento a 40 kilómetros al sudoeste de Pekín llamado Zhoukoudian. El hallazgo consistía de una colección de cerca de 40 individuos en Zhoukoudian, entre ellos 5 calvarias (cráneos sin el esqueleto de la cara), numerosos dientes y restos del esqueleto postcraneal.

 

 

Resultado de imagen de El hombre de PekinResultado de imagen de El hombre de Pekin

 

En 1941, desapareció la colección de fósiles, en plena Segunda Guerra Mundial, mientras era enviada desde Pekín a Estados Unidos.

Sin embargo, la evidencia no desapareció del todo, pues el científico Franz Weidenreich realizó, previó a la desaparición, un estudio con fotografías, radiografías y réplicas de los fósiles. En excavaciones recientes se han encontrado nuevos restos que han encajado con las réplicas hechas por Weidenreich lo cual dice mucho de la honestidad del trabajo de este científico.

Los creacionistas desprecian las dataciones dadas para estos restos fósiles diciendo: “Supuestamente databa de hace 500.000 años”, para confundir al lector. Sin embargo, el yacimiento del Zhoukoudian no ha desaparecido. Sigue allí y los trabajos de estratigrafía que se han realizado muestran que los restos de la cueva abarca un período de 600.000 años, y los restos que quedaron enterrados en los sedimentos de Zhoukoudian tienen una edad entre 550.000 y 300.000 años.

Es cierto que los fósiles originales de la cueva de Zhoukoudian se perdieron en confusos hechos, pero algo que los creacionistas no mencionan es que existen otros yacimientos de Homo erectus en China e Indonesia.”

 

 

Resultado de imagen de Es cierto que los fósiles originales de la cueva de Zhoukoudian se perdieron en confusos hechos

 

 

Tampoco se ha llegado a ninguna conclusión satisfactoria con el hecho que plantea si la aparición dle Ser humano tuvo lugar de una sola vez, derivando de una primitiva pareja por multiplicación, toda la Humanidad (versión textual del Génesis) o si fueron más de una pareja procedentes de diversos lugares de la Tierra, ésta última tesis se está imponiendo últimamente con mucha fuerza.

El acuerdo sobre cuál o cuáles fueron la cuna  o “cunas” de la Humanidad. Se habla con fuerza del hemisferio austral pero ¿dónde? Si el lugar o lugares, época y formas de nacimiento de la primera raza. o razas, humanas continúa siendo -¡y mucho más el de la vida!- y será con toda probabilidad, siempre, un gran misterio para la Ciencia y, cuando llegamos a este callejón sin salida, de alguna manera, sentimos frustración por intuir que nunca, podremos llegar a saber quiénes somos.

 

 

Resultado de imagen de El nacimiento de nuestra especie donde fue

 

Lo de la especie elegida se circunscribe al planeta Tierra

 

Lo cierto es que tenemos una idea bastante aproximada de cómo pudo surgir la vida aquí en la Tierra pero, tampoco sabemos, a ciencia cierta, si su origen está en la propia Tierra, o, por el contrario, llegó desde fuera de ella. Lo que si sabemos con una claridad meridiana es que, los materiales necesarios para que la vida pudiera surgir, allá donde surgiera por vez primera, se transmutaron en las estrellas que, a partir del elemento más sencillo, el Hidrógeno, fusionó el Carbono, Oxígeno, Nitrógeno y todos los demás de los que estamos hechos los seres vivos que pueblan la Tierra y -al menos para mí- otros muchos planetas del Universo.

En alguna ocasión hemos comentando aquí sobre el origen de la vida en nuestro planeta, la evolución, nuestros orígenes y algunos dones que nos adornan como el del habla y, sin olvidar el crecimiento de nuestro cerebro que ha posibilitado que “naciera” ¡la mente! Sin embargo, no nos hemos parado a pensar en algunos aspectos de la historia que nos llevarían a comprender cabalmente y que esa “historia de la vida” adquiera algún sentido, que la podamos comprender en todo su esplendor. Uno de esos aspectos, quizás el principal, sea la diversidad metabólica de los microorganismos procariotas, un aspecto clave para explorar la historia de “la vida primigenia”.

