jueves, 17 de octubre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Física? ¡Una maravilla! Nos dice cómo funciona la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Ylia Prigogine haciendo lo que sólo unos privilegiados pueden hacer: desvelando los principios del mundo. Enn la pizarra, la entropía. La irreversibilidad del tiempo trae el orden al caos, decía.  De alguna manera pretendía explicar que nada permanece y todo cambia bajo los efectos del inexorable paso del Tiempo.

 

 

 

Resultado de imagen de La Mente del Universo

 

 

Ese misterio que llamamos “Mente”, ese algo material de una complejidad inimaginable que llamamos cerebro, ese “ingrediente” que está en nosotros y que llamamos “conciencia”. Todo eso nos lleva a la duda que siempre tenemos: ¿No llegamos a comprender los secretos del Universo, porque en última instancia, nos tendríamos que comprender nosotros? Sobre ese tema podemos decir que tenemos algunas nociones de cómo podemos Ser, sin embargo, conocernos, lo que se dice conocernos a nosotros mismos… ¡No nos conocemos!

Pero centremos nuestra atención en los próximos minutos en estos temas de la Física que nos dicen y descubren fenómenos asombrosos que, de otra manera, nunca podríamos conocer.

Resultado de imagen de En su Libro Partículas, Gerard ´t Hooft, Premio Nobel de Física

En su Libro Partículas, Gerard ´t Hofft, Premio Nobel de Física, nos cuenta:
“En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).

Cuando llegamos a los seres unicelulares, se ve que ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala. Tranquilamente se pueden mover y desplazar por encima de una superficie acuática. Los pluricelulares no pueden hacer tal cosa.

Resultado de imagen de la tensión superficial

La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.

La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.

El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este de Van der Waals.

Los tamaños de los seres unicelulares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.

 

Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

Radiación de Cuerpo Negro

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su , el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.

La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo nueva condición, el resultado coincidió perfectamente con las observaciones.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza.

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Resultado de imagen de La función de onda de Schrödinger

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de tal que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.

Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que de partícula es cada una.

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

La posición y el momento de una partícula nunca lo podremos saber con precisión ilimitada.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planckh, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro infinitesimal acontece.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Es cierto que, existe otro universo dentro de nuestro del que, aún, nos queda mucho por aprender.

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.”

Resultado de imagen de Principio holográfico

También Gerard ‘t Hooft es el autor de lo que han dado en llamar principio holográfico es una conjetura especulativa acerca de las teorías de la Gravedad Cuántica propuesta en 1993 por este autor,  y mejorada y promovida por Leonard Susskin en 1995. Postula que toda la información contenida en cierto volumen de un espacio  concreto se puede conocer a partir de la información codificable sobre la frontera de dicha región. Una importante consecuencia es que la cantidad máxima de información que puede contener una determinada región de espacio rodeada por una superficie diferenciable está limitada por el área total de dicha superficie.

Por ejemplo, se pueden modelar todos los eventos que ocurran en un cuarto o una habitación creando una teoría en la que sólo tome en cuenta lo que suceda en sus paredes. En el principio holográfico también se afirma que por cada cuatro Unidades de Planck  existe al menos un grado de libertad  (o una unidad constante de Bolttzmann k de máxima entropía). Esto se conoce como frontera de Bekenstein:

S\le\frac{A}{4}

 

donde S es la entropía y A es la unidad de mensura considerada. En unidades convencionales la fórmula anterior se escribe:

S\le \left( \frac{kc^3}{G\hbar} \right) \frac{A}{4} = k \frac{A}{4\ell_P^2}

donde:

Claro que esta… ¡Es otra Historia!

emilio silvera

¿En qué Universo estamos? ¿Habrá otros más allá del nuestro?

Autor por Emilio Silvera    ~    Archivo Clasificado en ¿Multiverso?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

“A pesar de la frecuencia con la que aparecen en novelas y películas de ciencia ficción, los universos paralelos no eran, hasta ahora, más que una especulación científica. Sin embargo, matemáticos de la Universidad de Oxford han demostrado que existen en realidad. Los universos paralelos existen. Así de contundentes son los resultados del último estudio efectuado por científicos de la Universidad de Oxford, en el que demuestran matemáticamente que el concepto de estructura de árbol de nuestro universo es real. Esta propiedad del universo es la que sirve de base para crear nuestra realidad.

