lunes, 02 de febrero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Creemos cosas que…, ¿serán ciertas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Ecos del Big Bang    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Esta es la nueva instatánea del universo poco después de la gran explosión conocida como Big Bang. El mapa revela las fluctuaciones de temperatura apenas 380.000 años después. La ha realizado el satélite Planck. Está formada por 15 millones de pixels y envejece la edad de nuestro universo unos 80 millones de años hasta colocarlo en 13.890 millones de años.

Hubo un tiempo, el el Universo muy temprano, en el que la temperatura estaba encima de algunos cientos de veces la masa del protón, cuando la simetría aún no se había roto, y la fuerza débil y electromagnética no sólo eran la misma matemáticamente, sino realmente la misma. Un físico que hibiera podido estar allí presente, en aquellos primeros momento, no habría podido observar ninguna diferencia real entre las fuerzas producidas por el intercambio de estas cuatro partículas: las W, la Z y el Fotón.

Muchas son las sorpresas que nos podríamso encontrar en el universo primitivo, hasta la presencia de agua ha sido detectadamediante la técnica de lentes gravitacionales en la galaxia denominada MG J0414+0534 que está situada en un tiempo en el que el Universo sólo tenía dos mil quinientos millones de años de edad. El equipo investigador pudo detectar el vapor de agua presente en los chorros de emisión de un agujero negro supermasivo. Este tipo de objeto es bastante raro en el universo actual. El agua fue observada en forma de mases, una emisión de radiación de microondas provocada por las moléculas (en este caso de agua) al ser amplificadas por una onda o un campo magnético.

Siguiendo con el trabajo, dejemos la noticia de más arriba (sólo insertada por su curiosidad y rareza), y, sigamos con lo que decíamos al principio de las duerzas y la simetría antes de que, el universo se expandiera y enfriara para que, de una sóla, surgieran las cuatro fuerzas que ahora conocemos.

mundo brana

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil. Seguramente ese será el motivo por el cual, encontrar  al Bosón mediador de la fuerza, el Gravitón, resulta tan difícil.

De manera similar, aunque menos clara, las teorías de supersimetrías conjeturaban que las cuatro fuerzas tal vez estaban ligadas por una simitría que se manifestaba en los niveles de energía aún mayores que caracterizaban al universo ya antes del big bang. La intodución de un eje histórico en la cosmolo´gia y la física de particulas (como decía ayer en uno de los trabajos), beneficio a ambos campos. Los físicos proporcionaron a los cosmólogos una amplia gama de herramientas útiles para saber cómo se desarrolló el universo primitivo. Evidentemente, el Big Bang no fue una muralla de fuego de la que se burló Hoyle, sino un ámbito de suscesos de altas energías que muy posiblemente pueden ser comprensibles en términos de teoría de campo relativista y cuántica.

La cosmología, por su parte, dio un tinte de realidad histórica a las teorías unificadas. Aunque ningún acelerador concebible podrían alcanzar las titánicaqs energías supuestas por las grandes teorías unificadas y de la supersimetría, esas exóticas ideas aún  pueden ser puestas a prueba, investigando su las partículas constituyentes del universo actual son compatibles con el tipo de historia primitiva que implican las teorías.

Gell-Mann, el premio Nobel de física, al respeto de todo esto decía: “Las partículas elementales aparentemente proporcionan las claves de algunos de los misterios fundamentales de la Cosmología temprana… y resulta que la Cosmología brinda una especia de terreno de prueba para alguna de las ideas de la física de partículas elementales.”

http://lamemoriacelular.com/blog/wp-content/uploads/2010/04/celula.png

       Moléculas, átomos y conexiones para formar pensamientos

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero en las energías extremadamente altas del big bang original  y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

Si es así (que lo es), cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que no es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

              Abajo vemos el dorso de la mano algo aumentado

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados a átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Sion embargo, nos queda la duda de: ¿qué podrá haber más allá de los Quarks?

