Abr
16
Desde los átomos hasta las estrellas: Un largo viaje
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
“Pues yo he sido a veces un muchacho y una chica,
Un matorral y un pájaro y un pez en las olas saladas.”
Esto nos decía Empédocles, el padre de aquellos primitivos elementos formados por Agua, tierra, aire y fuego que, mezclados en la debida proporción, formaban todas las cosas que podemos ver a nuestro alrededor. Claro que, él no podía llegar a imaginar hasta donde pudimos llegar después en la comprensión de la materia a partir del descubrimiento de las partículas “elementales” que formaban el átomo. Pero sí, con sus palabras, nos quería decir que, la materia, una veces está conformando mundos y, en otras, estrellas y galaxias.

Sí, hay cosas malas y buenas pero todas deben ser conocidas para poder, en el primer caso aprovecharlas, y en el segundo, prevenirlas.
Pero demos un salto en el tiempo y viajémos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años despuès del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de eneromes energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más sobre los átomos y las estrellas.

Conseguimos tener los átomos en nuestras manos
El intento de lograr tal comprensión exigió una colaboración cada vez mayor entre los astrónomos y los físicos nucleares. Su trabajo llevaría, no sólo a resolver la cuestión de la energía estelar, sino también al descubrimiento de una trenza dorada en la que la evolución cósmica se entrelaza en la historia atómica y la estelar.
La Clave: Fue comprender la estructura del átomo. Que el átomo tenía una estructura interna podía inferirse de varias líneas de investigación, entre ellas, el estudio de la radiactividad: para que los átomos emitiesen partículas, como se había hallado que lo hacían en los laboratorios de Becquerel y los Curie, y para que esas emisiones los transformasen de unos elementos en otros, como habían demostrado Rutherford y el químico inglés Frederick Soddy, los átomos debían ser algo más que simples unidades indivisibles, como implicaba su nombre (de la voz griega que significa “imposible de cortar”).
El átomo de Demócrito era mucho más de lo que él, en un principio intuyó que sería. Hoy sabemos que está conformado por diversaspartículas de familias diferentes: unas son bariones que en el seno del átomo llamamos necleones, otras son leptones que gitan alrededor del núcleo para darle estabilidad de cargas, y, otras, de la familia de los Quarks, construyen los bariones del núcleo y, todo ello, está, además, vigilado por otras partículas llamadas bosones intermedios de la fuerza nuclear fuerte, los Gluones que, procuran mantener confinados a los Quarks.
Pero no corramos tanto, la física atómica aún debería recorrer un largo camino para llegar a comprender la estructura que acabamos de reseñar. De los trs principales componentes del átomo -el protón, el neutrón y el electrón-, sólo el electrón había sido identificado (por J.J. Thomson, en los últimos años del siglo XIX). Nadie hablaba de energía “nuclear” pues ni siquiera se había demostrado la existencia de un núcleo atómico, y mucho menos de sus partículas constituyentes, el protón y el neutrón, que serían identificados, respectivamente, por Thomson en 1913 y James Chawick en 1932.

De importancia capital resultó conocer la existencia del núcleo y que éste, era 1/100.000 del total del átomo, es decir, casi todo el átomo estaba compuesto de espacios “vacíos” y, la materia así considerada, era una fracción inifintesimal del total atómico.
Rutherford, Hans Geiger y Ernest Marsden se encontraban entre los Estrabones y Tolomeos de la cartografía atómica, en Manchester , de 1909 a 1911, sonderaron el átomo lanzando corrientes de “partículas alfa” subatómicas -núcleos de helio- contra delgadas laminillas de oro, plata, estaño y otros metales. La mayoría de partículas Alfa se escapaban a través de las laminillas, pero, para sombro de los experimentadores, algunas rebotaban hacia atrás. Rutherford pensó durante largo tiempo e intensamente en este extraño resultado; era tan sorprendente, señalaba, como si una bala rebotase sobre un pañuelo de papel. Finalmente, en una cena en su casa en 1911, anunció a unos pocos amigos que había dado con una explicación: que la mayoría de la masa de un átomo reside en un diminuto núcleo masivo. Ruthertford pudo calcular la carga y el diámetro máximo del nucleo atómico. Así se supo que los elementos pesados eran más pesados que los elementos ligeros porque los núcleos de sus átomos tienen mayor masa.

Todos sabemos ahora, la función que desarrollan los electrones en el atomo. Pero el ámbito de los electrones para poder llegar a la comprensión completa, tuvo que ser explorado, entre otros, por el físico danés Niels Bohr, quien demostró que ocupaban órbitas, o capas, discretas que rodean al núcleo. (Durante un tiempo Bohr consideró el átomo como un diminuto sistema solar, pero ese análisis, pronto demostró ser inadecuado; el átomo no está rígido por la mecánica newtoniana sino por la mecánica cuántica.)
Entre sus muchos otros éxitos, el modelo de Bohr revelaba la base física de la espectroscopia. El número de electrones de un átomo está determinado por la carga eléctrica del núcleo, la que a su vez se debe al número de protones del núcleo, que es la clave de la identidad química del átomo. Cuando un electrón cae de una órbita externa a una órbita interior emite un fotón. La longitud de onda de este fotón está determinada por las órbitas particulares entre las que el electrón efectúa la transición. E esta es la razón de que un espectro que registra las longitudes de onda de los fotones, revele los elementos químicos que forman las estrellas u otros objetos que sean estudiados por el espectroscopista. En palabras de Max Planck, el fundador de la física cuántica, el modelo de Bohr del átomo nos proporciona “la llave largamente buscada de la puerta de entrada al maravilloso mundo de la espectroscopia, que desde el descubrimiento del análisis espectral (por Fraunhoufer) había desafiado obtinadamente todos los intentos de conocerlo”.

Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Es un gran triunfo del ingenio humano el saber de qué, están confomadas las estrellas, de qué materiales están hechas. Recuerdo aquí a aquel Presidente de la Real Society de Londres que, en una reunión multitudinaria, llegó a decir: “Una cosa está clara, nunca podremos saber de qué están hechas las estrellas”. El hombre se vistió de gloria con la, desde entonces, famosa frase. Creo que nada, con tiempo por delante, será imposible para nosotros.
Pero, por maravilloso que nos pueda parecer el haber llegado a la comprensión de que los espectros revelan saltos y tumbos de los electrones en sus órbitas de Bohr, aún nadie podía hallar en los espectros de las estrellas las claves significativas sobre lo que las hace brillar. En ausencia de una teoría convincente, se abandonó este campo a los taxonomistas, a los que seguían obstinadamente registrando y catalogando espectros de estrellas, aunque no sabían hacia donde los conduciría esto.
En el Laboratorio de la Universidad de Harvard, uno de los principales centros de la monótona pero prometedora tarea de la taxonomía estelar, las placas fotográficas que mostraban los colores y espectros de decenas de miles de estrellas se apilaban delante de “calculadoras”, mujeres solteras en su mayoría y, de entre ellas, Henrietta Leavitt, la investigadora pionera de las estrellas variables Cefeidas que tan útiles serían a Shapley y Hubble.

Imagen de Sirio A, la estrella más brillante del cielo tomada por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.
Fue Cannon quien, en 1915, empezó a discernir la forma en una totalidad de estrellas en las que estaba presente la diversidad, cuando descubrió que en una mayoría, las estrellas, pertenecían a una de media docena de clases espectrales distintas. Su sistema de clasificación, ahora generalizado en la astronomía estelar, ordena los espectros por el color, desde las estrellas O blancoazuladas, pasando por las estrellas G amarillas como el Sol, hasta estrellas rojas M. Era un rasgo de simplicidad denajo de la asombrosa variedad de las estrellas.
Pronto se descubrió un orden más profundo, en 1911, cuando el ingeniero y astrónomo autodidacta danés Ejnar Hertzsprung analizó los datos de Cannon y Maury de las estrellas de dos cúmulos, las Híades y las Pléyades. Los cúmulos como estos son genuinos conjuntos de estrellas y no meras alineaciones al azar; hasta un observador inexperimentado salta entusiamado cuando recorre con el telecopio las Pléyades, con sus estrellas color azul verdoso enredadas en telarañas de polvo de diamante, o las Híades, cuyas estrellas varían en color desde el blanco mate hasta un amarillo apagado.

Las Híades
Hertzsprung utilizó los cúmulos como muestras de laboratorio con las que podía buscar una relación entre los colores y los brillos intrínsecos de las estrellas. Halló tal relación: la mayoría de las estrellas de ambos cúmulos caían en dos líneas suavemente curvadas. Esto, en forma de gráfico, fue el primer esbozo de un árbol de estrellas que desde entonces ha sido llamado diagrama Hertzsprung-Russell.
El progreso en física, mientras tanto, estaba bloquedado por una barrera aparentemente insuperable. Esto era literal: el agente responsable era conocido como barrera de Coulomb, y por un tiempo frustó los esfuerzos de las físicos teóricos para copmprender como la fusión nuclear podía producir energía en las estrellas.
La línea de razonamiento que conducía a esa barrera era impecable. Las estrellas están formadas en su mayor parte por hidrógeno. (Esto se hace evidente en el estudio de sus espectros.) El núcleo del átomo de Hidrógeno consiste en un solo protón, y el protón contiene casi toda la masa del átomo. (Sabemos esto por los experimentos de Rutherford). Por tanto, el protón también debe contener casi toda la energía latente del átomo de hidrógeno. (Recordemos que la masa es igual a la energía: E = mc2.) En el calor de una estrella, los protones son esparcidos a altas velocidades -el calor intenso significa que las partículas involucradas se mueven a enormes velocidades- y, como hay muchos protones que se apiñan en el núcleo denso de una estrella, deben tener muchísimos choques. En resumen, la energía del Sol y las estrellas, puede suponerse razonablemente, implica las interacciones de los protones. Esta era la base de la conjetura de Eddintong de que la fuente de la energía estelar “difícilmente puede ser otra que la energía subatómica, la cual, como se sabe, existe en abundancia en toda materia”.

Plasma en ebullición en la superficie del Sol
Hasta el momento todo lo que hemos repasado está bien pero, ¿que pasa con la Barrera de Coulomb? Los protones están cargados positivamente; las partículasd de igual carga se repelen entre sí; y este obstáculo parecía demasiado grande para ser superado, aun a la elevada velocidad a la que los protones se agitaban en el intenso calor del interior de las estrellas. De acuerdo con la física clásica, muy raras veces podían dos protones de una estrella ir con la rapidez suficiente para romper las murallas de sus campos de fuerza electromagnéticos y fundirse en un solo núcleo. Los cálculos decían que la tasa de colisión de protones no podía bastar para mantener las reacciones de fusión. Sin embargo, allí estaba el Sol, con el rostro radiante, riéndose de las ecuaciones que afirmaban que no podía brillar.


Afortunadamente, en el ámbito nuclear, las reglas de la Naturaleza no se rigen por las de la mecánica de la física clásica, que tienen validez para grandes objetos, como guijarros y planetas, pero pierden esa validez en el reino de lo muy pequeño. En la escala nuclear, rigen las reglas de la indeterminación cuántica. La mecánica cuántica demuestra que el futuro del protón sólo puede predecirse en términos de probabilidades: la mayoría de las veces el protón rebotará en la Barrera de Coulomb, pero de cuando en cuando, la atravesará. Este es el “efecto túnel cuántico”; que permite brillar a las estrellas.
George Gamow, ansioso de explotar las conexiones entre la astronomía y la nueva física exótica a la que era adepto, aplicó las probabilidades cuánticas a la cuestión de la fusión nuclear en las estrellas y descubrió que los protones pueden superar la Barrera de Coulomb. Esta historia es mucho más extensa y nos llevaría hasta los trabajos de Hans Bethe, Edward Teller y otros, así como, al famoso Fred Hoyle y su efecto Triple Alfa y otras maravillas que, nos cuentan la historia que existe desde los átomos a las estrellas del cielo.
emilio silvera
Abr
16
Materia de sombra, Axiones, ¿WIMPs en el Sol? ¿Y la vida?
por Emilio Silvera ~
Clasificado en Física ~
Comments (0)

