lunes, 18 de febrero del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Todo tiene un límite. Las “Teorías” también

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Poco a poco vamos pudiendo explicar las cosas y, los adelantos continuados del saber humano, hace posible que las teorías de hoy, no sean las del mañana, toda vez que, cuando se descubren nuevos datos y nuevos sucesos, nos hacen tomar también, caminos nuevos que nos llevan a la búsqueda de nuevas teorías. Lo cierto es que siempre andamos a vueltas con las teorías, y, tenemos que ser conscientes que las teorías tienen unos límites que están determinados. Veamos:

Unas nos hablan del “universo de lo muy pequeño y otras, del “universo de lo muy grande, pero… ¿Cuáles son los límites de la teoría cuántica y de la teoría de la relatividad general de Einstein? Afortunadamente, hay una respuesta simple y las unidades de Planck nos dicen cuales son.

Supongamos que tomamos toda la masa del universo visible y determinamos su longitud de onda cuántica. Podemos preguntarnos en qué momento longitud de onda cuántica del universo visible superará su tamaño.  La respuesta es: cuando el universo sea más pequeño en tamaño que la longitud de Planck, es decir, 10-33 centímetros, más joven que el tiempo de Planck 10ˉ⁴³ segundos y supere la temperatura de Planck de 1032 grados.  Las unidades de Planck marcan la frontera de aplicación de nuestras teorías actuales. comprender en que se parece el mundo a una escala menor que la longitud de Planck tenemos que comprender plenamente cómo se entrelaza la incertidumbre cuántica con la gravedad. entender lo que podría haber sucedido cerca del suceso que estamos tentados a llamar el principio del universo, o el comienzo del tiempo, tenemos que penetrar la barrera de Planck. Las constantes de la naturaleza marcan las fronteras de nuestro conocimiento existente y nos dejan al descubierto los límites de nuestras teorías.

En los intentos más recientes de crear una teoría nueva describir la naturaleza cuántica de la gravedad ha emergido un significado para las unidades naturales de Planck. Parece que el concepto al que llamamos “información” tiene un profundo significado en el universo. Estamos habituados a vivir en lo que llamamos “la edad de la información”.  La información puede ser empaquetada en formas electrónicas, enviadas rápidamente y recibidas con más facilidad que nunca antes. Nuestra evolución en el proceso rápido y barato de la información se suele mostrar en una forma que nos permite comprobar la predicción de Gordon Moore, el fundador de Intel, llamada ley de Moore, en la que, en 1.965, advirtió que el área de un transistor se dividía por dos aproximadamente cada 12 meses. En 1975 revisó su tiempo de reducción a la mitad hasta situarlo en 24 meses. Esta es “la ley de Moore” cada 24 meses se obtiene una circuiteria de ordenador aproximadamente el doble, que corre a velocidad doble, por el mismo precio, ya que, el coste integrado del circuito viene a ser el mismo, constante.

Los límites últimos que podemos esperar para el almacenamiento y los ritmos de procesamiento de la información están impuestos por las constantes de la naturaleza. En 1981, el físico israelí, Jacob Bekenstein, hizo una predicción inusual que estaba inspirada en su estudio de los agujeros negros.  Calculó que hay una cantidad máxima de información que puede almacenarse dentro de cualquier volumen. Esto no debería sorprendernos. Lo que debería hacerlo es que el valor máximo está precisamente determinado por el área de la superficie que rodea al volumen, y no por el propio volumen. El máximo de bits de información que puede almacenarse en un volumen viene dado precisamente por el cómputo de su área superficial en unidades de Planck. Supongamos que la región es esférica. Entonces su área superficial es precisamente proporcional al cuadrado de su radio, mientras que el área de Planck es proporcional a la longitud de Planck al cuadrado, 10-66 cm2.  Esto es muchísimo mayor que cualquier capacidad de almacenamiento de información producida hasta . Asimismo, hay un límite último sobre el ritmo de procesamiento de información que viene impuesto por las constantes de la naturaleza.