 

 

 

 

Convendría que profundizáramos más (y, asombremos) con las numerosas formas de metabolismos que utilizan los procariotas para vivir y que averigüemos donde encajan estos minúsculos organismos del árbol de la via antes de que podamos seguir escuchando las historias que paleontólogos nos puedan contar de sus andanzas a la búsqueda de fósiles que nos hablen de aquella vida en el pasado.

En la actualidad se acepta que los procariotas fueron los precursores de los organismos eucariotas. Sin embargo hay grandes diferencias entre esos dos grupos celulares. Una de esas diferencias reside en la organización génica y en los mecanismos de sintetizar el ARN mensajero. Algún trabajo biológico afirma que los eucariotas podrían proceder de cianobacterias termófilas ya que su organización génica recuerda rudimentariamente a la de los eucariotas.

Los organismos procariotas (bacterias y arqueas) y eucariotas (protistas, hongos, animales y plantas) comparten una bioquímica común, sin embargo difieren en un elevados número de procesos y de estructuras. A pesar de eso se considera a los procariotas como los precursores de la célula eucariota.  A lo largo de los años se han ido recogiendo datos experimentales que avalan esta teoría.

 

 

 

 

Sabemos que la vida en sí m ismo empezó, quizás hace unos tres mil quinientos millones de años (así lo dicen fósiles encontrados en rocas de esa edad), cuando los flujos de energía, las moléculas y la información se combinaron para formar la primera célula viva. Desconocemos en qué consistió aquella primera fuente de energía, pero hace unos quinientos millones de años las células habían desarrollado ya una maquinaria que podía recoger la luz de la estrella más cercana a nosotros, el Sol, la fuente última de toda energía que existe en la Tierra.  La luz se utilizaba para descomponer el agua (H2O), produciendo Oxígeno, que era emitido a la atmósfera, y liberando también protones y electrones que, al combinarse con el dióxido de carbono del aire, se utilizaban para formar las complejas moléculas de la vida. Este sencillo pero poderoso proceso de fotosíntesis hacia posible que la vida surgiera y se propagara rápidamente.

 

 

No siempre tuvimos una atmósfera benigna

 

La primera contaminación global y los primeros desastres ecológicos tuvieron lugar hace dos mil millones de años, cuando el Oxígeno, ese residuo tóxico de la fotosíntesis, comenzó a concentrarse en la atmósfera terrestre. El Oxígeno, la sustancia fundamental de la vida animal, es una molécula relativamente inestable y tóxica. De hecho, en en sí misma un tipo de radical libre y puede arrebatar electrones a otras moléculas, descomponerlas para formar otros radicales libres aún más tóxicos. Es la razón por la que la mantequilla y otros alimentos se vuelven rancios, el hierro se oxida y algunos animales mueren en una atmósfera de oxígeno puro.

De la relación del Oxigeno y nosotros podríamos hablar muy extensamente pero, nos salimos del tema que os quería comentar y que, a estas alturas está acabando. Por cierto, es incluso posible que el Oxígeno de nuestra atmósfera fuera un veneno para hipotéticos seres extraterrestres invasores y nos librara de ellos por el simple hecho de que éste, no podría nunca ser su mundo.

 

Mirando el árbol filogenético de la Vida, nos damos cuenta de su diversidad y complejidad

 

Es cierto que, con mucha frecuencia, aparecen aquí trabajos que versan sobre la vida, ese misterio que nos lleva a querer buscar sus orígenes y a saber, cómo y para qué surgió aquí en el Planeta Tierra. Nos interesamos por cada uno de pasos evolutivos y nos llama la atención ese larguísimo ciclo que llevó la vida desde aquella célula replicante hasta los seres humanos. Pero, ¿hay algo más interesante que la Vida para poder estudiarlo? Seguramente con la Biología, Física, la Química y la Astrofísica, cada vez sabremos un poco más sobre tan inmenso misterio.

emilio silvera

¡Las estrellas! Algo más que puntitos brillant

Autor por Emilio Silvera    ~    Archivo Clasificado en las estrellas y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

Resultado de imagen de La Humanidad

Una muestra

  

 

 WISE: Nebulosas Corazón y Alma en Infrarrojo

 

 

“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.

Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.” (APOD)

Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazon (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una region de la galaxia donde muchas estrellas se estan formando. IC 1805 (la nebulosa Corazon) es a menudo llamada tambien como la nebulosa del Perro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.