Es curioso como a veces, la realidad de los hechos observados, vienen a derribar esas barreras que muchos ponen en sus mentes negar lo evidente. Por ejemplo: Los extraordinarios resultados de la sonda Kepler, que en su primer año de misión ha encontrado ya 1.235 candidatos a planetas, 54 de ellos en la zona habitable de sus estrellas, ha permitido a los investigadores extrapolar el número total de mundos que podría haber sólo en la Vía Láctea, nuestra galaxia. Y ese número ronda los 50.000 millones. De los cuales, además, unos 500 millones estarían a la distancia adecuada de sus soles para permitir la existencia de agua en estado líquido, una condición necesaria para la vida.

Planetas parecidos a la Tierra, como arriba nos dicen, hay miles de millones y sólo cabe esperar que estén situados en los lugares adecuados que la vida tenga la oportunidad de surgir acogida por el ecosistema ideal del agua líquida, una atmósfera acogedora y húmeda, temperatura ideal media y otros parámetros que la vida reqiere para su existencia.

Un equipo de astrónomos internacionales pertenecientes al Observatorio Europeo Austral (ESO), el más importante del mundo, investiga la formación de un posible sistema planetario a partir de discos de material que rodea a una estrella joven. Según un comunicado difundido hoy por el centro astronómico que se levanta en la región norteña de Antofagasta, a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.
Según los astrónomos, los planetas se forman a partir de discos de material que rodean a las estrellas, pero la transición discos de polvo hasta sistemas planetarios es rápida y muy pocos son identificados en esta fase. Uno de los objetos estudiados por los astrónomos de ESO, es la estrella T Chamaleontis (T-Cha), ubicada en la pequeña constelación de Chamaleón, la cual es comparable al sol pero en sus etapas iniciales.
Dicha estrella se encuentra a 330 años luz de la Tierra y tiene 7 millones de años de edad, lo que se considera joven para una estrella. “Estudios anteriores han demostrado que T Cha es un excelente objetivo para estudiar cómo se forman los sistemas planetarios”, señala el astrónomo Johan Olofsson, del Max Planck Institute of Astronomy de Alemania.

Algunas veces hablando de los extensos y complejos temas que subyacen en la Astronomía, lo mismo hablamos de “materia de sombre” que de “supercuerdas” y, se ha llegado a decir que existe otro universo de materia de sonbra que existe en paralelo al nuestro. Los dos universos se separaron la Gravedad se congeló sepapándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo cual las convierte en candidatas ideales para la tan traida y llevada “materia oscura”.
Llegamos a los Axiones.

El actual de la cuestión es que los cosmólogos creen saber que hay una gran cantidad de materia oscura en el Universo y, han conseguido eliminar la candidatura de cualquier tipo de partícula ordinaria que conocemos. En tales circunstancias no se llegar a otra conclusión que la materia oscura debe de existir en alguna forma que todavía no hemos visto y cuyas propiedades ignoramos totalmente. Sin embargo, se atreven a decir que, la Gravedad, es el efecto que se produce cuando la “materia oscura” pierde consistencia… , o algo así. ¡Cómo son!
A los teóricos nada les gusta más que aquella situación en la cual puedan dejar volar libremente la imaginación sin miedo a que nada tan brusco un experimento u observación acabe con su juego. En cualquier caso, han producido sugerencias extraordinarias acerca de lo que podría ser la “materia oscura” del universo.

Lo que hay en el Universo…no siempre lo podemos comprender.
Otro de los WIMPs favoritos se llama axión. el fotino y sus compañeros, el axión fue sugerido por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el Universo en el segundo 10ˉ³5, más que de las teorías totalmente unificadas que operan en el tiempo de Planck.
mucho tiempo han sabido los físicos que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la película hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reversa del tiempo (pasar la película al revés).

Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es éste el caso. El mundo visto en un espejo se desvía un tanto al mundo visto directamente, y lo mismo sucede al mundo visto cuando la película pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el inverso en cada uno de estos casos se cancelan una a la otra cuando miramos las tres combinadas.
Aunque esto es verdad, es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?
La respuesta a esta cuestión parece que estar en la posible existencia de esa otra partícula apellidada axión. Se supone que el Axión es muy ligero (menos de una millonésima parte de la masa del electrón) e interacciona sólo débilmente con otra materia. Es la pequeña masa y la interacción débil lo que explica el “casi” que preocupa a los teóricos.

Las branas son entidades físicas conjeturadas por la teoría M y su vástago, cosmología de branas. En la teoría M, se postula la existencia de p-branas y d-branas (ambos nombres provienen parasintéticamente de “membrana”). Las p-branas son objetos de dimensionalidad espacial p (por ejemplo, una cuerda es una 1-brana). En cosmología de branas, el término “brana” se utiliza para referirse a los objetos similares al universo cuadridimensional que se mueven en un sustrato de mayor dimensión. Las d-branas son una clase particular de p-branas.

Un escenario posible imagina que el Universo empieza con todas sus dimensiones espaciales comportándose de una manera democrática, pero luego, algunas de las dimensiones quedan atrapadas y permanecen compactadas de manera tal que son infinitesimales, están el el límite de Planck y permanecen, como digo, estáticas y muy pequeñas desde entonces en ese lugar invisible al que no podemos llegar

En el mundo cuántico, todo puede ser posible
nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de momento, es imposible verificarla.
El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.
Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina ( ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.
¿Podeis imaginar la existencia de un Universo en permanente sombra?
La idea de un universo en sombra nos proporciona una manera sencilla de pensar en la materia oscura. El universo dividido en materia y materia se sombra en el Tiempo de Planck, y una evolucionó de acuerdo con sus propias leyes. Es de suponer que algún Hubble de sombra descubrió que ese universo de sombra se estaba expandiendo y es de suponer que algunos astrónomos de sombras piensan en nosotros candidatos para su materia oscura.
¡ que incluso haya unos ustedes de sombras leyendo la versión de sombra de este trabajo!