 

Stoney                                                                        Planck

 

No debemos descartar la posibilidad de que seamos capaces de utilizar las unidades de Planck-Stoney para clasificar todo el abanico de estructuras que vemos en el universo, el mundo de las partículas elementales hasta las más grandes estructuras astronómicas.  Este fenómeno se puede representar en un gráfico que recree la escala logarítmica de tamaño desde el átomo a las galaxias. Todas las estructuras del universo existen porque son el equilibrio de fuerzas dispares y competidoras que se detienen o compensan las unas a las otras; la atracción y la repulsión. Ese es el equilibrio de las estrellas donde la repulsión termonuclear tiende a expandirla y la atracción (contracción) de su propia masa tiende a comprimirla; así, el resultado es la estabilidad de la estrella. En el caso del planeta Tierra, hay un equilibrio entre la fuerza atractiva de la gravedad y la repulsión atómica que aparece cuando los átomos se comprimen demasiado juntos. Todos estos equilibrios pueden expresarse aproximadamente en términos de dos números puros creados a partir de las constantes e, h, c, G y mprotón.

Ilustración de la variación de la constante. UNSW.

“Tras medir alfa en unas 300 galaxias lejanas, vimos un patrón constante: este , que nos dice la fuerza del electromagnetismo, no es igual en otras partes que en la Tierra, y parecer variar de forma continua a lo largo de un eje”. Algunos se empeñan en variar la constante de estructura fina y, si eso llegara a producirse… las consecuencias serían funestas para nosotros. Otros estudios nos dicen que esa constante, no ha variado a lo largo de los miles de millones de años del Universo y, así debe ser, o, si varió, lo hizo en una escala ínfima.

α = 2πe2 / hc ≈ 1/137
αG = (Gmp2)2 / hc ≈ 10-38

Si varian algunas de las dos en sólo una diezmillonésima, muchas de las cosas que conforman el Universo serían imposible y, la consecuencia sería, la ausencia de vida.  La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

La identificación de constantes adimensionales de la naturaleza como a (alfa) y aG, junto con los números que desempeñan el mismo papel definitorio para las fuerzas débil y fuerte de la naturaleza, nos anima a pensar por un momento en mundos diferentes del nuestro. Estos otros mundos pueden estar definidos por leyes de la naturaleza iguales a las que gobiernan el universo tal como lo conocemos, pero estarán caracterizados por diferentes valores de constantes adimensionales. Estos cambios numéricos alterarán toda la fábrica de los mundos imaginarios. Los átomos pueden tener propiedades diferentes. La gravedad puede tener un papel en el mundo a pequeña escala.  La naturaleza cuántica de la realidad puede intervenir en lugares insospechados.

Lo único que en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Cuando surgen comentarios de números puros y adimensionales, de manera automática aparece en mi mente el 137. Ese número encierra más de lo que estamos preparados para comprender; me hace pensar y mi imaginación se desboca en múltiples ideas y teorías. Einstein era un campeón en esta clase de ejercicios mentales que él llamaba “libre invención de la mente”. El gran físico creía que no podríamos llegar a las verdades de la naturaleza sólo por la observación y la experimentación. Necesitamos crear conceptos, teorías y postulados de nuestra propia imaginación que posteriormente deben ser explorados para averiguar si existe algo de verdad en ellos.

Para poner un ejemplo de nuestra ignorancia poco tendríamos que buscar, tenemos a mano miles de millones.

Un gran Físico nos decía:

“Todos los físicos del mundo, deberían tener un letrero en el lugar más visible de sus casas, para que al mirarlo, les recordara lo que no saben. En el cartel sólo pondría esto: 137. Ciento treinta y siete es el inverso de algo que lleva el de constante de estructura fina”.

Este guarda relación con la posibilidad de que un electrón emita un fotón o lo absorba. La constante de estructura fina responde también al de “alfa” y sale de dividir el cuadrado de la carga del electrón, por el producto de la velocidad de la luz y la constante de Planck. Tanta palabrería y numerología no significan otra cosa sino que ese solo numero, 137, encierra los misterios del electromagnetismo (el electrón, e-), la relatividad (la velocidad de la luz, c), y la teoría cuántica (la constante de Planck, h).

Todo resulta estar supeditado a un equiulibrio que viene dado por fuerzas contrapuestas y, no pocas veces, la masa y las dimensiones de los objetos tienen mucho que decir en las situaciones que se puedan crear y en los comportamientos de las pequeñas y grandes estructuras del Universo

 

 

 

Sus dimensiones y masa le permiten ¡lo imposible! nosotros. La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos fuerza de Van der Vaalls. fuerza tiene un alcance muy corto. para ser más precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente proporcional a 1/r7. Esto significa  que si se reduce la distancia dos átomos a la mitad, la fuerza de Van der Vaalls con la que se atraen uno a otro se hace 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza.