La teoría de los universos paralelos fue propuesta por primera vez en 1950 por el físico estadounidense Hugh Everett, en la que intentaba explicar los misterios de la mecánica cuántica que resultaban completamente desconcertantes para los científicos. Expresado de una manera muy simplificada, lo que propuso Everett fue que cada vez que se explora una nueva posibilidad física, el universo se divide. Para cada alternativa posible se “crea” un universo propio.”

 

 

Resultado de imagen de Los Universos múltiples

 

 

Los Matemáticos afirman que los Universos múltiples existen, y, si eso es así, coincide con algunas observaciones que han sido realizadas y que, de manera sorprendente, respaldan el resultado de la existencia de otros universos a partir del “borde” mismo del nuestro, y, además, es posible que, las grandes estructuras de estos universos (del más cercano), esté influenciando en el comportamiento del  nuestro que, se comporta como si existiera más materia de la que realmente hay debido a que, la fuerza de gravedad de esos “universos” vecinos, incide de manera real en este Universo nuestro. Como podréis comprobar, los distintos estudios sobre el tema, nos dan también, diferentes resultados y, confirmar la Inflación, las ondas gravitatorias y la existencia del multiverso… ¡Nos queda lejos aún! Sin embargo, algunos se dejan llevar por el entusiasmo.

 

 

Resultado de imagen de Los estudios del MAPW y la distribución de materia en el Universo

 

Los estudios del MAPW han derivado en deducciones que nos dicen: “El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible – fuera de nuestro “horizonte” – está tirando de la materia en nuestra vecindad.

Ωbh= 0,002267 + o,000558/ - 0,000059

Ωch2 = 0,1131 ± 0.0034

ΩΛ      = 0,726± 0.015

n= 0,960 ± 0,013

τ          = 0,084 ± 0.016

σ= 0,812 ± 0.026

 

 

 

Los tres ingenios que estudian el problema planteado

 

Estos son los valores de los parámetros cosmológicos obtenidos a partir de los datos combinados de 5 años de observación de WMAP, medidas de distancia de supernovas tipo I y la distribución de galaxias Omega b, c, lambda que son las densidades de materia bariónica, materia oscura y energía oscura respecto a la densidad crítica (la correspondiente a un espacio euclideo) h = 0,71 es el parámetro de Hubble que mide la razón de expansión del universo, τ es la profundidad óptica, y ns y σson el índice espectral y la amplitud del espectro de las fluctuaciones de la materia, respectivamente.

Además de los parámetros cosmológicos, el estudio de la distribución estadística de las anisotropías en la intensidad de la polarización de la radiación también nos proporciona una información muy valiosa sobre la historia remota del Universo. El Modelo estándar de inflación predice que las fluctuaciones en la densidad de energía se distribuye siguiendo, muy aproximadamente, un campo aleatorio gausiano. Sin embargo el modelo estándar se basa en el caso ideal de existencia de un solo campo cuántico, el inflatón, que evoluciona lentamente hasta el mínimo de potencial.

En el artículo nos dicen:

 

 

 

“El flujo oscuro es controvertido debido a que la distribución de materia en el universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del universo visible –fuera de nuestro “horizonte”– está tirando de la materia en nuestra vecindad.”

 

En los numerosos análisis realizados a los datos de WMAP se han encontrado una serie de “anomalías” cuyo origen está aún por determinar. En el artículo se nos dice: ” El flujo oscuro es controvertido debido a que la distribución de la materia en el Universo observado no puede tenerlo en cuenta. Su existencia sugiere que alguna estructura más allá del Universo visible -fuera de nuestro “horizonte”- está tirando de la materia en nuestra vecindad”. Es decir, que de lo que en realidad se trata es, de saber cuanto vale Omega (Ω), o, lo que es lo mismo, la cantidad de materia que contiene el Universo metiendo en ese “saco” tanto a la materia bariónica como a la oscura.

 

 

 

 

Las anomalías observadas no son debidas ni al ruido ni a residuos contaminantes, lo más probable es que sea debida a defectos topológicos en forma de textura. Seguramente la misión Planck de la ESA nos proporcionará la mejor medida de la anisotropía en la intensidad del Fondo Cósmico de Microondas en todo el cielo con una sensibilidad, resolución y cubrimiento frecuencial sin precedentes.

 

 

 

Las fronteras del conocimiento sobre el Universo se amplían día a día y, a no tardar mucho podremos saber sobre:

 

  • Las características de la época inflacionaria así como de las fluctuaciones primordiales en la densidad que allí se generaron.
  • La existencia de ondas gravitatorias primordiales.
  • La naturaleza de la materia oscura y la energía oscura y su contribución al contenido material/energético total del Universo.
  • La distribución de cúmulos de galaxias seleccionados mediante el efecto Sunyaev-Zeldovich.
  • La época de reionización”.