¿Qué no podremos hacer cuando conozcamos la naturaleza real del átomo y de la luz? El fotón,  ese cuánto de luz que parece tan insignificante, nos tiene que dar muchas satisfacciones y, en él, están escondidos secretos que, cuando sean revelados, cambiará el mundo. Esa imagen de arriba que está inmersa en nosotros en en todo el Universo, es la sencilles de la complejidad. A partir de ella, se forma todo: la muy pequeño y lo muy grande.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos y átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones. Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quark que constituyen cada nucleón.

Uno de los misterios de la naturaza, están dentro de los protomes y netrones que, confromados por Quarks, resulta que, si estos fueran liberados, tendrían independientemente, más energía que el protón que conformaban. ?cómo es posible eso?

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang. Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo. El acelerador de 200 Kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang. Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo.  El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo.  El nuevo LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada.  A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes,  durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica.  Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más esclarecedora del Universo primitivo que la que teníamos antes.

A los cien millones de años desde el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

Anti-hidrógeno

He aquí la primera imagen jamás obtenida de antimateria, específicamente un “anti-átomo” de anti-hidrógeno. Este experimento se realizó en el Aparato ALPHA de CERN, en donde los anti-átomos fueron retenidos por un récord de 170 milisegundos (se atraparon el 0.005% de los anti-átomos generados).

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro brilla un quasar blanco-azulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

Para determinar dónde obtuvo la célula es esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Claro que, nuestra historia está relacionada con todo lo que antes de llegar la vida al Universo pudo pasar. ¡Aquella primera célula! Se replicó en la sopa primordial llamada Protoplasma vivo y, sigguió evolucionando hasta conformar seres de diversos tipos y, algunos, llegaron a adquirir la conciencia.

                       Macromolécula

Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

   Célula cerebral

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas de una rareza y de una incleible y extraña belleza que sólo la Naturaleza es capaz de conformar.

          Molécula de ADN

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que se  constituyen en protones y neutrones.

                          Átomo de Carbono

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad. Una vez que fueron eliminados los antiquarks, se unieron en tripletes para formar protones y neutrones que, al formar un núcleo cargado positivamente, atrayeron a los electrones que dieron lugar a formar los átomos que más tarde, conformaron la materia que podemos ver en nuestro unioverso.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleaones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Los Quarks dentro del núcleo están sometidos a la Interacción fuerte, es decir, la más potente de las cuatro fuerzas fundamentales del Universo, la que mantiene a los Quarks confinados dentro del núcleo atómico por medio de los Gluones.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang. En aquel suceso la materia se podría haber formado así:

PRIMER CAMINO

Los núcleos de deuterio colisionan con un protón formando 3He, y seguidamente con un neutrón formando 4He

 

 

SEGUNDO CAMINO

El deuterio colisiona primero con un neutrón formando 3H (habitualmente conocido como tritio), y posteriormente con un protón para formar de nuevo 4He

“Este núcleo fue el más pesado que se formó en el universo primitivo, debido a que en el momento en que esto fue posible, la densidad de energía ya era demasiado baja para permitir que los núcleos colisonarán con suficiente energía para fundirse. En el momento en que comenzó la nucleosíntesis, la abundancia relativa de protones y neutrones era: 13% de neutrones y 87% de protones. Todos los neutrones fueron utilizados para formar los núcleos de Helio. Los protones quedarían de esa manera como núcleos de hidrógeno. Por lo tanto, tenemos que en el momento en que se completó la nucleosíntesis primigenia, el universo consistía en prácticamente un 25% de He y un 75% H (en peso) con ligeras trazas de otros elementos ligeros.”

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

El acelerador de 200 KeV diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del big bang.

foto

Aquel acelerador nada tenía que ver con el LHC de ahora, casi un siglo los separa

Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El nuevo supercolisionador superconductor proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

El Tevatrón del Fermilab ya estaba en el camino de la modernidad en los avances de la Física

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.