La mecánica cuántica domina en el micromundo de los átomos y de las partículas “elementales”. Nos enseña que en la naturaleza cualquier masa, por sólida o puntual que pueda parecer, tiene un aspecto ondulatorio. onda no es como una onda de agua. Se parece más a una ola de histeria que se expande: es una onda de información. Nos indica la probabilidad de detectar una partícula. La longitud de onda de una partícula, la longitud cuántica, se hace menor cuanto mayor es la masa de esa partícula.

 

Por el contrario, la relatividad general era siempre necesaria cuando se trataba con situaciones donde algo viaja a la velocidad de la luz, o está muy cerca o donde la gravedad es muy intensa. Se utiliza describir la expansión del universo o el comportamiento en situaciones extremas, como la formación de agujeros negros.

Sin embargo, la gravedad es muy débil comparada con las fuerzas que unen átomos y moléculas y demasiado débil para tener cualquier efecto sobre la estructura del átomo o de partículas subatómicas, se trata con masas tan insignificantes que la incidencia gravitatoria es despreciable. Todo lo contrario que ocurre en presencia de masas considerables planetas, estrellas y galaxias, donde la presencia de la gravitación curva el espacio y distorsiona el tiempo.

resultado de estas propiedades antagónicas, la teoría cuántica y la teoría relativista gobiernan reinos diferentes, muy dispares, en el universo de lo muy pequeño o en el universo de lo muy grande. Nadie ha encontrado la manera de unir, sin fisuras, estas dos teorías en una sola y nueva de Gravedad-Cuántica.

 

 

La velocidad de la luz en el vacío es por definición una constante universal de valor 299.792.458 m/s (suele aproximarse a 3·108 m/s), o lo que es lo mismo 9,46·1015 m/año; la segunda cifra es la usada definir al intervalo llamado año luz. La información se transmitirá a esa velocidad como máximo, nuestro Universo, no permite mayor rapidéz, al menos, por los métodos convencionales. Lo cierto es que algún día nos daremos cuenta y descubriremos que la luz tiene más importancia de la que ahora le podemos dar, toda vez que no conocemos, la realidad de su naturaleza y todo lo que significa en nuestro Universo. Nosotros mismos, en última instancia… ¡Somos luz!

El año 2.015 será el Año Internacional de la Luz

¡Sabemos aun tan poco!

emilio silvera

Una pincelada de la Relatividad

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://th.physik.uni-frankfurt.de/~jr/gif/phys/einst_pat.jpg

relatividad/#”>Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E=mc2.  Puesto que la velocidad de la luz al cuadrado (c2) es un relatividad/#”>número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía.  Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química.  La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad, energía condensada.

http://2.bp.blogspot.com/_-Rw4Rb4bpMc/SRnwxorU6QI/AAAAAAAAAko/VA75n0HebDQ/s400/Materia+OScura-Energ%C3%ADa+oscura-Internet

Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la Naturaleza.  Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales relatividad/#”>como la materia y la energía o el espacio y el tiempo que, gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.

http://www.nasa.gov/centers/glenn/images/content/84540main_warp24.gif

Nuevos conceptos que desataron nuestra imaginación

Desde entonces, estos conceptos, los tenemos que clasificar, no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una relatividad/#”>parte y espacio-tiempo por la otra.  El impacto directo del relatividad/#”>trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX.  Claro que, en contra del criterio de Einstein que era un pacifista y nunca quiso participar en proyectos de ésta índole.

 

“La inercia de cualquier sistema es el resultado de su interacción con el resto del Universo. En otras palabras, cada partícula del universo ejerce una influencia sobre todas las demás partículas.”

Mach

Einstein completó su teoría de la relatividad con una segunda parte que, en parte, estaba inspirada por lo que se conoce como principio de Mach, la guía que utilizó Einstein para crear esta parte final y completar su teoría de relatividad general.

Einstein enunció que, la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor.  Esta es la esencia del principio físico que Riemann no logró relatividad/#”>descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio.

Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que esencialmente afirma: Materia-energía determina la curvatura del espacio-tiempo

Esa ecuación engañosamente corta es uno de los mayores triunfos de la mente humana (me he referido a ella en otras muchas ocasiones).  De ella emergen los principios que hay tras los movimientos de las estrellas y las galaxias, los agujeros negros, el big bang, y seguramente el propio destino del Universo.

Es curiosa la similitud que se da relatividad/#”>entre la teoría del electromagnetismo y la relatividad general, mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas y, apareció Maxwell que, finalmente formuló la teoría.

Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente relatividad/#”>para expresarlo (claro que Faraday no era matemático y Einstein si lo era).  Carecía de una versión de los campos de Faraday para la Gravedad.  Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein.  Así que, finalmente, fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.