Partículas y partículas supersimétricas
Partículas son las que todos conocemos y que forman la materia, la supersimétricas, fotinos, squarks y otros, las estamos buscando sin poder hallarlas.
Estas partículas son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados, son mucho más pesadas. Se nombran en analogía con sus compañeras: el squark es el compañero supersimétrico del quark, el fotino del fotón, etc. Las más ligeras de estas partículas podrían ser la materia oscura. Si es así, partícula probablemente pesaría al menos cuarenta veces más que el protón.

Materia de sombra, si existe, no hemos sabido dar con ella y, sin embargo, existen indicios de que está ahí
En algunas versiones de las llamadas teorías de supercuerdas hay todo un universo de materia de sombra que existe paralelo con el nuestro. Los dos universos se separaron la gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo que las convierte en candidatas ideales para la materia oscura.
Axiones
El Axión es una partícula muy ligera (pero presumiblemente muy común) que, si existiera, resolvería un problema antiguo en la teoría de las partículas elementales. Se estima que una masa menor que una millonésima parte de la del electrón y se supone que impregna el universo de una manera semejante al fondo de microondas. La materia oscura consistiría en agregaciones de axiones por encima del nivel general de fondo.

Construímos inmensos aparatos de ingeniosas propiedades tecnológicas tratar de que nos busquen las WIMPs.
¿WIMPs en el Sol?
A lo largo de todo el se ha dado a entender que todas estas partículas candidatas a materia oscura de la que hemos estado hablando, son puramente hipotéticas. No hay pruebas de que ninguna de ellas se vaya a encontrar de hecho en la naturaleza. Sin embargo sería negligente si no mencionase un argumento –un diminuto rayo de esperanza- que tiende a apoyar la existencia de WIMPs de un u otro. Este argumento tiene que ver con algunos problemas que han surgido en nuestra comprensión del funcionamiento y la estructura del Sol.
Creemos que la energía del Sol viene de reacciones nucleares profundas dentro del núcleo. Si éste es el caso en realidad, la teoría nos dice que esas reacciones deberían estar produciendo neutrinos que en principio son detectables sobre la Tierra. Si conocemos la temperatura y composición del núcleo ( creemos), entonces podemos predecir exactamente cuántos neutrinos detectaremos. Durante más de veinte años se llevó a cabo un experimento en una mina de oro de Dakota del Sur para detectar esos neutrinos y, desgraciadamente, los resultados fueron desconcertantes. El número detectado fue de sólo un tercio de lo que se esperaba. Esto se conoce como el problema del neutrino solar.

El problema de los neutrinos solares se debió a una gran discrepancia el número de neutrinos que llegaban a la Tierra y los modelos teóricos del interior del Sol. Este problema que duró mediados de la década de 1960 hasta el 2002, ha sido recientemente resuelto mediante un entendimiento de la física de neutrinos, necesitando una modificación en el modelo estándar de la física de partículas, concretamente en las neutrinos” Básicamente, debido a que los neutrinos tienen masa, pueden cambiar del tipo de neutrino que se produce en el interior del Sol, el neutrino electrónico, en dos tipos de neutrinos, el muónico y el tauónico, que no fueron detectados.

La segunda característica del Sol que concierne a la existencia de WIMPs se refiere al hecho de las oscilaciones solares. los astrónomos contemplan cuidadosamente la superficie solar, la ven vibrar y sacudirse; todo el Sol puede pulsar en períodos de varias horas. Estas oscilaciones son análogas a las ondas de los terremotos, y los astrónomos llaman a sus estudios “sismología solar”. Como creemos conocer la composición del Sol, tenemos que ser capaces de predecir las propiedades de estas ondas de terremotos solares. Sin embargo hay algunas duraderas discrepancias entre la teoría y la observación en este campo.
No mucho que los astrónomos han señalado que si la Galaxia está en realidad llena de materia oscura en la de WIMPs, entonces, durante su vida, el Sol habría absorbido un gran número de ellos. Los WIMPs, por tanto, formarían parte de la composición del Sol, una parte que no se había tenido en cuenta hasta ahora. Cuando los WIMPs son incluidos en los cálculos, resultan dos consecuencias: primero, la temperatura en el núcleo del Sol resulta ser menor de lo que se creía, de forma que son emitidos menos neutrinos, y segundo, las propiedades del cuerpo del Sol cambian de tal modo que las predicciones de las oscilaciones solares son exactas.

nos atrevemos a exponer una imagen que nos muestra la distribución de los WIMPs
Este resultado es insignificante en lo que se refiere a la existencia de WIMPs, pero no debemos despreciar las coincidencias halladas, lo más prudente será esperar a nuevos y más avanzados experimentos (SOHO y otros). Tanto el problema del neutrino como las oscilaciones se pueden explicar igualmente por otros efectos que no tienen nada que ver con los WIMPs. Por ejemplo, el tipo de oscilaciones de neutrinos podría resolverse si el neutrino solar tuviera alguna masa, aunque fuese muy pequeña, y diversos cambios en los detalles de la estructura interna del Sol podrían explicar las oscilaciones. No obstante estos fenómenos solares constituyen la única indicación que tenemos de que uno de los candidatos a la materia oscura pueda existir realmente.
Toda charla sobre supersimetría y teoría últimas da a la discusión de la naturaleza de la materia oscura un tono solemne que no tiene ningún parecido con la forma en que se lleva en realidad el debate entre los cosmólogos. Una de las cosas que más me gusta de este campo es que todo el mundo parece ser capaz de conservar el sentido del humor y una distancia respecto a su propio trabajo, ya que, los buenos científicos saben que, todos los cálculos, conjeturas, hipótesis y finalmente teorías, no serán visadas en la aduana de la Ciencia, hasta que sean muy, pero que muy bien comprobadas mediante el experimento y la observación y, no una sino diez mil veces de que puedan ser aceptadas en el ámbito puramente científico.