Recreación del Universo primitivo

 Bueno amigos, el trabajo era algo más extenso y entrábamos a explicar otros aspectos y parámetros implicados en todo este complejo laberinto que abarca desde lo muy grande hasta la muy pequeño, esos dos mundos que, no por ser tan dispares, resultan ser antagónicos, porque el uno sin el otro no podría exisitir. Otro día, seguiremos abundando en el tema apasionante  que aquí tratamos.

emilio silvera

El LHC descubre el pentaquark

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

LHC.svg

“El LHCb (que procede de las siglas “Large Hadron Collider beauty experiment”, donde “beauty” se refiere al quark bottom) es uno de los seis detectores de partículas, actualmente en construcción, instalados en el LHC (Large Hadron Collider) del CERN. LHCb es un experimento especializado en física del quark b, algunos de cuyos objetivos son la medida de parámetros de violación de simetría CP en las desintegraciones de hadrones que contengan dicho quark o la medida de precisión de las fracciones de desintegración (“branching ratios”) de algunos procesos extremadamente infrecuentes.”

La noticia del descubrimiento del Pentaquark, nos la cuentan así:

 

Científicos en el mayor acelerador de partículas del mundo anuncian el hallazgo de una exótica partícula compuesta de cinco quarks cuya existencia fue predicha hace medio siglo

 

14 JUL 2015 – 11:59 CEST

 

Un operario examina el experimento LHCb / NSF

Los científicos del mayor acelerador de partículas del mundo, el LHC de Ginebra, han descubierto una nueva partícula: el pentaquark.

El hallazgo, anunciado hoy por el laboratorio europeo de física de partículas CERN, lo ha hecho el equipo del experimento LHCb y confirma la existencia de una nueva forma de organizar la materia a nivel subatómico. El pentaquark recibe su nombre porque está compuesto de cinco partículas fundamentales.

Toda la materia que conocemos se organiza a nivel subatómico de diferentes maneras. Los protones y los neutrones, por ejemplo, están formados por tres quarks. Otro tipo de ensamblaje lo componen los mesones, formados por pares de quarks hechos de materia y antimateria. Más allá de estas dos categorías, se sabía que la materia podía componer otras variantes más exóticas que, sin embargo, nunca habían sido observadas.

Una posible estructura del pentaquark / CERN

 

El experimento LHCb ha permitido ahora encontrar una nueva variante formada de cuatro quarks de materia convencional y un antiquark, hecho de antimateria.

“Vimos un pico en las gráficas muy parecido al que se veía cuando el bosón de Higgs fue descubierto”, explica a Materia Guy Wilkinson, portavoz del experimento, uno de los cuatro grandes del CERN.

Curiosamente los datos aparecieron en la primera ronda de experimentos en el CERN, que terminó hace dos años. No fue hasta hace tres o cuatro meses que los científicos se toparon con esos datos. Hasta hace muy poco se estuvo comprobando que lo que veían no podía deberse a otra cosa sino a la existencia de una nueva partícula, explica Wilkinson. Ahora, el nivel de confianza está alrededor de nueve sigma, muy por encima de los cinco que se necesitan en física para reclamar un descubrimiento, resalta. Los detalles del hallazgo, anunciado hoy, están disponibles en arxiv.org y se han enviado a la revista Physical Review Letters.

Dentro del estándar

Vimos un pico en las gráficas muy parecido al que se veía cuando el bosón de Higgs fue descubierto

 

El primero en proponer la existencia de mesones y bariones hacia más de medio siglo fue Murray Gell-Mann en 1964, lo que le valió el Nobel de Física en 1969. Su modelo también predecía la existencia de partículas compuestas más exóticas como la recién descubierta. Esta nueva partícula “nos puede permitir entender de qué está compuesta la materia ordinaria, los protones y neutrones de los que estamos hechos”, dice Wilkinson.Probablemente, añade, no haya solo un tipo de pentaquark sino varios, y ahora toca buscarlos durante la presente ronda de experimentos en el LHC.