Einstein, como todos sabeis, se apoyo en otros muchos para formular sus teorías relativistas relatividad/#”>desde Mach, Maxwell y Lorentz hasta el propio Riemann. Sin embargo, fue él quien tuvo la chispa de ingenio de ver con claridad el significado de todos aquellos postulados que andaban sueltos por el mundo de la física y supo reunirlos en una teoría coherente y unificadora que, a lo largo del tiempo, ha sido demostrada de manera más que suficiente y aclaratoria.

La obra de Einstein está revestida de grandes éxitos en el campo de la Física y de la Cosmología, y, hasta tal punto es así que, el Cosmos sería otro sin la teoría de la Relatividad General de cuyas ecuaciones -arriba reseñadas- aún se están obteniendo consecuencias mucho más allá de los agujeros negros.

También esa simple ecuación que, se está convirtiendo en uno de los mayores logros de la Humanidad, por su sencilles y simpleza en contraposición con su profundidad y complejidad en cuanto a los mensajes que encierra, como por ejemplo, el hecho de que dichas ecuaciones de campo de la teoría de Einstein emerjan como por encanto relatividad/#”>desde las profundidades de la Teoría de cuerdas. Sin que nadie las llame, allí aparecen.

¿Qué tienen estas ecuaciones? ¿Qué mensajes nos envía? ¿Qué secretos encierra?

emilio silvera

Una mirada al pasado…y, al presente

Autor por Emilio Silvera    ~    Archivo Clasificado en el Mundo y nosotros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

T.H.Huxley(Woodburytype).jpg
Huxley en una impresa de Lock & Whitfield, Londres 1880 o antes.

 

 

“Lo conocido es finito, lo desconocido infinito; intelectualmente nos hallamos en un islote en medio del océano ilimitado de los inexplicable. La tarea de cada generación es reclamar un poco más de terreno, añadir algo a la extensión y solidez de nuestras posesiones”.

Así se expresaba Thomas Henry , cuando en 1887, realizó la presentación del Origen de las especies de Darwin. Y pasado el tiempo, en 1936, Einstein nos decía: “El eterno misterio del mundo es su comprensibilidad” Hubiera mejor que aquella oración terminara diciendo: “…es que lo vayamos comprendiendo”.

Plutarch.gif
Vidas paralelas, traducción de Amyot, 1565

Plutarco nos decía:

“Es más fácil encender una vela que maldecir la oscuridad” a éste mismo personaje también se atribuye: “Nunca te podrás bañar en las mismas aguas de un río”.

Alguien, no recuerdo ahora quién, decía:

“Que tu miedo a fallar no te impida jugar”.

Otra frase que se me quedó en la memoria, no puedo decir quién la dijo:

“Cuando veas un gigante, examina antes la posición del Sol no vaya a ser la sombra de un enano”.

Me gusta mucho aquella que dice:

“Todos somos aficionados, la vida es tan corta que no da para más”.

Creo que fue Charles Chaplin quien la dijo.

Todos estos pensamientos que habeis leído arriba, nos viene a decir que el Ser Humano, siempre ha utilizando su cerebro, esa parte mental de nosotros, para recapacitar y pensar en los múltiples ámbitos en los que interaccionamos con el Mundo, y, siempre, hemos estado haciendo preguntas o valorando qué es lo que hacemos aquí. Y sí, Toda la Humanidad es una, cada uno de los personajes de esta gran Comedia que llamamos la Historia de la Humanidad, ha tenido su papel en El Gran Escenario del Mundo.

Pintura La Humanidad

El artista ha tratado de plasmar a la Humanidad con sus los sentimientos, los deseos, el dolor y sus frustraciones, pasiones y sentimientos y esperanzas y miedos que son la consecuencia de no saber…que será del mañana. Pero no era mi intención esta mañana cuando, al ponerme a teclear, llevaba la idea de contar algún episodio del pasado, de sus personajes, de lo que entonces sucedió. Veamos.

http://2.bp.blogspot.com/-Or_25_2wLus/TYothrlzH2I/AAAAAAAAFt4/iZAb-9emzSE/s1600/humanidad.jpg

¿Sostienen nuestras manos el pincel que dibujará el futuro del Mundo? Por mucho que podamos buscar una respuesta a esa pregunta, nada de lo que podamos encontrar nos dará la respuesta de qué pueda suceder, el futuro no existe, aún no ha llegado pero, sí es cierto que será, un reflejo, de lo que podamos hacer . Como nos dice la Física: El mañana estará cargado del presente que es, la consecuencia del pasado (causalidad). Contemos algunas Historias.