El el Sol podemos hallar algunas respuestas
Posiblemente, el LHC nos pueda decir algo al respecto si, como no pocos esperan, de sus colisiones surgen algunas partículas supersimétricas que nos hablen de ese otro mundo oscuro que, estando en este, no hemos sabido encontrar este momento. Otra posibilidad sería que la tan manoseada materia oscura no existiera y, en su lugar, se descubriera otro fenómeno o mecanismo natural desconocido hasta ahora que, incidiendo en el comportamiento de expansión del Universo, nos hiciera pensar en la existencia de la “materia oscura” cubrir el hueco de nuestra ignorancia.

Vuelve al trabajo buscando partículas SUSY
Hace algún tiempo, en esas reuniones periódicas que se llevan a cabo entre científicos de materias relacionadas: física, astronomía, astrofísica, comología…, alguien del grupo sacó a relucir la idea de la extinción de los dinosaurios y, el hombre se refirió a la teoría (de los muchas que circulan) de que el Sol, en su rotación alrededor de la Vía Láctea, se salía periódicamente fuera del plano de la Galaxia. Cuando hacía esto, el polvo existente en ese plano podía cesar de proteger la Tierra, que entonces quedaría bañada en rayos cósmicos letales que los autores de la teoría pensaban que podían permeabilizar el cosmos. Alguien, el fondo de la sala lanzó: ¿Quiere decir que los dinosaurios fueron exterminados por la radiación de fotinos?
La cosa se tomó a broma y risas marcaron el final de la reunión en la que no siempre se tratan los temas con esa seriedad que todos creen, toda vez que, los conocimientos que tenemos de las cosas son muy limitados y tomarse en serio lo que podría no ser… ¡No sería nada bueno!

Por ejemplo, si vemos la imagen de arriba y un letrero que diga: “Dopar un aislante topológico con impurezas magnéticas rompe la simetría de inversión temporal y abre una nueva vía a la espintrónica.” Para la mayoría de los presentes, el galimatias no le dirá nada y, sin embargo, para otros al tanto de las cuestiones de física, le parecerá que: “Los aislantes topológicos son materiales que conducen electrones en su superficie exterior, pero actúan como aislantes en su volumen interior. propiedad tiene su origen en la forma en que los electrones se mueven a través del material. Los electrones poseen un espín mecánico-cuántico que apunta hacia “arriba” o hacia “abajo”. El espín es normalmente independiente del movimiento de los electrones, pero dentro de los aislantes topológicos, el espín de los electrones está estrechamente relacionado con su movimiento.”
¡Qué cosas! Lo que digo siempre… ¡Nunca llegaremos a saberlo todo!
emilio silvera
Abr
15
Espacio-tiempo curvo y los secretos del Universo
por Emilio Silvera ~
Clasificado en El Universo dinámico ~
Comments (0)

La densidad de energía-momentun en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. En física las ecuaciones del campo de Einstein, ecuaciones de Einstein o ecuaciones de Einstein-Hilbert, son un conjunto de 10 ecuaciones de la teoría de la relatividad general postulada por A. Einstein que describen la Interacción fundamental de la Gravitación como resultado de que el espacio-tiempo está siendo curvado por la materia y la energía que determinan la geometría del Espacio.

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la maisma manera, en presencia de masa se distosiona el esapcio-tiempo que se curva en función de la masa allí presente. No es el mismo espacio aquel en el que se encuentra una gran galaxia que, ese otro en el que sólo está presente un pequeño mundo. Sin embargo, tanto en uno como en el otro caso, la gravedad que emite el objeto de materia de que se trate, incide en el espacio circundante y en los objetos vecinos.
La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski). Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.
La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.
![]()
En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.
En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un nombre. (“¿Qué hay en un nombre? Lo que llamamos rosa, ¿”con cualquier otro nombre tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-) La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.
También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.
Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.
Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividad general que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.
En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.
El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.
Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…
Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.
Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.
![]()
Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

Esta pretende ser la imagen de un extraño objeto masivo, un quásar que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).
Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.
Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

Las primeras estrellas del universo eran enormes, pesadas, y muy calientes. Brillaron con furia, vivieron rápido y murieron jóvenes. Pero aquellas primeras estrellas nos …
Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el universo. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

Supernova 1987 A
El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.
Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espaciotiempo y dibujar la geometría del universo.

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.
Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.
Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negro encontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.
Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta la extenuación:
“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado” Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.“
El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.
![]()
Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.
¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!
emilio silvera
Abr
15
Vida en Encelado
por Emilio Silvera ~
Clasificado en Vida en otros mundos ~
Comments (0)
Una sonda de la NASA confirma que puede haber vida en Encélado
La misión ‘Cassini’ encuentra compuestos químicos esenciales para sustentar microbios en la luna de Saturno

En octubre de 2015 la sonda Cassini de la NASA hizo una maniobra para la que no había sido diseñada. La nave cambió su rumbo y se dirigió al polo sur de Encélado, la luna helada de Saturno. Desde hace unos años, este cuerpo que supera por poco los 500 kilómetros de diámetro y cuyo núcleo rocoso está sepultado bajo un sarcófago de hielo de unos 40 kilómetros de espesor es uno de los principales favoritos a albergar vida más allá de la Tierra.
El objetivo de Cassini era analizar la composición de las nubes de gas que emanan como géiseres en el polo sur de esta luna. Los responsables de la misión de la agencia espacial de EE UU programaron un vuelo a apenas 49 kilómetros de la superficie, el más cercano realizado nunca. La nave atravesó las nubes de Encélado a 19.000 kilómetros por hora y su pasada duró apenas fracciones de segundo. La esperanza era capturar algunas de las partículas de agua y otros compuestos que emanan de los géiseres a unos 400 metros por segundo.

