Mar
6
¿La vida fuera de la Tierra? ¡Antes de que finalice el siglo!
por Emilio Silvera ~
Clasificado en El Universo y la Vida ~
Comments (3)
La vida microscópica está por todas partes…¡En otros mundos (creo) que también.
“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”
Así se expresaba Fred Hoyle.
Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.
Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).
Los familiares paisajes de Marte
Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.
Titán
Encelado
Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado
Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.
Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.
Europa
En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.
Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.
Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.
Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.
Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.
Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.
Titán
No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.
Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.
Paisajes de la Tierra Prehistórica, lluvia de metano, ¿cuántas sorpresas más?
Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió. De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.
La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.
La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.
¡Ya veremos!
Mar
6
¿Todos iguales ante la Ley? ¡Algunos más iguales que otros!
por Emilio Silvera ~
Clasificado en Hacienda somos todos ~
Comments (6)
Ciertamente, mientras que algunos recaudan dinero a manos llenas… Otros, sin embargo, se ven asediados por el Fisco que, a la menor oportunidad, los deja en calzoncillos, es decir, le quitan todo lo que puedan tener y, no se le llevan a los niños porque comen demasiado al estar creciendo.
Por estos pagos, el eslogan que esgrime la Hacienda Pública es, que “Hacienda somos todos”, y, con ello los genios de los Impuestos, quieren significar que todos debemos pagar y contribuir a los gastos generales del Estado para que existan buenos Colegios, Hospitales y Carreteras… Buenos Servicios en fin.
Todo eso estaría bien, si finalmente, se cumplieran las cosas tal y como están ordenadas por la Ley, y, en nuestro caso aquí en España, es la Constitución Española, la madre de todas las leyes, es decir, es la guía por la que todas las leyes se debe regir en sus directrices más justas y profundas que, como ejemplo, podríamos citar aquí algunos de sus preceptos legales:
– En su artículo 2 nos habla de la ·indisoluble unidad de la Nación Española”.
– El artículo 9 garantiza que los ciudadanos y los poderes públicos están sometidos a la C.E. y al resto del Ordenamiento Jurídico, nos garantiza la Seguridad Jurídica de los Ciudadanos y hay que regirse, en todo momento, por el Principio de Legalidad. Prohibe leyes con carácter retroactivo…
– El artículo 14 nos dice: “Todos los Españoles serán iguales ante la Ley”.
– El 24 deja claro que nadie podrá quedar indefenso y que tendrá derecho a la Tutela efectiva del Tribunal.
Con el dinero de los ciudadanos, la Hacienda Pública (Administraciones Públicas en General), poseen inmensos y valiosos Edificios en el Centro de las Capitales más importantes del Pais, y, la legión de funcionarios es inmensa debido a que, no sólo están los que deberían estar, es decir, los de Carrera que hicieron su Oposición. Junto a ellos, están una poléyade de “funcionarios” amigos y afiliados a los partidos de turno que… son votos seguros. Sin emabrgo, tal pléyade de funcionarios, ni por asomo, están preparados para realizar el cometido que, supuestamente, deberían re4alizar.
Lo malo de todo esto es que, los ciudadanos de a pie, se ven sometidos a una intensa presión fiscal que, sin temor a equivocarme, desemboca en un final que, de alguna manera, vulnera esa Constitución que todas las Administraciones Públicas deben respetar. Nos dice el artículo 31 de la Constitución Española:
“Todos contribuirán al sostenimiento de los gastos públicos de acuerdo con su capacidad econóimica mediante un sistema tributario justo inspirado en los principios de igualdad y progresividad que, en ningún caso, tendrá alcance confiscatorio.
El gastos público realizará una asdignación equitativa de los recursos públicos, y su programación y ejecución responderán a los criterios de eficacia y economía.
Sólo podrán establecerse prestaciones personales o patrimoniales de carácter públoco con arreglo a la Ley.”