En 1537, el gran cartógrafo portugués Pedro Nunes, al trazar los mapas del inesperado mundo de Occidente, se alegrava de la existencia de “nuevas islas, nuevas tierras, nuevos mares, nuevos pueblos; y, lo que es más, un cielo y estrellas nuevas”.

Descubriendo un nuevo mundo

¿Cuántas veces no habremos visto ésta Imagen? Que, en realidad, no responde a lo que pasó. Es una escena montada por el artista para la presentación ante el público de aquél acontecimiento que, aún con el tiempo que ha pasado, aún estamos valorando.

El (re) descubrimiento de América hizo que los europeos se encontraran frente a frente con la gran variedad de la Humanidad. Al principio se sintieron tentados a convertir el asombroso continente americano en el entorno natural de las razas legendarias y “monstruosas”, descritas con todo detalle en la Historia natural de Plinio, y que desde entonces habían hechizado y eludido a los viajeros. Cuando los europeos llamaron “indios” a los nativos del Mundo, no sólo contenían un error geográfico sino que también expresaban sus espectativas de hallar criaturas fantásticas.

Algunos albergaban en sus corazones la emoción y el miedo de hallar a “fantásticas criaturas” de “tierras lejanas”. Todavía, hace 500 , los hombres sentían temores irracionales transmitidos por historias y leyendas que, sus escasos entendimientos, fijaban fuertemente en sus mentes temerosas.

Colón informó, su sorpresa y en cierto modo también para su decepción, que “en estas islas fasta aquí no he hallado ombres mostrudos, como mucho pensavan, más antes es toda gente de muy lindo acatamiento…Así que mostruos no he hallado ni noticia, salvo… una iente…los cuales comen carne umana…Elos no son más disformes que los otros…” Estos indios, aseguró Colón a los soberanos españoles, “son todos de muy linda estatura, altos de cuerpos e de muy lindos gestos…”

Aquellos rústicos marineros de Huelva, Palos y Moguer, se quedaron con las ganas de ver a los Bellos Unicornios bebiendo en las tranquilas y transparentes afguas de un riachuelo enclavado en el maravillo y selvático lugar que llevaban grabados en sus mentes.

Aunque prosaica y tranquilizadora noticia despojó a las nuevas tierras de su encanto legendario, las “razas monstruosas” continuaron existiendo. La poesía, el folklre y el romance repetían antiguas historias de legendarias Amazonas (“sin pechos” mujeres que vivían sin hombres, y eran denominadas así porque se amputaban el pecho derecho tensar el arco con más fuerza).

La Guerra,la Caza, la Agricultura y el entrenamiento de niñas Amazonas eran sus tareas principales. Se dice que fueron las primeras humanas en cabalgar caballos. Las Amazonas eran devotas de la Diosa de la Caza , Artemisa. Fue Homero, el que al introducir a las Amazonas en sus leyendas, estas recorrieron el mundo y, la imagen de aquellas mujeres guerreras estaban asentadas en las mentes de las generaciones venideras.

También, dentro del amplio espectro de monstruos que todos esperaban encontrar en aquellas tierras, estaban los Cíclopes (los gigantes de un sólo ojo de Homero y Virgilio), cinocéfalos (“cabeza de perro”, que se comunicaban ladrando, tenían unos dientes enormes y lanzaban fuego por la boca), pigmeos (que se trenzaban el pelo para hacerse con él prendas de vestir y luchaban con las grullas que les robaban las cosechas), antípodas (“pies al revés”, que vivían en la inferior del mundo y tenían que andar cabeza abajo), Había también amictrias (“insociables”, que se alimentaban de carne cruda y tenían un prominente labio).

Todos tenemos el recuerdo de haber visto la Odisea de Homero, el astuto Ulises (Kirk Douglas), burla al cíclope Polifemo y logra salvar a sus hombres prisioneros en la cueva de éste. Estos personajes y todos los que arriba menciono, estaban fuertemente grabados en la memoria de muchas generaciones que, habiendo leído o escuchado contar aquellas historias, tenían la certeza de sus existencias.