Y, muchas cosas más que de momento ignoramos y que, como podemos leer en el artículo de arriba, cada día quedan más cerca de nuestro entendimiento gracias al trabajo de muchos y, sobre todo, al ingenio de los seres humanos que, con su inagotable imaginación y, por fin, unificando los conocimientos adquiridos durante largos años, ahora van aprendiendo a dirigir sus esfuerzos en la debida dirección, que nos llevará, a desvelar cosas que no comprendemos para saber, cada vez más profundamente, como funciona el Universo en el que vivimos y por qué de sus comportamientos.

La naturaleza a temperaturas muy bajas tiene una gran cantidad de sorpresas bajo la manga”, comenta Meyer. “No quiero especular sobre cuál resultará ser la explicación de la emisión criogénica, pero no me sorprendería si la estructura de banda de los semiconductores desempeña un papel importante”.

 

 

 

         Estructuras desconocidas arrastran las galaxias de nuestro universo

¡Hay tantas cosas que desconocemos! Pudiera incluso ser posible que, esa fuerza misteriosa que tira de nuestras galaxias y, cuya responsabilidad se la adjudicamos a “la materia oscura”, sea, enrealidad, la fuerza de Gravedad que generan cientos de miles de Galaxias situadas en otro universo que, vecino del nuestro, incide de manera directa en el comportamiento de los objetos que el nuestro contiene.

Porque, ¿quién puede asegurar que nuestro Universo es el único universo? Nosotros decimos, en relación a “nuestro” Universo, que comprende “todo” lo que existe, incluyendo el espacio, el tiempo y la materia. Claro que, al decir “todo lo que existe” nos estamos refiriendo al ámbito del propio Universo, sin pensar en que, más allá de éste nuestro, puedan existir otros iguales o diferentes que, como el nuestro, tenga también espacio, tiempo y materia, y, si es así, ¿Por qué esa materia vecina no puede incidir, con la fuerza de Gravedad que su materia genera, en éste Universo nuestro? Si recordamos bien, se dice que, tanto el alcance de la fuerza electromagnética como el de la Gravitatoria, son infinitos. De esa manera, esa materia que conforma otros universos, podría estar “tirando” de nuestras galaxias y, haciendo que corran a más velocidad de la que tendrían de no concurrir en escena, alguna otra fuerza externa. Claro que, nosotros, creyendo que la idea de otros universos es algo atrevida, hemos preferido adoptar a la “Materia Oscura” para que explique, o, más bien justifique, las anomalías observadas.

Una cosa sí que está clara, el Universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Tal separación gradual, a medida que el tiempo pasa, hace que el Universo sea, cada vez más frío.

 

 

 

¿No pasará con los universos como ocurre con las galaxias? Sabemos que Andrómeda se nos echa encima a 100 Km/s, y, de la misma manera, son múltiples las galaxias que se han fundido en una sola galaxia mayor. Si eso es así (que lo es), si las leyes del Universo son las que son, ¿quién puede negar que al igual que las galaxias, también los universos se funden en otro mayor?

Yo, la verdad es que no acabo de estar de acuerdo con la dichosa “materia oscura”, algo me dice que hay algo más que no sabemos ver y, posiblemente, la fuerza de Gravedad tenga alguna propiedad o extensión desconocida. Por otra parte,  la idea, no de universos paralelos que serían intangibles para nosotros al estar situados en otro plano dimensional, sino la idea de universos conexos que, de alguna manera, se relacionan entre sí a una escala tan enorme que aún no hemos podido captar.

 

 

Resultado de imagen de Las tres clases de universo

 

Creo firmemente que, eso debe ser así según los indicios que, cada vez son más fuertes apuntando en dicha dirección, y, esos modelos que nos hemos inventado del Universo Plano, Abierto o Cerrado, no son más que palos de ciego tratando de explicar lo que no comprendemos.

La materia que conforma nuestro Universo es la que podemos ver y detectar, la que confroman todos los objetos existentes nosotros incluidos, y, sin importar la forma que esté adoptando en este momento, la materia, materia es: es decir, Quarks y Leptones. Es posible que, seguramente, esté acompañada de esa otra escondida en eso que llamamos “fluctuaciones de vacío” donde, que sepamos, puede haber oculto mucho más de lo que hemos podido localizar, ya que, su dominio, el dominio de los llamados “océanos de Higgs” nos quedan muy, pero que muy lejos, y, ahora, con el LHC, posiblemente podamos obtener algunas de las respuestas tan deseadas y necesarias para rellenar muchos de los espacios “vacíos” que están presentes en nuestros conocimientos limitados.