El objetivo más preciado del LHC, que ha empezado a funcionar al doble de potencia, es encontrar física más allá del llamado modelo estándar, que describe las leyes físicas que gobiernan la materia conocida. El nuevo hallazgo no llega a tanto, aunque es de gran importancia. “El modelo de quarks, propuesto hace más de 50 años no excluye la posibilidad de que existan partículas formadas por más de tres quarks, pero estos llamados hadrones exóticos solo empezaron a dar muestras de su existencia hace pocos años”, ha explicado Juan Saborido, responsable del grupo de la Universidad de Santiago de Compostela participante en LHCb, en una nota de prensa del CPAN. Para el investigador español, el descubrimiento de estas nuevas partículas formadas por cinco quarks, “no implica física más allá del Modelo Estándar, pero es un hallazgo muy importante para el entendimiento de la estructura de los hadrones”.

El pentaquark ha sido descubierto observando los productos de colisiones entre bariones y estudiando las partículas resultantes. Así han desvelado la existencia de dos estados intermedios de la materia cantidad de datos acumulada por el LHV indican la existencia de la nueva partícula.

“Hemos aprovechado la gran cantidad de datos acumulada por el LHC y la excelente precisión de nuestro detector para comprobar a qué se deben esas señales”, ha explicado Tomasz Skwarnicki , científico del LHCb, en una nota de prensa del CERN. “Nuestra conclusión es que solo pueden explicarse por la existencia de pentaquarks”, añade.

Ahora el gran misterio es cómo se sostienen los pentaquarks. Una posibilidad es que sus cinco componentes estén bien unidos. La otra es que sean el producto de la unión entre una barión y un mesón.

Fuente: El País

A partir de hoy sabremos algo más sobre Plurón

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://www.elsistemasolar.info/wp-content/uploads/2013/05/8_outer_solar_system_kuiper_belt.jpg

 

Plutón está situado en el último lugar de los planetas del Sistema solar (hasta donde podemos saber), arriba en la primera imagen se muestra un esquema de su situación y en la segunda imagen podemos contemplar una composición del planeta enano compuesta desde imágens incompletas del Hubble. Desde que hace 9 años partíó desde la Tierra la misión New Horizons, que viajando a unos 50.000 km por hora no ha podido llegar hasta el día de hoy a las proximidades del pequeño planeta, ahora estaremos pendientes de los datos que envíe la sonda espacial para conocer mejor ese pequeño mundo y sus alrededores.

Ilustración de Plutón y su luna Caronte

Con un un diámetro de 2.300 Km., Plutón es más pequeño que nuestra Luna.La llegada de la sonda New Horizons, sobre las 11.49 GMT, a las cercanías del pequeño planeta, nos facilitará nuevos conocimientos sobre sus caracterísitcas menos conocidas del misterioso mundo helado situado a unos 6.000 millones de kilómetros del Sol.

null

 

Esta es la imagen más reciente obtenido del pequeño mundo. New Horizons ya ha detectado signos de una capa polar. Plutón es tan frío que el nitrógeno que respiramos en la Tierra allí existe en forma de hielo, pero es posible que una tenue atmósfera de nitrógeno rodee al planeta enano. Las fotos que logre sacar serán las primeras en revelar si hay elevaciones y depresiones profundas en su superficie o si la topografía es más ondulada.

La expedición también podrá revelar la presencia de otras sustancias químicas: aunque el neón es un gas en la Tierra, podría encontrarse de forma líquida en Plutón, quizá fluyendo en ríos sobre la superficie.

El nitrógeno en la atmósfera podría caer como si fuera nieve. Otra pregunta que se hacen los científicos es por qué cambia tanto el brillo de Plutón (mucho más que cualquier otro mundo observado desde la distancia). Una mirada cercana, dicen, puede revelar procesos planetarios nunca antes vistos.

Recreación de Plutón (izquierda) junto a 'Charon'...