Es curioso como, el artículo 103 de la Constitución Española nos dice: “Todas las Administraciones Públicas -Estatal, Autonómica, Provincial y Local- están sometidas a la Constitución, a la Ley y al Derecho…y, no en pocos casos, tal precepto legal se vulnera por aquellos que la tenían que cumplir.
A nuestro Ministro de Hacienda, Señor Montoro, se ha ocurrido ahora, después de sacar una exoneración fiscal a defraudadores, hacer y publicar una lista de éstos que, según todos los indicios, estaría vulnerando la Constitución al no reservar la privacidad a la que, los ciudadanos tienen derecho.
Estamos abocando a las familias españolas de hoy, a situaciones ya olvidadas de la postguerra
La crisis ha cerrado ya medio millón de pequeños y medianos negocios y, el paro, en seis millones de los que el 50% son de jóvenes que, habiendo finalizado sus carreras, no tinen donde trabajar. Una situación más que dram´tica que, de seguir así, desembocará en algo no deseado por nadie.
Después de haber leído esos artículos de la Constitución que antes he puesto, se da el caso de que, el Gobierno, obliga a los empresarios a lo siguiente:
Cuando se factura una venta o se presta un Servicio, a la factura total hay que sumarle el Impuesto del IVA que, generalmente, es del 21% del valor de la Venta o Servicio. Sin embargo, se da el caso de que, muchas de las facturas emitidas por las pequeñas y medianas Empresas, son a las Administraciones Públicas (Ayuntamientos, Diputaciones, Administración del Estado o Autonómica, etc.), y, éstas, tienen por costumbre, no pagar la factura en muchos meses o, incluso años.
No importa que el Empresario, no cobre la factura, el IVA lo tiene que pagar, es decir, tiene que hacerse con un dinero que no ha cobrado para poder pagar a la Hacienda Pública lo que la misma Hacienda Pública no le pagó. ¡Qué barbaridad! Eso es, mucho más que la prohibiuda confiscación a la que alude el artículo 31 de la CE. Eso es, amigos míos… ¡Terrorismo Fiscal! como hace algunos años denunciaba el Presidente del Colegio de Abogados en Madrid, el Señor Pedrol Rius.
En Argentina
En Madrid
En Italia
En Bulgaria
En Rusia
Los protestas están en todos los idiomas y por todas partes… ¿Por qué? ¿Qué le pasa al Mundo?
Al mundo le pasa, amigos míos, que los llamados de manera tan inadecuada ¡Padres de la Patria!, esa pléyade de Políticos, Banqueros, Grandes compañias y todos aquellos sectores que, literalmente: ¡Nos están chupando la sangre! Destrozando familias enteresas, y, lo másd grave, llevando al suicidio a personas que, desesperadas y sin ver ninguna salida, cuando van a ser desahuciadas de sus hogres por los Bancos a los que no pueden serguir pagando por estar en paro, la única salida que ven…es la peor de todas, ya que, el Gobierno no pone los medios para evitarlo.
El poder que en España tienen los BANCOS para quedarse con el dinero de todos… Es, inadmisible. Y, siendo todo esto así (que lo es), podemos contemplar como, cuando los políticos se retiran con grandes Pagas, son recogidos por los Consejos de Administración de los grandes Bancos y Multinacionales a los que, en activo, prestaron un gran servicio dándoles el margen de…quedarse con nuestro dinero.
Si Hacienda es ésto, no debemos formar parte de ella. Si los políticos y los grandes Trusts de Negocio son los únicos que viven bien en un País, yo no quiero ser de ese País, si los que mandan no tienen conciencia de lo que necesita su Pueblo… Entonces, hay que cambiar las Normas, habrá que cambiar la Ley, y, como ocurre en Física, buscar nuevas Teorías que, nos traigan la Justicia y la equidad, lo que es justo para todos y no el privilegio de unos pocos que, diciendo una cosa, hacen la contraria.
