martes, 23 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Qué bonito es saber! A mí me gustaría

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (14)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La clásica Nebulosa de Orión

  

                     Nebulosa de Orión, M42 que está creando nuevos sistemas planetarios

 

“Al principio todo era opacidad, las estrellas no llegaron al universo hasta después de pasados 200 millones de años desde el Big Bang, y, hasta que no se liberaron los fotones, no se hizo la luz.”

 

Resultado de imagen de La liberación de los fotones hizo el Universo transparente

 

 

Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron los primeros quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.  Doscientos millones de años más tarde, se formaron las primeras estrellas y y las  galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados.  Avanza creando en el horno termonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de  una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Archivo:Ngc604 hst.jpg

Una región H II es una nube de gas y plasma brillante que puede alcanzar un tamaño de varios cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de ultravioleta extremo (con longitudes de onda inferiores a 912 Ångströms) que ionizan la nebulosa a su alrededor.

Puesto que el peso promedio de los protones en los productos de fisión, como el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante  E = mc2. Esta es la fuente de energía que subyace en las explosiones  atómica.

Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente, no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.

Sin embargo, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol.

Sí, hemos podido llegar a conocer lo que ocurre en el Sol, y sabemos de sus procesos y de qué está compuesto. También sabemos el motivo por el que no se deja contraer bajo el peso de la fuerza de Gravedad que genera su propio peso y en qué se convertirá cuando llegue el final de su vida.

Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar (hay que eliminar a Plutón de la lista, ya que en el último Congreso Internacional han decidido, después de más de 20 años, que no tiene categoría para ser un planeta), la estrella más cercana a la Tierra (150 millones de Km = UA), con un diámetro de 1.392.530 Km, tiene una edad de 4.500 millones de años.

El Sol pesa 2.000 millones de trillones de toneladas. La masa del Sol, pues, equivale a unas 332.950 veces la masa de la Tierra. Ha fusionado la mitad de su combustible nuclear y le quedan otros 5.000 millones de años para agotar el combustible de fusión

Diez datos sorprendentes que probablemente no sabías del Sol: quema la masa equivalente a un millón de elefantes por segundo

Es tal su enormidad que, como se explicó en otro pasaje anterior de este mismo trabajo, cada segundo transforma por medio de fusión nuclear, 4.654.000 toneladas de hidrógeno en 4.650.000 toneladas de helio; las 4.000 toneladas restantes son lanzadas al espacio exterior en forma de luz y calor, de la que una parte nos llega a la Tierra y hace posible la vida. Se calcula que al Sol le queda material de fusión para otros 4.500 millones de años. Cuando transcurra dicho periodo de tiempo, se convertirá en una gigante roja, explotará como nova y se transformará finalmente en una estrella enana blanca. Para entonces, ya no podremos estar aquí.

La misión Parker de la NASA, de camino al Sol

Parker, la única sonda que lleva el nombre de un investigador aún vivo, es la misión creada por el ser humano que más va a acercarse a nuestro astro: en sus últimas tres órbitas, de las 24 que hará, estará a tan solo 6,8 millones de kilómetros del Sol —la Tierra está a 149,6 millones de kilómetros de nuestra estrella—.

Resultado de imagen de La sonda Parker Camino del Sol

Está previsto que la misión dure siete años y, debido a la proximidad del astro a la que llegará, tiene un escudo térmico y un sistema de refrigeración que mantendrá los instrumentos a una temperatura óptima para que pueda funcionar a pesar de la cercanía con el Sol. Dentro de la sonda y tras el escudo y el sistema de refrigeración, la temperatura oscilará entre 30 y 40 grados centígrados.

Resultado de imagen de La sonda Parker Camino del Sol

                                                           Así inició su viaje de siete años

“Los objetivos son tres: estudiar el calentamiento de la corona —la capa más externa de nuestra estrella— respecto de la superficie solar y encontrar los mecanismos que producen el viento solar y las eyecciones de masa coronal”, explica a Hipertextual David Lario, investigador español del Laboratorio de Física Aplicada de la Universidad Johns Hopkins, que ha participado en el diseño de la misión.