Lo más plausible es que los gases se hayan originado por actividad hidrotermal
Los resultados del análisis, publicados hoy en la revista Science por el equipo científico de la misión, apuntan a que Encélado puede albergar formas de vida simples, similares a las que existen en las profundidades de los océanos de la Tierra. El espectrómetro de masas a bordo de la sonda muestra que los gases escupidos por los géiseres contienen moléculas de hidrógeno y dióxido de carbono. Estos dos compuestos suponen un 1,4% y un 0,8% del volumen total, respectivamente.
Lo más plausible es que los gases se hayan originado por actividad hidrotermal, consideran los científicos. En la Tierra, este tipo de procesos suceden en el fondo de océanos cuando el magma a altas temperaturas entra en contacto con las rocas y el agua. Las fumarolas hidrotermales albergan comunidades microbianas capaces de alimentarse de los compuestos químicos presentes en estos entornos. Una de las hipótesis sobre el origen de la vida en la Tierra es que surgiese al calor de estas chimeneas subacuáticas.

Hay microbios que habitan estos entornos que usan hidrógeno molecular y dióxido de carbono para generar metano. “Algunos de los microorganismos más antiguos de la Tierra usan estos metabolismos basados en el dihidrógeno”, resaltan los autores del estudio, liderado por Hunter Waite, del Instituto de Investigación del Suroeste y líder del equipo científico del instrumento que ha analizado los gases de Encélado. Los científicos señalan que el mismo proceso podría estar sucediendo en el fondo del océano de Encélado, a unos 10 kilómetros de profundidad bajo el por ahora impenetrable sarcófago de hielo que lo recubre. En estudios anteriores la Cassini demostró que las emanaciones de Encélado también contienen agua, metano y compuestos orgánicos. La presencia de vida sería una de las explicaciones de la existencia de los dos elementos detectados por la Cassini en este último estudio, aunque también podrían deberse a otros procesos ajenos a la presencia de microbios, advierten los responsables del trabajo.

Esta misión, la que mejor ha estudiado Saturno y su espectacular sistema de anillos helados y lunas, terminará en septiembre de este año. Está previsto que la sonda explore la zona interna de Saturno antes de suicidarse en la atmósfera del gigante gaseoso, una última maniobra concebida precisamente para no contaminar Encélado de cara a futuras misiones en busca de vida.
Buscando vida bajo el hielo
“Si son correctas, estas observaciones tienen implicaciones fundamentales para la posibilidad de que haya vida en Encélado”, señala Jeffrey Seewald, de la Institución Oceanográfica Woods Hole (EE UU), en un comentario al estudio publicado en Science. El mismo “desequilibrio químico que sostiene a la vida microbiana en las profundidades de los océanos de la Tierra existe también en el océano de Encélado”, resalta este experto. En su opinión, los responsables del estudio “presentan argumentos convincentes de que la fuente más probable de los elementos detectados son las reacciones entre roca y agua en el núcleo de silicato”, destaca. Sin embargo, aún quedan muchas preguntas por responder. Por ejemplo, aún no hay pruebas de que haya actividad magmática en Encélado y se desconocen los procesos geoquímicos que podrían producir chimeneas hidrotermales desde la que el agua a altas temperaturas sería primero canalizada a través del hielo y después escupida con violencia al exterior formando las características nubes que sí ha observado Cassini. Posiblemente esta luna de Saturno es junto a Europa, la luna de Júpiter, la mayor favorita a albergar vida en el Sistema Solar. Por ahora, son los dos únicos entornos conocidos donde se sabe que hay agua líquida en contacto con las rocas del fondo marino. La NASA va a enviar una misión a Europa en 2020 y existen diseños preliminares para hacer lo mismo en Encélado. Esta segunda sonda podría lanzarse en 2021. Su objetivo sería analizar en más detalle la composición de las emanaciones de los géiseres y demostrar si el origen del metano se debe a comunidades de microbios similares a las de la Tierra.
Abr
14
¿Revoluciones científicas? ¡La Relatividad!
por Emilio Silvera ~
Clasificado en Maravillosa Teoría ~
Comments (0)

Los Pinceles de la Naturaleza construye cuadros que… ¿Ningún pintor puede igualar!

Hemos tenido que construir máquinas inmensas para poder comprobar los efectos que se producen en un cuerpo cuando éste quiere ir más rápido que la luz. Lo predijo la teoría de la relatividad especial de Einstein y se ha comprobado despuès en los aceleradores de partículas: Nada va más rápido que la luz en nuestro Universo.
Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?
La única respuesta que podemos dar hoy es que así es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

“Esta ecuación representa cómo cambia la masa de un cuerpo a medida que aumenta la velocidad del mismo. La constante “c” es la velocidad de la luz. A medida que la velocidad del cuerpo se acerca a “c”, el cociente se hace 1. Entonces, el denominador se hace cero, y la fracción tiende a infinito. La masa aumenta infinitamente. Y para aumentar la velocidad de un cuerpo cuya masa tiende al infinito, se requiere infinita energía. No hay infinita energía en el Universo, por lo cual es imposible alcanzar la velocidad de la luz. “
De hecho se han observado muónes en el LHC que, alcanzando velocidades cercanas c, aumentaron su masa 10 veces.
A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio. A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad.
Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.