Sí, ya lo se, amigos míos que, este lugar es para hablar de Ciencia. Sin embargo, hay cosas que llevas a cuestas durante mucho tiempo y, llega un día en el que, la pesada carga, te hace reventar, explotar y decir todo lo que llevas dentro.
emilio silvera
Mar
6
¡La Física! ¿Hasta dónde nos llevará?
por Emilio Silvera ~
Clasificado en Materiales increibles ~
Comments (0)
Grafeno el Material del futuro
Hace apenas ocho años que se pudo observar el Grafeno
Primero fueron las moléculas de carbono en forma de balón de futbol; luego llegó el carbono enrollado en forma de nanotubos de carbono, más tarde las mallas microscópicas y, mañana… ¿quién sabe, qué maravillas nos espera? Puede que en unos años el valle más famoso de la era de la informática tenga que cambiar de nombre. Al norte de California, entre montañas y autopistas, una extensa aglomeración de empresas de nuevas tecnologías es conocida como Silicon Valley, en inglés valle del silicio, elemento químico con el que se fabrican los microchips. Pero el futuro, dicen algunos expertos y muchas publicaciones científicas, está en los chips de grafeno, un material resistente, transparente y extremadamente flexible.
Científicos surcoreanos acaban de construir la primera pantalla táctil de este material. Tiene 30 pulgadas y puede doblarse y enrollarse hasta ocupar un espacio mínimo. IBM, el gigante de la informática, presentó este invierno sus primeros chips de grafeno, 10 veces más veloces que los de silicio. Los fabricantes de baterías para móviles anuncian que mejorarán su producto gracias a este derivado del grafito, con el que también está hecha la radio más pequeña del mundo, diseñada por el Instituto Tecnológico de Massachusetts (MIT). ¿Estamos ante una nueva revolución que traerá ordenadores aún más rápidos y pantallas aún más pequeñas? ¿O hablar del valle del grafeno es tan solo fantasía?
Las pantallas del futuro serán flexibles, eso está claro. Los principales fabricantes se afanan en buscar nuevas fórmulas, no solo de grafeno sino también de tecnología OLED, basada en una capa que emite luz y está formada por componentes orgánicos (polímeros). También se intenta hacer papel electrónico con óxidos de metal o variantes del silicio clásico, como silicio cristalino o sus combinaciones con el caucho, bastante más elástico.
El instituto de nanotecnología en el que han desarrollado la primera pantalla táctil de grafeno, en la Universidad Sungkyunkwan de Seúl, ha conseguido llamar la atención de las grandes compañías. El sector está inquieto. Pantallas que se doblan como un papel y que dentro de poco, según James Tour, de la Universidad de Rice (Houston) y uno de los químicos más prestigiosos de la última década, podrán enrollarse “hasta formar un pequeño lápiz que nos pondremos tras la oreja”. Samsung, líder mundial en diversas ramas de la industria electrónica, ya ha anunciado que en dos años comercializará un artilugio parecido.
Qué ocurrirá entonces con los netbooks, esos pequeños ordenadores que coparon el mercado allápor el año 2009, y que nos parecían el último grito? ¿Y qué será del iPad de Apple? En sus cuatro primeros meses de vida, se vendieron más de tres millones de esta tableta ultraportátil que hace las veces de ordenador y teléfono. Pero incluso el gran invento de 2010 dejaría de tener sentido si sale al mercado una pantalla que pesa menos y que, extendida, es más grande y nítida, mientras que, enrollada, ocupa mucho menos espacio.
Si nuestros abuelos levantan la cabeza en sus tumbas y pudieran contemplar como se envía por fax un documento, de manera instantánea, de un lugar a otro lejano…, y, sin embargo, todo eso nos parece de lo más normal y cotidiano. Según vamos avanzando, ¿qué maravillas podremos ver nosotros? La ciencia avanza de manera exponencial y se cumple la ley Moore, cada poco tiempo, lo que hoy es moderno, queda obsoleto y hay que reemplazarlo por algo nuevo menos costoso, con más prestaciones, más barato de fabricar…
Por ejemplo, las láminas de Grafeno, unque comparte muchas de las propiedades que emocionaron de los nanotubos de carbono hace poco más de una una década, el grafeno es más facil de manipular y fabricar, lo cual le da mayores probabilidades de ser utilizado en laboratorios y aplicaciones prácticas. Si unimos a eso que el grafeno es uno de los mejores conductores de calor y de electricidad; su resistencia es 200 veces más que la del acero; es muy duro y muy elástico; tan ligero como la fibra de carbono. Los científicos han fabricado transistores de grafeno y los utilizan para explorar raros fenómenos cuánticos a temperatura ambiente.