Recreación de Plutón (izquierda) junto a Caronte (derecha). NASA | ESA | G. BACON

A pesar de la gran distancia que le separa del Sol -29 veces más que la existente entre el Astro Rey y la Tierra- telescopios de gran precisión han sido capaces de obtener datos de Plutón, el planeta enano que fue reclasificado como tal en 2006 y que, hasta entonces, se le consideraba el más pequeño y lejano del Sistema Solar.

Los estudios realizados por la NASA teorizan sobre la posibilidad de que en el pasado existió agua bajo las frías capas de una sus lunas, Caronte (Charon en inglés), considerada como la más grande que gira a su alrededor.

Y por último, ahora con la sonda New Horizons  esperan obtener más información sobre Caronte, la luna más grande de Plutón y sus otros cuatro satélites: Estigia, Nix, Cerberos e Hidra.

https://upload.wikimedia.org/wikipedia/commons/f/f2/Pluto_Charon_Moon_Earth_Comparison.png

                                   Aquí tenemos una comparación de la Tierra y la Luna con Plutón y Caronte

Se cree que Plutón y Caronte pudieron haber sido dos cuerpos que colisionaron antes de entrar en órbita mutua. La colisión habría sido lo suficientemente violenta como para llevar a punto de ebullición los hielos volátiles como el metano, pero no lo suficiente para ser interrumpida.

En un trabajo de simulación publicado en 2005, Robin Canup  sugiere que Caronte pudo haberse formado por un impacto gigantesco hace alrededor de 4.500 millones de años, de manera similar a la Tierra y la Luna. En este modelo un objeto grande del cinturón de Kuiper golpea Plutón a gran velocidad, destruyéndose a sí mismo y esparciendo gran parte del manto exterior del planeta. Luego Caronte se forma por la fusión de los restos. Sin embargo, un impacto de esas características resultaría en un Plutón más rocoso y un Caronte con más hielo del que los científicos han encontrado.

Todas esas conjeturas pueden ser confirmadas o negadas a partir de los nuevos datos que la sonda New Horizons nos enviará a partir de hoy.

emilio silvera

En las cercanías de Plutón

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 El hombre conquista el último mundo con la llegada del «New Horizons» a Plutón

 

gonzalo lópez / madrid
Día 14/07/2015 – 04.09h

Después de más de nueve años de viaje, el próximo 14 de julio, la sonda «New Horizons» alcanzará las proximidades de Plutón

 

 

Cuando emprendas tu viaje a Ítaca pide que el camino sea largo, lleno de aventuras, lleno de experiencias, no temas a los lestrigones ni a los cíclopes, ni al colérico Poseidón», decía Cavafis en su poema «Viaje a Ítaca». Quizás para recordar que es imposible comenzar una importante empresa si no se está dispuesto a experimentar la incertidumbre de lo desconocido, que no se puede llegar a ningún destino sin caminar y tropezar con piedras.

Cuando la pequeña sonda «New Horizons» partió en enero de 2006 con dirección a Plutón, los científicos de la NASA estaban dispuestos a sumergirse en un largo e incierto viaje, repleto de aventuras. El objetivo era lanzar la nave más veloz hasta la fecha para llegar a los horizontes de lo conocido, en los confines del Sistema Solar, y ampliarlos un poco más.

Después de más de nueve años de viaje, cuando este 14 de julio la sonda llegue a las proximidades de Plutón, la «New Horizons» será la primera nave en llegar a este planeta enano y después en la primera exploradora del Cinturón de Kuiper, una vasta región del espacio más allá de Neptuno, repleta de rocas, cometas y pequeños mundos helados.

«La primera visita a Plutón es un hecho crucial en la historia de la ciencia y la exploración. El vuelo de la «New Horizons» es especialmente importante porque revelará con detalle la naturaleza del planeta doble formado por Plutón y Caronte (se habla de un planeta doble, porque ambos giran en torno a un centro común, y no uno alrededor del otro, como en el caso de la Tierra y la Luna), lo que ayudará a entender cómo se formaron. Además, permitirá observar de cerca los cuerpos que forman el Cinturón de Kuiper», explica a ABC Henry Throop, integrante de la misión y miembro del Instituto de Ciencia Planetaria, en Arizona, EE.UU.