Resultado de imagen de La Ment en el Universo

Cuando mentalmente me sumerjo en las profundidades inmensas del universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos, en realidad, en relación al universo, Como una colonia de bacterias que habitan en una manzana, allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno.

vista de la tierra y el sol de la órbita (la imagen de la tierra tomada de http://visibleearth.nasa.gov) Foto de archivo - 4911867

                          Vista de la Tierra y el Sol

Igualmente, nosotros nos creemos importantes dentro de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados. Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante pero… ¡Todo se andará!

Tendremos que dominar la energía del Sol, ser capaces de fabricar naves espaciales que sean impenetrables a las partículas que a cientos de miles de trillones circulan por el espacio a la velocidad de la luz, poder inventar una manera de imitar la gravedad terrestre dentro de las naves para poder hacer la vida diaria y cotidiana sin estar flotando todo el tiempo y, desde luego, buscar un combustible que procure altas  velocidades que, si no relativistas ni cercanas a c, si que hagan los viajes a los mundos cercanos de una duración aceptable y soportable a los viajeros, ya que, de otra manera, el traslado por la periferia de nuestro propio Sistema solar se haría interminable. Finalmente, y para escapar del sistema solar, habría que buscar la manera de burlar  la barrera de la velocidad de la luz.

El Hiperespacio podría ser el camino para burlar la velocidad de la luz. Es decir, ya que el Universo, en su espacio tradicional, nos impide viajar más rápido que la luz, busquemos ese otro camino situado en dimensiones extra que, ¡sí lo permitiría! De manera tal que podríamos viajar a otras galaxias en tiempos soportables para nuestras efímeras vidas.

“Si pudiéramos encontrar el camino hacia dimensiones más altas… ¿Cuántas respuestas encontraríamos allí?”

 

emilio silvera

¡Qué gran imaginación tenemos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

L

 

Lo último que nos dicen es que el Universo entero flota en un océano de masa negativa. Está claro que lo que se dice saber… No sabemos mucho sobre ciertas cuestiones complejas a las que no hemos posido llegar y, como siempre nos pasa, es la metafísica, esa rama de la física que pretende explicar las complejidades la que tiene que buscar las respuestas.

Resultado de imagen de ¿Flotará el Universo en un océano de masa negativa

Un investigador británico propone en su nuevo trabajo que la materia oscura y la energía oscura están unidas en un solo “fluido oscuro de masas negativas”.

El astrofísico Jamie Farnes, de la Universidad de Oxford (Reino Unido), podría tener la explicación a uno de los principales misterios de la cosmología moderna: la invisibilidad del 95 % del universo, según apunta su estudio publicado este miércoles en la revista Astronomy & Astrophysics.

El modelo imperante hasta ahora indica que el 95% del universo está compuesto por materia oscura y energía oscura, que no pueden ser observadas. En su trabajo, Farnes propone un nuevo modelo en el que estos dos fenómenos están unidos en una sola masa fluida negativa.

“Ambas [materia oscura y energía oscura] han sido tratadas como fenómenos separados”, explicó el especialista en un artículo publicado en el portal The Conversation, donde planteó que estas “podrían ser parte de un mismo concepto singular: un único y unificado ‘fluido oscuro’ de masas negativas”. En su opinión, este fluido “tiene un tipo de la gravedad negativa” que le hace “repeler cualquier otro material” a su alrededor.

"Debemos reescribir los manuales de astronomía": Resuelven un misterio de los agujeros negros

La idea de la materia negativa ya fue propuesta con anterioridad, pero fue descartada por los expertos, que argumentaron que esa masa se volvería menos densa a medida que se extendiera el universo, lo cual contradiría las observaciones que indican que la materia negativa no se hace más delgada con el tiempo. En ese contexto, la investigación de Farnes propone la existencia de un ‘tensor de creación’ que permitiría que la masa negativa se creara continuamente.

Resultado de imagen de radiotelescopio potente Square Kilometre Array (SKA).

El investigador tiene planes para confirmar su teoría con la ayuda del radiotelescopio potente Square Kilometre Array (SKA). “Si [la hipótesis] es real, sugeriría que la falta del 95 % del espacio tenía una solución estética: habíamos olvidado incluir un simple signo negativo”, resumió Farnes, citado por Phys.org.