Haceun par de años, sólo un puñado de gente investigaba algo relacionado con el grafeno. En una reunión de la Sociedad Americana de Física, celebrada en marzo, se presentaron cerca de 100 papeles relacionados con el material. “Es como descubrir una isla” con varias especies para catalogar y ser estudiadas, manifestó Carlo Beenakker, profesor de física teórica en la Universidad Leiden, en Holanda.
Un nanotubo es grafeno enrollado. El grafito, lo que hay en la punta de un lápiz, está formado por capas de carbón apiladas, una encima de otra, como una baraja. Pero por mucho tiempo no se tuvo la destreza para sacar solo una de las cartas de esa baraja.
Hace unos 10 años, unos investigadores dirigidos por Rodney Ruoff, un profesor de nanoingeniería de la Universidad Northwestern, frotaron pequeños pilares de grafito contra una plaqueta de silicio, lo que causó que se repartieran como una baraja. La técnica sugirió que podrían producir un grafeno de una sola capa, pero Ruoff no midió el grosor de la hojuela.
Luego, en 2004, un grupo de investigadores encabezado por el doctor Andre Geim, profesor de física de la Universidad de Manchester, en Inglaterra, desarrolló una mejor técnica: ponían una hojuela de grafito en un pedazo de cinta adhesiva, la doblaban y cortaban, con lo que dividian la hojuela en dos. Doblando y desdoblando repetidamente, el grafito se volvia cada vez más delgado; luego pegaron la cinta en una oblea de silicio y la frotaron. Algunas de las hojuelas de grafito se pegaron a la oblea y eran del grosor de un átomo.
Con este sencillo método de fabricar grafeno, se comenzaron a hacer todo tipo de experimentos. Por ejemplo: algunos lo emplearon para construir transistores y otros aparatos electrónicos.
Las hojas de grafeno no son planas, sino onduladas, y medir su grosor es toda una odisea. Los mejores microscopios del mundo pueden notar la presencia de un solo átomo, pero usarlos para medir el grosor de cada hojuela de grafeno es terriblemente lento. No obstante, Geim descubrió que una hoja así de delgada cambia el color de la capa de óxido de silicio en la superficie de una plaqueta, como el arcoiris que se genera cuando se vierte aceite sobre agua. Así con una simple ojeada a través de un sencillo microscopio, los investigadores pueden saber si una hojuela de grafeno tiene más de 10 capas de grosor (amarillo), entre 30 y 40 (azul), alrededor de 10 (rosa) o solo una (rosa pálido, casi invisible).
Pero aún enfrentan retos: el método de la cinta adhesiva no permite la producción en masa, al menos no de un modo costeable. Por ello, Walter de Heer, profesor de física del instituto Tecnológico de Georgia, ha refinado una técnica para obtener grafeno del carburo de silicio. Al calentar una plaqueta de este material a 1300ºC, los átomos de silicio de la superficie se evaporan, mientras que los átomos de carbono restantes se reacomodan en grafeno. “Es como cocinar un pavo”, dice De Heer.
También, los científicos han demostrado un fenómeno conocido como el efencto cuántico Hall, donde la resistencia eléctrica perpendicular a la corriente y un campo magnético aplicado saltan entre ciertos valores discretos. El efecto cuántico Hall se ve comúnmente a temperaturas muy bajas en semiconductores, pero con el grafeno ocurre a temperatura ambiente.