 

 

Screenshot of CERN's new blog

 

Pensemos en el Universo y que con el Hubble y otros magníficos aparatos tecnológicos de complejo diseño, hemos podido acceder a un conocimiento más profundo de lo que puede ser la materia y las partículas de que está conformada. Por otra parte y pensando en el enorme costo que nos suponen esos inmensos aceleradores de partículas que nos llevan (durante una fracción de segundo) al instante mismo de la creación para que, allí, podamos “ver” lo que fue y entender, de esa manera, lo que es, a costa de una inmensa energía. Precisamente por ello, sería deseable busca otros caminos más dinámicos y menos costosos (la Química) que nos llevaran hasta el mismo lugar sin tanta estructura y con menos esfuerzo económico que se podría destinar a otros proyectos del espacio.

 

 

Resultado de imagen de Las galaxias más lejanas captadas por Hubble

Sabemos de su magnificencia y de su “infinitud”. Lleva 13.700 millones de años creciendo, y, hemos logrado la proeza de captar galaxias situadas a unos 13.ooo millones de años-luz de nosotros, es decir, de cuando el Universo era muy joven.

 

Con las nuevas generaciones de aparatos, con las nuevas y más avanzadas tecnologías, seguramente, alcanzaremos a poder ver, incluso el momento mismo de “la gran explosión”.

Sin embargo, tales hallazgos no serán suficientes para explicar todo lo que en verdad existe y está ahí, “junto” a nosotros, haciéndonos señales que no podemos captar, y, seguramente, enviándonos mensajes que no podemos recibir.

¡Algún día, muy lejos en el futuro, podremos, al fin saber, en qué Universo estamos y si, éste Universo nuestro, tiene otros hermanos!

 

 

 

 

“Kashlinsky y su equipo afirman que su observación representa la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”

“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.

En el escenario de inflación, la expansión está dirigida por un campo de energía de un origen misterioso. Erickcek y sus colegas argumentan que la asimetría podría ser el remanente de las fluctuaciones en un campo de energía adicional, el cual empezó siendo diminuto, pero estalló por la inflación hasta que se hizo mayor que el universo observable.

Como resultado, el valor de este campo de energía varió desde un lado del universo al otro en los inicios, aumentando las variaciones de temperatura – y densidad de materia – en un lado del cielo con respecto a otro.

 

 

Resultado de imagen de Las galaxias más lejanas captadas hasta el momento

 

 

La conclusión, si es correcta, haría añicos una apreciada suposición sobre el universo. “Uno de los sustentos básicos de la cosmología es que el universo es el mismo en todas las direcciones, y el modelo estándar de la inflación se construye sobre estos cimientos”, dijo Erickcek a New Scientist. “Si la asimetría es real, entonces nos dice que un lado del universo es de algún modo distinto al otro lado”.

“El universo, tan vasto para la mayoría de nosotros, a veces les resulta pequeño a los cosmólogos. Observando a enormes distancias de la Tierra han encontrado una “ventana” que podría mostrarnos que existe algo más allá de los 45.000 millones de años luz, el “borde final” observable de esta burbuja cósmica que nos aloja. ¿Constituye esto una evidencia de la existencia otros universos?”

 

 

Resultado de imagen de Más allá del Borde del UNiverso

 

Por el momento no tenemos los medios Tecnológicos para poder contestar la pregunta

 

He buscado diversas opiniones y estudios que arriba están para su lectura, y, también he plasmado aquí mis propias opiniones sobre todo este complejo tema. Leyendo a unos y otros sabemos que, a nada se ha llegado de manera definitiva pero, la idea de que más allá del horizonte de nuestro Universo, hay algo más, toma fuerza y amplia nuestra visión en relación a dónde podemos estar y lo que, verdaderamente pueda ser todo esto.

Para más abundamiento, se incluyen hoy dos entrevistas que el Pais publicó sobre el tema y, con ellas, oyendo lo que los científicos opinan del tema, podéis sacar vuestras propias conclusiones.La mías es: ¡Que todo es posible! Sin embargo, necesitamos Tiempo para demostrarlo.

emilio silvera