Primera toma de contacto con Plutón

Para esta exploración, la «New Horizons» cuenta con siete instrumentos principales, entre ellos una potente cámara de fotos acoplada a un telescopio, otra cámara para trazar mapas en alta resolución de la superficie y un detector de partículas que analizará el polvo presente en las proximidades del planeta. Además, lleva otras herramientas para analizar la composición de la superficie y la atmósfera. Todo ello confinado en una pequeña nave con forma de piano que no llega a los 500 kilos.

Para los científicos, lo más emocionante es no saber qué se van a encontrar: «Lo realmente fascinante acerca de Plutón es que apenas sabemos nada de él. Incluso las cosas más básicas, como su origen, su tamaño o la edad de su superficie, son realmente desconocidas», explica Henry Throop, que añade: «Mientras que hemos estado en Marte una docena de veces, en Plutón aún tenemos que hacer el primer reconocimiento».

Por ello, la NASA tiene puestas grandes esperanzas en este histórico primer vistazo a Plutón. Creen que podrían encontrar una geología inédita, una extraña atmósfera o alguna nueva luna que sumar a las cinco que ya se conocen. «Pero una cosa que hemos aprendido al estudiar el Sistema Solar es que cuando exploramos nuevos mundos, acabamos encontrando algo más sorprendente de lo que podíamos imaginar», avisa Throop.

Sorpresas aparte, con la llegada a Plutón y al Cinturón de Kuiper, el hombre habrá explorado las partes más significativas del Sistema Solar al menos una vez. Además, podrá explorar una región que es como un «vertedero» donde quedan restos de las materias primas con que se construyó el sistema planetario. Por ello, el miembro de la misión explica que «ahora vamos a poder estudiar la formación del Sistema Solar».

Viaje al origen del Sistema Solar

Para hacerlo, la sonda va provista con el «Student Dust Counter» (contador de polvo de los estudiantes), realizado por alumnos de la universidad de Colorado en Boulder para analizar las partículas microscópicas que encuentre a su paso y que, a juicio de Throop, «es como una máquina del tiempo que nos puede mostrar el estado del Sistema Solar, tal como era hace 4.500 millones de años».

Además, los descubrimientos que haga la «New Horizons» quizás devuelvan a Plutón la categoría de planeta. O, como opina Throop, consigan que «la Unión Astronómica Internacional (IAU, en inglés) elabore una buena definición de planeta». Mientras eso ocurre, muchos científicos siguen sin estar de acuerdo con la «degradación» de Plutón y recuerdan que la definición de planeta –cuerpo que orbita alrededor del Sol, que tiene suficiente gravedad como para tener forma esférica y una órbita despejada de restos– deja fuera de la categoría de planeta a la Tierra, si se interpreta literalmente, puesto que nuestro planeta tiene un satélite y que su esfera está achatada.

Al margen de este debate, en los próximos años la NASA intentará recoger un pedazo de asteroide y lanzará una sonda para explorar Europa, el satélite de Júpiter. En opinión de Henry Throop, «ambas misiones complementarán a la «New Horizons», porque recogerán muestras de los «ladrillos» primitivos con los que se construyeron los planetas». Por ello, parece que el viaje hacia lo desconocido continúa.

Fuente: ABC

Fusión de Galaxias

Autor por Emilio Silvera    ~    Archivo Clasificado en Fusión de galaxias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 
Si dos galaxias chocan, pierde la pequeña. Eso es lo que nos dice el último estudio realizado de este suceso.