La colección de extraños personajes es interminable y, cada uno de ellos, con sus peculiares configuraciones que, sobre todo, eran llamativas y despertaban la fantasía de todos. Claro que estos y otros pueblos monstruosos habitaban un limbo situado la Teología y la Fantasía. Si, como afirmaba la Biblia, todos los hombres eran descendientes de Adan, quizás esas defomridades eran el castigo recibido por algunos hijos de éste por sus pecados o por comer hierbas prohibidas. “Los descendientes mostraban en sus cuerpos lo que los ascendientes se habían ganado por sus fechorías”, declaró un poeta alemán del siglo XII. “Lo que los padres eran por dentro, los hijos lo eran por fuera.”

Colón informó que los pueblos que había encontrado no eran monstruos sino simplemente salvajes, señaló sin proponérselo una nueva ciencia de la cultura. Y hacia unas ideas de progreso. Los casos extremos de la diversidad humana ya no quedaban relegados al reino de la fantasía, pues podían ser observados de cerca.

Una de las escenas de la película "La Misión".

                                     Alguna de aquellas escenas de la visita de Colón podría haber sido como ésta de la película La Misión.

En una carta a los Reyes Católicos Colón les : “…ellos son tanto sin engaño y tan liberales de lo que tienen, que no lo creeria sino el que lo viese. Ellos de cosa que tengan, pidiéndosela, jamás dicen que no, antes convidan a la persona con ello, y muestran tanto amor que darían los corazones, y quier sea cosa de valor, quier sea de poco precio, luego por cualquier cosica de cualquier manera que sea que se le dé por ello sean contentos. Yo defendí que no se les diera cosas tan siviles como pedazos de escudilla rotas y pedazos de vidrio roto y cabos de agugetas; haunque cuando ellos esto podían llegar, les parecía haver la mejor joya del mundo…” Esto nos muestra la candidez de aquellos seres y se explica todo lo que vino después.

Claro que, el descubrimiento de América abrió posibilidades nuevas, intrigantes primero y revolucionarias después. En el siglo XVIII ya era evidente que existían muchas especies de plantas y animales “propios de esa del mundo”. Algunos naturalistas atrevidos llegaron a proponer que, en lugar de una sola Creación en el Jardín del Edén, podía haber habido “creaciones separadas” en diferentes partes del mundo y especialmente adaptadas a las diferentes regiones. Luego, ¿por qué no podía haber “creaciones separadas” de la Humanidad?

Montevideo

                                           Bonita vista de una zona de la Ciudad de Montevideo en Uruguay

Claro que, pasando el tiempo, todo aquello se transformó y surgieron cosas buenas. Montevideo, ciudad del sur de Uruguay, capital del país y del departamento homónimo, situada en la margen izquierda del río de la Plata. Urbe diseñada, con amplios y espaciosos bulevares, es la mayor ciudad del país y centro económico, administrativo y cultural.

De entre sus lugares más destacados cabe mencionar el cerro, al que Montevideo debe su (procedente de la expresión portuguesa monte vide eu, ‘he visto un monte’) y el Mercado del Puerto, antigua estación ferroviaria convertida en la actualidad en destino gastronómico de lugareños y visitantes.

El casco antiguo, localizado en el extremo de la península que se adentra en el río de la Plata, acoge varios monumentos y edificios coloniales; de entre ellos, cabe destacar la Puerta de la Ciudadela (1742), la Casa de Lavalleja (1783), el Cabildo —antigua sede legislativa del país y cuna de la independencia uruguaya— y la hermosa catedral, levantada entre 1790 y 1804. Ambos edificios se sitúan en la plaza de la Constitución. Por su , la plaza de la Independencia, que ocupa el antiguo límite de la ciudad alberga el mausoleo del héroe nacional José Gervasio Artigas, rodeado por fuentes y palmeras. En la plaza arranca la avenida 18 de Julio, principal arteria de Montevideo donde se sitúan los palacios de Estévez (siglo XVII) y Salvo (1927).

Ciudad Vieja: Abandoned building #1

Ciudad Vieja: Montevideo

Montevideo

Anterior

Ciudad Vieja: Old City

Old City

Foto de Ciudad Vieja

Foto de Ciudad Vieja, Montevideo

Anterior

Ciudad Vieja: Bolichon (Montevideo)

                                                                                                                          Bolichon (Montevideo)

Foto de Ciudad Vieja

                                                                                                      Foto de Ciudad Vieja, Montevideo

Ciudad Vieja: Montevideo mi ciudad.

Con este paseo por Montevideo me despido y, otro día seguiremos contando pasajes de aquellos sucesos del pasado que nos trajeron a lo que hoy es, esa Joya que, nosotros, los euiropeos, conocemos como América del Sur.

emilio silvera