 

Representación del movimiento del gas en el borde del agujero negro del centro de la galaxia del Compás. / alma-telescope.jp. La inquietud que llevamos dentro nos empuja a querer saber y, el tema de la “materia oscura” y de los agujeros negros trae de cabeza a media comunidad científica.

Un grupo de investigadores liderado por Takuma Izumi, del Observatorio Astronómico Nacional de Japón (OANJ), utilizó el complejo de radiotelescopios del Atacama Large Millimeter/submillimeter Array (ALMA), al norte de Chile, para observar un agujero negro supermasivo en la galaxia del Compás, situada a 14 millones de años luz de la Tierra.

Los datos recopilados fueron luego comparados con una simulación de succión de gas por agujero negro usando la supercomputadora Cray XC30 ATERUI, operada por el OANJ.

Por imaginar… ¡Que no quede!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Representación de un agujero negro

Representación de un agujero negro – Zhaoyo Li

¿Están los agujeros negros enviando materia al futuro?

Astrónomos sugieren que el Espacio-Tiempo se curva muy fuertemente cerca del centro de un agujero negro, pero que no llega a quebrarse, sino que continúa en una región en el futuro que tiene estructura de un agujero blanco.

Resultado de imagen de Agujeros Blancos

 

 

 

Hace apenas unos días, publicábamos en ABC una serie de nuevas ideas que abren la posibilidad a la existencia real de agujeros blancos, objetos teóricos que funcionarían «al contrario» de los agujeros negros, expulsando materia en lugar de absorberla. Carlo Rovelli, investigador del Centro de Física Teórica del CNRS francés y de la Universidad de Aix-Marseille, sostenía que los agujeros blancos son, en realidad, una evolución de los propios agujeros negros.

Imagen relacionadaResultado de imagen de Agujeros Blancos

Según el artículo, en uno entra la materia en nuestro Universo para hacer un viaje hacia el futuro donde aparecerá en forma de agujero blanco. Imposible, lo que se dice imposible hay pocas cosas pero… ¡Esto me parece rizar el rizo! Hay muchas razones para no creer que el destino de la materia de un agujero negro sea el de viajar al futuro (que no existe).

Y ahora, dos nuevos estudios recién publicados en Physical Review Letters y Physical Review D, respectivamente, abundan en esa posibilidad. Y sugieren que toda la materia que se traga un agujero negro podría ir a parar… al futuro.

Los agujeros negros siguen estando entre los objetos más misteriosos del Universo. Conocemos, eso sí, lo que sucede fuera de ellos, a su alrededor e incluso en el mismísimo horizonte de sucesos, la frontera invisible que marca el punto de no retorno para cualquier cosa que la cruce, incluída la luz. Pero nadie sabe a ciencia cierta lo que sucede al otro lado de ese límite, dentro de un agujero negro, ni tampoco cuál es el destino final de la materia atrapada en él.

Resultado de imagen de La Singularidad del agujero negro

Esto es, lo que siempre nos dijeron los físicos según la Relatividad General

Según la Teoría General de la Relatividad de Einstein, todo lo que entra en un agujero negro seguirá cayendo hacia su centro, atraído por una gravedad cada vez más fuerte, hasta llegar a comprimirse en un único punto de tal densidad que el mismísimo tejido espaciotemporal se quebraría. En ese punto, llamado singularidad, las leyes de la Física ya no tendrían efecto, el mismísimo tiempo se detendría y la realidad tal y como la conocemos se desvanecería por completo.

¿Y si hemos entendido mal los agujeros negros?

 

Resultado de imagen de Es el agujero negro un pasadizo hacia otro universo

 

Si los agujeros negros fueran pasadizos hacia otros universos… ¡Serían agujeros de gusano!

 

 

Resultado de imagen de El Puente de Einstein-Rosen

 

¿Es aquí hasta donde quieren llegar con estas ideas?

 

Pero según Abhay Ashtekar y Javier Olmedo, de la Universidad Estatal de Pennsylvania, y Parampreet Singh, de la de Louisiana, autores de los dos artículos citados arriba, las cosas podrían ser muy diferentes. De hecho, su trabajo, igual que el de Carlo Rovelli, podría cambiar para siempre lo que creemos saber sobre los agujeros negros. Especialmente en lo que se refiere a la auténtica naturaleza de sus centros, que según estos investigadores «podríamos haber entendido mal».