En el futuro, grandes estaciones sumergidas en el océano y ciudades en otros mundos rodeadas de campos de fuerza que impedirán la radiación nosiva mientras tanto se va consiguiendo terraformar el planeta. La tecnología habrá avanzado tanto que nada de lo que hoy podamos imaginar estará fuera de nuestro alcance y, viajar a mundos situados a decenas de años-luz de la Tierra será para entonces, lo cotidiano
Eso es lo que imaginamos pero… ¿Qué maravillas tendremos dentro de 150 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Qué planetas habremos colonizado? ¿Habrá sucedido ya ese primer contacto del que tanto hablamos? ¿Cuántas “Tierras” habrán sido encontradas? ¿Qué ordenadores utilizaremos? ¿Será un hecho cotidiano el viaje espacial tripulado? ¿Estaremos explotando las reservas energéticas de Titán? ¿Qué habrá pasado con la Teoría de Cuerdas? Y, ¿Habrá, por fín aparecido la dichosa “materia oscura”? Haciendo todas estas preguntas de lo que será o podrá ser, nos viene a la memoria todo lo que fue y que nos posibilita hacer estas preguntas.

Una cosa nos debe quedar bien clara, nada dentro de 250 años será lo mismo que ahora. Todo habrá cambiado en los distintos ámbitos de nuestras vidas y, a excepción del Amor y los sentimientos que sentiremos de la misma manera (creo), todo lo demás, habrá dado lugar a nuevas situaciones, nuevas formas de vida, nuevas sociedades, nuevas maneras y, podríamos decir que una Humanidad nueva, con otra visión y otras perspectivas.

Nuevas maneras de sondear la Naturaleza y desvelar los secretos
Pero echemos una mirada al pasado. Dejando a un lado a los primeros pensadores y filósofos, como Tales, Demócrito, Empédocles, Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:
Nuestra Física actual está regida y dominada por dos explosiones cegadoras ocurridas en el pasado: Una fue aquel artículo de 8 páginas que escribiera Max Planck, en ese corto trabajo dejó sentados los parámetros que rigen la Ley de la distribución de la energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de en una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.
Un amigo físico me decía: cuando escribo un libro, procuro no poner ecuaciones, cada una de ellas me quita diez lectores. Siguiendo el ejemplo, procuro hacer lo mismo (aunque no siempre es posible) pero, en esta ocasión dejaremos el desarrollo de la energía de Planck del que tantas veces se habló aquí, y, ponernos ahora a dilucidar ecuaciones no parece lo más entretenido, aunque el lenguaje de la ciencia, no pocas veces es el de los números.
En cualquier evento de Ciencia, ahí aparecen esos galimatias de los números y letras que pocos pueden comprender, dicen que es el lenguaje que se debe utilizar cuando las palabras no pueden expresar lo que se quiere decir. Y, lo cierto es que, así resulta ser.
Después de lo de Planck y su radiación de cuerpo negro, cinco años más tarde, irrumpió en escena otra revolución de la Física se produjo en 1.905, cuando Albert Einstein formuló su teoría de la relatividad especial y nos dio un golpecito en nuestras cabezas para despertar en ellas nuestra comprensión de las leyes que gobiernan el Universo.
Nos dijo que la velocidad de la luz es la máxima alcanzable en nuestro universo, que la masa y la energía son la misma cosa, que si se viaja a velocidades cercanas a la de la luz, el tiempo se ralentiza pero, el cuerpo aumentará su masa y se contraerá en el sentido de la misma…Y, todo eso, ha sido una y mil veces comprobado. Sin embargo, muchas son las pruebas que se realizan para descubrir los fallos de la teoría, veamos una:
Los científicos que estudian la radiación gamma de una explosión de rayos lejanos han encontrado que la velocidad de la luz no varía con la longitud de onda hasta escalas de distancia por debajo de la Longitud de Planck. Ellos dicen que esto desfavorece a algunas teorías de la gravedad cuántica que postulan la violación de la invariancia de Lorentz.
En la invariancia de Lorentz se estipula que las leyes de la física son las mismas para todos los observadores, independientemente de dónde se encuentren en el universo. El amigo Einstein utilizó este principio como un postulado de su teor´çia de la relatividad especial, en el supuesto de que la velocidad de la luz en el vacío, no depende de que se esté midiendo, siempre y cuando la persona esté en un sistema inercial de referencia. En más de 100 años la invariancia de Lorentz nunca ha sido insuficiente.



La Teoría de cuerdas nos habla de las vibraciones que éstas emiten y que son partículas cuánticas. En esta teoría, de manera natural, se encuentran las dos teorías más importantes del momento: La Gravedad y la Mecánica cuántica, allí, subyacen las ecuaciones de campo de la teoría de la relatividad de Einstein que, cuando los físicas de las “cuerdas” desarrollan su teoría, aparecen las ecuciones relativista, sin que nadie las llame, como por arte de magia. Y, tal aparición, es para los físicos una buena seña.
Sin embargo, los físicos siguen sometiendo a pruebas cada vez más rigurosas, incluyendo versiones modernas del famoso experimento interferométrico de Michelson y Morley. Esta dedicación a la precisión se explica principalmente por el deseo de los físicos para unir la mecánica cuántica con la relatividad general, dado que algunas teorías de la gravedad cuántica (incluyendo la teoría de cuerdas y la gravedad cuántica de bucles) implica que la invariancia Lorentz podría romperse.

Granot y sus colegas estudiaron la radiación de una explosión de rayos gamma (asociada con una explosión de gran energía en una galaxia distante) que fue descubierto por la NASA con el Fermi Gamma-Ray Space Telescope. Se analizó la radiación en diferentes longitudes de onda para ver si había indicios de que los fotones con energías diferentes llegaron a los detectores del Fermi en diferentes momentos.
Tal difusión de los tiempos de llegada parece indicar que la invariancia Lorentz efectivamente había sido violada, es decir que la velocidad de la luz en el vacío depende de la energía de la luz y no es una constante universal. Cualquier dependencia de la energía sería mínima, pero aún podría resultar en una diferencia mensurable en los tiempos de llegada de fotones debido a los miles de millones de años luz de a la que se encuentran las explosiones de rayos gamma en una galaxia lejana.
Cuando nos acercamos a la vida privada del genio… ¡también, como todos, era humano!
De la calidad de Einstein como persona nos habla un detalle: Cuando el Presidente Chaim Weizmann de Israel murió en 1952, a Einstein se le ofreció la presidencia, pero se negó, diciendo que no tenía “ni la habilidad natural ni la experiancia para tratar con seres humanos.” Luego escribió que se sentía muy honrado por el ofrecimiento del estado de Israel, pero a la vez triste y avergonzado de no poder aceptarla.
Pero sigamos con la segunda revolución de su teoría que se dio en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad que incluía la Gravedad, es decir la llamada relatividad general que varió por completo el concepto del Cosmos y nos llevó a conocer de manera más profunda y exacta cómo funcionaba la Gravedad, esa fuerza descrita por primera vez por Newton.