Si hablamos de los nanotubos de carbono, hay que decir que tienen excepcionales propiedades mecánicas, térmicas, químicas ópticas y eléctricas, por lo que son un material prometedor para numerosas aplicaciones de alta tecnología. En la práctica, las primeras aplicaciones de los nanotubos de carbono han sido electrónicas debido a sus particulares propiedades eléctricas, ya que los nanotubos pueden ser metálicos o semiconductores. Los nanotubos permiten hacer más pequeños los dispositivos, conducen muy bien el calor y aumentan la vida útil de los dispositivos.

– Los nanotubos, por su carácter metálico o semiconductor, se utilizan en nanocircuitos:
- Interconectores. Los nanotubos conducen bien el calor y poseen una fuerte estructura para transportar corriente, aunque la conductividad disminuye al aumentar el número de defectos.
- Diodos. Al unir nanotubos metálicos y semiconductores, o con campos eléctricos, similares a las uniones P-N.
- Transistores. De efecto campo, de electrón único, interruptores.
– Se emplean también como emisores de campo, que es una manera de arrancar electrones de un sólido aplicando un campo eléctrico. Algunas aplicaciones son: pantallas planas, lámparas y tubos luminiscentes, tubos de rayos catódicos, fuentes de rayos X, microscopios electrónicos de barridos, etc.
– Otras aplicaciones son: nanotubos como filtros RF, y memorias fabricadas con nanotubos más rápidas, baratas, con mayor capacidad y menor consumo (nos dice Sergio Sánchez Force).
También se han utilizado los nanotubos de carbono para fabricar unas películas conductoras transparentes de distintos colores, mediante una técnica conocida como ultracentrifugación en gradiente de densidad que hace que láminas obtenidas se parezcan a un vidrio teñido. Estas películas pueden introducir mejoras en células solares y monitores de pantalla plana.
Actualmente, el óxido de estaño indio (ITO) es el material más utilizado para las aplicaciones conductoras transparentes. Pero debido a la escasez de indio y a su pobre flexibilidad mecánica, se ha buscado un conductor transparente alternativo, encontrándolo en los nanotubos de carbono. (http://www.euroresidentes.com/Blogs/noticias/nanotecnologia.htm)
Los nanotubos de carbono recientemente se utilizan también para fabricar productos electrónicos flexibles, como por ejemplo papel electrónico, a un coste asequible. Esto es debido a que ha surgido una forma de hacer transistores de alto rendimiento en un substrato de plástico.
No sólo en transistores, móviles o pantallas, este material estará presente por todas partes y, no digamos en el espacio. Por cierto, está presente ya en todas las Nebulosas de la que forman una importante proporción. Lo que decimos siempre: ¡Hay que estudiar la Naturaleza!
Esta aplicación de los nanotubos como transistores es debido a su excelente potencial de conducción y su estabilidad química. (http://www.itespresso.es/transistores-de-nanotubos-de-carbono-la-nueva-era-de-la-electronica-49590.html)
Los nanotubos de carbono se emplean en chips de dispositivos electrónicos para disipar el calor, reduciendo la temperatura del microprocesador. Los nanotubos disipan el calor de los chips tan bien como el cobre (utilizado también para disipar calor) y son más resistentes, ligeros y conductores que otros materiales para disipar calor, siendo su coste muy competitivo. (http://www.laflecha.net/canales/ciencia/noticias/los-nanotubos-podrian-mejorar-la-conduccion-termica-en-la-electronica)

Se han desarrollado transistores de película delgada de nanotubos de para crear dispositivos flexibles y transparentes de alto rendimiento. Para ello, se emplean conjuntos alineados o redes de nanotubos para hacer transistores y circuitos integrados flexibles.
Estos conjuntos constan de miles de nanotubos que funcionan como semiconductor en forma de película delgada en el que las cargas se mueven a través de cada uno de los nanotubos. Un dispositivo típico tiene mil nanotubos y produce corrientes de salida mil veces mayores a los que tienen un solo nanotubo.