 

 

http://bibliotecadeinvestigaciones.files.wordpress.com/2010/07/estrellas.jpg

 

 

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.

 

 

Foto de la estrella Sirio A y B a la izquierda inferior

 

 

Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.

Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

 

 

En el centro de la Nebulosa del Corazón ¿Qué poderes

 

Seguimos en la Nebulosa del Corazón (otra región)

 

Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo, unidas a las de los gases, se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado, poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma; su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.

La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

 

 

Resultado de imagen de La estrella Sirio

 

 

La estrella Sirio es la más brillante y tiene el doble de tamaño que nuestro Sol

 

 

 

 

Eta Carinae (NGC 3372) tiene 400 veces el diámetro del Sol inmersa en esa Nebulosa que la esconde dentro del gas y el polvo-

 

 

Betelgeuse tiene 1.000 veces el díámetro de nuestro Sol

Pero la estrella más grande conocida es:

 

 

 

 

VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.

 

El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, hace posible que los protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por cada kilogramo de hidrógeno quemado de esta manera, se convierten en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta forma, deja “sembrado” de estos materiales el “vacio” estelar.

Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.

 

 

 

 

 

Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, desde luego, nos podemos quedar asombrados de que puedan existir cosas tan grandes como VY Canis Majoris. Podéis observar en ellas su tamaño en comparación con nuestro Sol.

El Color de las estrellas indican de qué materiales están conformadas y, así se compruena mediante el estudio de sus espectros.

  • Color azul, como la estrella I Cephei
  • Color blanco-azul, como la estrella Spica
  • Color blanco, como la estrella Vega
  • Color blanco-amarillo, como la estrella Proción
  • Color amarillo, como el Sol
  • Color naranja, como Arcturus
  • Color rojo, como la estrella Betelgeuse.

 

Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.

Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia entre la estrella de neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.

La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en parte, por eso llega a nosotros presentando las características líneas oscuras en su espectro. Las líneas oscuras del espectro del sol coinciden con líneas de los espectros de algunos elementos y revelan la presencia de estos elementos en la superficie solar. Las longitudes de onda de las radiaciones se indican en nanometros (nm).

 

El Sol

 

Els Sol

 

                             ¿De qué está hecho el Sol?

 

La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, entre hidrógeno y helio suman alrededor del 98 por ciento de la masa solar. El 2% restante está compuesto, aproximadamente, por la siguiente proporción de elementos: 0,8% de oxígeno, 0,6% de carbono, 0,2% de neón, 0,15% de nitrógeno, 0,05% de magnesio, y, en menor porcentaje aún, hierro, sodio y silicio.

La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.

En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad está directamente relacionada con la edad de la estrella. A más elementos pesados, más joven es la estrella.

 

 

http://animalderuta.files.wordpress.com/2010/10/188091main_d-protoplanetary-082907-5161.jpg

 

 

Un equipo japones de astrónomos han descubierto una fuerte correlación entre la metalicidad del disco de polvo protoplanetario y su longevidad. A partir de éste hallazgo proponen que las estrellas de baja metalicidad son menos propensas a tener planetas, incluyendo gigantes gaseosos, debido a la corta vida de los discos protoplanetarios.

La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.

 

 

 

 

El tipo espectral estelar, conocido también como Clasificación espectral de Harvard, ya que lo comenzó a esbozar Edward Charles Picjering de la Universidad de Harvard en el año 1890, y que perfeccionó Annie Jump Cannon de la misma universidad en 1901, es la clasificación estelar más utilizada en astronomía. Las diferentes clases se enumeran de las más cálidas a frías. Son las siguientes:

 

 

Clase Temperatura Color Convencional Masa Radio Luminosidad Líneas de absorción Ejemplo
O 28 000 – 50 000 K Azul 60 15 140 000 Nitrógenocarbonohelio y oxígeno 48 Orionis
B 9600 – 28 000 K Blanco azulado 18 7 20 000 Helio, hidrógeno Rigel
A 7100 – 9600 K Blanco 3,1 2,1 80 Hidrógeno Sirio A
F 5700 – 7100 K Blanco amarillento 1,7 1,3 6 Metaleshierrotitaniocalcioestroncio y magnesio Canopus
G 4600 – 5700 K Amarillo 1,1 1,1 1,2 Calcio, helio, hidrógeno y metales El Sol
K 3200 – 4600 K Amarillo anaranjado 0,8 0,9 0,4 Metales y óxido de titanio Albireo A
M 1700 – 3200 K Rojo 0,3 0,4 0,04 Metales y óxido de titanio Betelgeuse

 

Las magnitudes MasaRadio y Luminosidad, en proporción respecto al Sol (Sol=1).