 

 Dentro de 4.000 millones de años, Andrómeda y la Vía Láctea

Cuando dos galaxias de diferentes tamaños colisionan, la galaxia más grande detiene la fabricación de nuevas estrellas por parte de la más pequeña, según un estudio de más de 20.000 galaxias fusionadas. La investigación también encontró que cuando dos galaxias del mismo tamaño chocan, ambas galaxias producen estrellas a un ritmo mucho más rápido, informa Europa Press.

El astrofísico Lucas Davies, desde el nodo del Centro Internacional de Investigación en Radioastronomía (ICRAR, por sus siglas en inglés) en la Universidad de Western, Australia, explica que nuestro vecino galáctico más cercano, Andrómeda, se precipita en una trayectoria de colisión con la Vía Láctea a unos 400.000 kilómetros por hora.

 

 

Desde hace tiempo se sospechaba la posibilidad de una gran colisión cósmica entre nuestra galaxia y la vecina Andrómeda en el futuro. Ahora la NASA aseguró que está en condiciones de “predecir con certeza” que esto ocurrirá en unos 4.000 millones de años.

 

“La Vía Láctea está destinada a una gran remodelación durante el encuentro”, señaló la agencia, indicando que “es probable que el Sol sea lanzado a otra región de nuestra galaxia, pero la Tierra y el Sistema Solar no están en peligro de ser destruidos“.

 

Con simulaciones por computadora derivadas de los datos del Hubble, se muestra que se necesitarán 2.000 millones de años adicionales para completar la fusión entre ambas galaxias, bajo la fuerza de gravedad, y reformarse en una sola galaxia elíptica como las que se ven normalmente en el universo.

La predicción se realizó gracias a mediciones tomadas con el Hubble sobre el movimiento de Andrómeda. La galaxia está a 2,5 millones de años luz de nosotros ahora, pero está “cayendo” hacia la Vía Láctea gracias a las mutuas fuerzas de gravedad y la materia oscura que las rodea.

 

 

«Sin embargo, no hay que entrar en pánico. Los dos no se aplastarán entre sí hasta dentro de otros 4.000 millones de años», tranquiliza. «Pero la investigación de estas colisiones cósmicas nos permite comprender mejor cómo las galaxias crecen y evolucionan», agrega.

Anteriormente, los astrónomos pensaban que cuando dos galaxias chocaban entre sí sus nubes de gas –donde nacen estrellas_ conseguían agitarse y sembrar el nacimiento de nuevas estrellas mucho más rápido que si se quedaban separadas. Sin embargo la investigación del doctor Davies sugiere que esta idea es demasiado simplista.

Este experto dice que si una galaxia forma estrellas más rápidamente en caso de colisión o no forma nuevas estrellas, depende de si es del tipo grande o pequeño en este accidente de coche galáctico. «Cuando dos galaxias de masa similar chocan, ambas aumentan su tasa de natalidad estelar», afirma Davies.

 

 

 

«Sin embargo, cuando una galaxia es significativamente mayor que la otro, hemos encontrado que las tasas de formación de estrellas se ven afectadas, sólo que en diferentes maneras. La galaxia más masiva comienza a formar rápidamente nuevas estrellas, mientras que la galaxia más pequeña de repente se esfuerza por no hacer ninguna en absoluto», revela.

«Esto podría deberse a que la galaxia más grande despoja de gas a su compañera más pequeña, dejándola sin combustible para la formación estelar o porque detiene la obtención por parte de la más pequeña de nuevo gas que se requiere para formar más estrellas», plantea el autor de este trabajo, que se publica en la revista ‘Monthly Notices’, de la Real Sociedad Astronómica.

Sobre qué sucederá en 4.000 millones de años con la Vía Láctea (Milky Way en inglés) y Andrómeda, Davies dice que la pareja son como «tanques cósmicos», ambos relativamente grandes y con masa similar. «A medida que se vayan juntando, comenzarán a afectar a la formación de estrellas del otro y continuarán haciéndolo hasta que finalmente se fundan para convertirse en una nueva galaxia, lo que algunos llaman ‘Milkdromeda’», dice.

Europa Press