El problema principal, por supuesto, es el de la singularidad. La simple idea de que puedan existir esos puntos que, pese a tener una densidad infinita, no ocupan espacio alguno, se considera como una aberración, algo que no puede existir en la naturaleza. Hasta ahora, y bajo el paraguas de «gravedad cuántica», numerosos investigadores han formulado diversas propuestas teóricas, desarrollando unas matemáticas completamente nuevas que puedan servir para describir cómo funciona la gravedad en el microcosmos de las partículas subatómicas.

Representación gráfica del entramado de bucles que definen el espacio-tiempo según la LQC

“La gravedad cuántica de bucles o de lazos (LQG, por Loop Quantum Gravity), o también gravedad cuántica de recurrencias, es una teoría de gravedad cuántica formulada por Abhay Ashtekar en 1986,1​ que mezcla las teorías aparentemente incompatibles de la mecánica cuántica y la relatividad general. Como teoría de la gravedad cuántica, es el competidor principal de la teoría de las cuerdas, aunque quienes sostienen esta última exceden en número a quienes sostienen la teoría de bucles por un factor, aproximadamente, de 10 a 1″

Uno de esos intentos es la llamada « gravedad cuántica de bucles», que entre otras cosas predice que el espacio-tiempo puede cuantificarse, de modo que existe una unidad mínima más allá de la cual el espacio-tiempo no puede subdividirse más. Pues bien, al aplicar la gravedad cuántica de bucles a los puntos centrales de los agujeros negros, los investigadores afirman que el resultado no fue una singularidad, sino algo muy diferente.

La alternativa a la singularidad

 

 

Resultado de imagen de El espacio-tiempo se curva cerca del agujero negro

 

Los cálculos, en efecto, predicen que el espacio-tiempo se curva muy fuertemente cerca del centro de un agujero negro. Pero no llega a quebrarse, sino que continúa en una región en el futuro que tiene la estructura de un agujero blanco. Un agujero blanco es como un agujero negro pero al revés, es decir, que en lugar de atraer la materia hacia sí, la «dispara» hacia fuera.

Se sabe que en presencia de campos gravitacionales muy fuertes, el tiempo se ralentiza. Y los agujeros negros contienen los campos gravitacionales más fuertes del Universo. Debido a ello, una posible interpretación de este nuevo trabajo es que la materia cae en un agujero negro y luego «rebota», disparando la masa a través del cosmos. Debido a que el tiempo es muy lento cerca del centro de un agujero negro, visto desde fuera ese proceso duraría una enorme cantidad de tiempo. Si los investigadores tienen razón, en un futuro muy lejano, donde ahora hay agujeros negros, la materia estallará, esparciendo la materia por todo el cosmos a través de agujeros blancos.

Imagen relacionada

El cine nos ha dejado alguna visión de lo que podría ser – Escena de Interstellar. Imagen: Warner Bros. / Syncopy / Paramount Pictures / Legendary

La idea es provocativa y muy sugerente, aunque antes de considerarse válida será necesario probarla experimentalmente. Y resulta que existen varias formas de hacerlo. Desde hace tiempo, por ejemplo, científicos de todo el mundo han venido detectando en el espacio una serie de fenómenos enormemente energéticos que se resisten a ser explicados.

Dos de ellos son los rayos cósmicos de alta energía que golpean de cuando en cuando la atmósfera de la Tierra; y los llamados « estallidos rápidos de radio», que se producen cuando se detecta una enorme cantidad de energía de radio en un periodo muy breve de tiempo. Según los investigadores, ambos fenómenos podrían ser, en principio, la firma de un agujero negro en transición hacia un agujero blanco.

Lo mismo que montamos estructuras bnajo tierra para detectar neutrinos, podríamos inventar otras que nos digan, de manera cierta, si todo esto que apunta el reportaje podría ser cierto.

La idea resulta sumamente interesante, aunque no está aún lo suficientemente madura como para ser aceptada por la comunidad científica. Pero si las predicciones de la gravedad cuántica de bucles mejoran y sus resultados empiezan a parecerse más y más a los fenómenos astronómicos inexplicables observados por los astrónomos, entonces habremos dado un gran paso para comprender tanto el pasado como el futuro del Universo en que vivimos.

Reportaje de prensa de José M. Nieves