 

La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (horno solar) a miles de millones de grados de temperatura capaces de transformar materiales simples como el hidrógeno hacia una gama más compleja y pesada que, finalmente, mediante la explosión de supernova (más temperatura), arroja al espacio materiales que, a su vez, forman nuevas estrellas de 2ª y 3ª generación con materiales complejos. La vida en nuestro planeta pudo surgir gracias a que en la Tierra había abundancia de estos materiales creados en las estrellas. Podemos decir, sin temor a equivocarnos que nosotros mismos estamos hechos del material creado en las estrellas lejanas que posiblemente, hace miles de millones de años explotó en supernova a millones de años luz de nuestro Sistema Solar.

Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí para mirar a los cielos y contemplar su belleza.

Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.

 

 

 

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.

 

 

Las fuerzas fundamentales

 

 

Tipo de Fuerza

Alcance en m

Fuerza relativa

Función

Nuclear fuerte

<3×10-15

1041

Une Protones y Neutrones en el núcleo atómico por medio de Gluones.
Nuclear débil

< 10-15

1028

Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z
Electromagnetismo

Infinito

1039

Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones.
Gravitación

Infinito

1

Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La

El hipotético gravitón transporta la Gravedad pero está fuera del Modelo estándar


Las constantes fundamentales


Constante

Símbolo

Valor en unidades del SI

Aceleración en caída libre

g

9,80665 m s-2

Carga del electrón

e

1,60217733(49) × 10-19 C

Constante de Avogadro

NA

6,0221367 (36) × 1023 mol-1

Constante de Boltzmann

K=R/NA

1,380658 (12) × 10-23 J K-1

Constante de Faraday

F

9,6485309 (29) × 10C mol-1

Constante de los gases

R

8,314510 (70) × J K-1 mol-1

Constante de Loschmidt

NL

2,686763 (23) × 1025 mol-3

Constante de Planck

h

6,6260755 (40) × 10-34 J s

Constante de Stefan-Boltzmann

σ

5,67051 (19) × 10-8 Wm-2 K-4

Constante eléctrica

ε0

8,854187817 × 10-12 F m-1

Constante gravitacional

G

6,67259 (85) × 10-11 m3 Kg-1 s-2

Constante magnética

μ0

4π × 10-7 Hm-1

Masa en reposo del electrón

me

9,1093897 (54) × 10-31 Kg

Masa en reposo del neutrón

mn

1,6749286 (10) × 10-27 Kg

Masa en reposo del protón

mp

1,6726231 (10) × 10-27 Kg

Velocidad de la luz

c

2,99792458× 10m s-1

Constante de estructura fina

α

2 π e2/h c

Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces.

La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como hemos dicho antes, una combinación de ec y h(el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si eh y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.

 

Si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas.

Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos,

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

http://4.bp.blogspot.com/_vN2CzO8lJI8/TCgyBTdgFLI/AAAAAAAAAC0/3G3ep8WFRGA/s1600/resplandor.jpg

Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Artes que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partierndo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.

Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.

Resultado de imagen de El 2015 fue el año internacional de la Luz

Resultado de imagen de la luz solar

El año 2.015 fue el Año Internacional de la Luz, y, no debemos perder de vista que la luz tiene tanto importancia para vida como el agua. Sin luz tendríamos un planeta oscuro con una sola noche eterna, frío de tenebroso, sin esos bellos rincones que se pueden conformar cuando la luz, incide en una montaña, en el bosque, en el horizonte del Océano, o, simplemente se refleja en la blanca nieve, en las olas del Mar o en una atronadora catarata.

La luz Natural es un don que nos dio la Naturaleza y hace posible que esa luz y ese calor que el Sol nos envía, haga posible la vida en el planeta, se produzca la tan necesario fotosíntesis, y muchos más beneficiosos fenómenos que, no siempre sabemos valorar en su justa medida.

emilio silvera