Einstein nos decía que el espacio se curva en presencia de grandes masas
En la Teoría Especial de la Relatividad, Einstein se refirió a sistemas de referencias inerciales (no acelerados). Asume que las leyes de la física son idénticas en todos los sitemas de referencia y que la velocidad de la luz en el vacío, c, es constante en el todo el Universo y es independiente de la velocidad del obervador.
La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una de las conclusiones de la teoría es que la masa de un cuerpo, aumenta con la velocidad (hay una ecuación quer así lo demuestra), y, tal hecho, ha sido sobradamente comprobado en los aceleradores de partículas donde un muón, ha aumentado más de diez veces su masa al circular a velocidades cercanas a la de la luz. Y el muón que tiene una vida de dos millonésimas de segundo, además, al desplazarse a velocidades relativistas, también ven incrementado el tiempo de su vida media.

El Acelerador de Partículas LHC es una Obra inmensa que ha construido el SER Humano para saber sobre la Naturaleza de la materia y…
Todos esos impulsos son llevados a procesadores electrónicos de datos a través de cientos de miles de cables. Por último, se hace una grabación en carrete de cinta magnética codificada con ceros y unos. La cinta graba las violentas colisiones de los protones y antiprotones, en las que generan unas setenta partículas que salen disparadas en diferentes direcciones dentro de las varias secciones del detector.

El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura
La ciencia, en especial la física de partículas, gana confianza en sus conclusiones por duplicación; es decir, un experimento en California se confirma mediante un acelerador de un estilo diferente que funciona en Ginebra con otro equipo distinto que incluye, en cada experimento, los controles necesarios y todas las comprobaciones para que puedan confirmar con muchas garantías, el resultado finalmente obtenido. Es un proceso largo y muy complejo, la consecuencia de muchos años de investigación de muchos equipos diferentes.


Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. En la teoría de Einstein se generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).
Otras de las conclusiones de la teoría relativista en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.
Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.

Todo lo grande está hecho de cosas pequeñas
Fue Max Planck, el Editor de la Revista que publicó el artículo de Albert Einstein de la relatividad quien al leerlo se dió cuenta de la enorme importancia de lo que allí se decía. A partir de aquel momento, se convirtió en su valedor, y, Einstein, mucho más tarde reconoció publicamente tal ayuda.
En la segunda parte de su teoría, la Relatividad General, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y, también la que hace posible la existencia de las Galaxias.
![]()

¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia. La gravedad presente en un agujero negro gigante hace que en ese lugar, el tiempo deje de existir, se paralice y el espacio, se curve en una distorsión infinita. Es decir, ni espacio ni tiempo tienen lugar en la llamada singulariudad.
Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el Universo y que crear esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann ) sobre la distorsión del espaciotiempo.
Un Agujero Negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de esta teoría relativista: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia de un agujero negro y lo que se denomina una singularidad. De hecho, el Big Bang, se cree que surgió de una singularidad.


Las ecuaciones de campo de la relatividad general de Einstein… ¡Nos dicen tántas cosas!
Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m.: л = 3,14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿ Cómo puede ser esto ? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados, en la figura de arriba de S. Torres se puede ver que el diámetro es enorme.


Con Einstein llegó la cosmología moderna, otra manera de mirar el Universo
Con esta teoría de la Relatividad General, entre otros pasos importantes, está el hecho de que dió lugar al nacimiento de la Cosmología que, de alguna manera, era como mirar con nueva visión a lo que l Universo podía significar, Después de Einstein el Universo no fue el mismo.
El análisis de la Gravitación que aquí se miuestra interpreta el Universo como un continuo espacio-tiempo de cuatro dimensiones en el el que la presencia de una masa (como decía antes) curva el espacio para crear un campo gravitacional.


De la veracidad y comprobación de las predicciones de ésta segunda parte de la Teoría Relativista, tampoco, a estas alturas cabe duda alguna, y, lo más curioso del caso es que, después de casi un siglo (1.915), aún los físicos están sacando partido de las ecuaciones de campo de la teoría relativista en su versión general o de la Gravedad.
Tan importante es el trabajo de Einstein que, en las nuevas teorías, en las más avanzadas, como la Teoría M (que engloba las cinco versiones de la Teoría de Cuerdas), cuando la están desarrollando, como por arte de magía y sin que nadie las llame, surgen, emergen, las ecuaciones de Einstein de la Relatividad General.

La luz se propaga en cualquier medio pero en el vacío, mantiene la mayor velocidad posible en nuestro Universo, y, hasta el momento, que se sepa, nada ha corrido más que la luz en ese medio. Algunos han publicado ésta o aquella noticia queriendo romper la estabilidad de la relatividad especial y han publicado que los neutrinos o los taquiones van más rápidos que la luz. Sin embargo, todo se quedó en eso, en una noticia sin demostración para captar la atención del momento.
La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir:
3×1010 × 3×1010, ó 9×1020.
Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo puede convertirse, en teoría, en 9×1020 ergios de energía.
El ergio es una unida muy pequeña de energía que equivale a: “Unidad de trabajo o energía utilizado en el sistema c.g.s, y actúa definida como trabajo realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de nombre quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías. Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco si lo comparamos con la vida media de un hombre.
Emilio Silvera
















Totales: 83.898.577
Conectados: 61

