Los conjuntos de nanotubos se pueden transferir por ejemplo a plásticos para las pantallas flexibles, o se pueden agregar a un chip de silicio para conseguir mayores velocidades y mayor potencia. (http://www.ru-nuel.com/2011/02/transistores-de-nanotubos-de-carbono.html)
Recientemente se ha desarrollado una tecnología para almacenar energía solar con nanotubos de carbono, que se recargan cuando se exponen al sol. Este método supone menor coste que otras alternativas y mejora con respecto a la conversión eléctrica. (http://fsvelectronicainformatica.blogspot.com/2011/08/nanotubos-de-carbono-permiten-el.html)
Un nanotubo de carbono puede ser conductor o semiconductor según la forma en que se enrolle la lámina de grafito, lo que lleva a emplear los nanotubos como componentes básicos de los transistores, ya que por su pequeño tamaño se podrían introducir muchos transistores en un microprocesador.
Se ha demostrado que la resistencia eléctrica de los nanotubos con vacantes crece exponencialmente con su longitud mientras que en un conductor normal (un hilo de cobre, por ejemplo) la resistencia crece linealmente con la longitud. La presencia de tan sólo un 0,03% de vacantes sea capaz de incrementar la resistencia eléctrica de un nanotubo de 400 nanómetros de longitud en más de mil veces. Este hallazgo podría permitir modificar a voluntad la resistencia en un nanotubo mediante la inclusión controlada de defectos, de manera análoga a como se hace actualmente en los materiales semiconductores. (http://usulutan.foroactivo.com/t146-nanotubos-de-carbono-el-futuro-de-la-nano-electronica)
Hay cuestiones en el mundo de la física cuántica que, literalmente, nos dejan con la boca abierta por el asombro. Como ocurre también con partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.
A bajas temperaturas los bosones tienden a tener un comportamiento cuántico similar que puede llegar a ser idéntico a temperaturas cercanas al cero absoluto en un estado de la materia conocido como condensado de Bose-Einstein.
Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.
Los bosones tienen un momento angular nh/2π, donde n es 0 o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermionesque tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.
En fin, la Física, esa disciplina que nos lleva hacia el futuro.
Mar
6
Nada es, como parece que es
por Emilio Silvera ~
Clasificado en Física ~
Comments (2)
Si este de arriba fuera el Campo de Higgs, esas briznas ¿serían las cuerdas vibrantes que dan masa a las partículas? Todos oímos hablar del Campo de Higgs pero, pocos saben que la idea, no es de ahora y que, en realidad, ese campo se descubrió hace muchos siglos en la antigua India, con el nombre de maya, que sugiere la idea de un velo de ilusión para dar peso a los objetos del mundo material.
El problema de la masa no está resuelto. Todas las partículas tienen masas diferentes pero nadie sabe de donde salen sus valores. No existe fórmula alguna que diga, por ejemplo, que el quark extraño debe pesar el doble (o lo que sea) que el quark arriba, o que el electrón debe tener 1/200 (u otra proporción) de la masa del muón. Las masas son de todo tipo y sería preciso que, de una vez por todas, pudiéramos conocer el por qué, la Naturaleza, ha decicido que así sea. Según lo que podemos saber de otras cuestiones, cuando es así es porque existe una razón para ello pero, ¿qué razón? En realidad, ¿por qué han de tener masa las partículas? ¿de dónde les viene la masa?
Como no lo sabemos, hemos recurrido a lo de siempre, nos inventamos el Campo de Higgs y…se tapó el agujero por el que se ve nuestra ignorancia, siempre hacemos lo mismo. Con la “materia oscura” ha pasado igual y, de momento, ni el Campo de Higgs con su Bosón ni la “materia oscura”, han dado la cara. Sí, han dicho…, han publicado…, en el LHC se han formulado declaraciones… pero, a pesar de todo eso, ni está confirmado el Campo de Higgs ni su Bosón proporcionador de materia…¡Ya veremos! Si la imagen de abajo se confirma…de verdad.
Ha habido dos momentos de grandes cambios en la Física occidental. El primero llegó con Galileo y Newton, que hicieron que la ciencia abandonara los antiguos ideales griegos de la razón pura, haciéndola rigurosa y dependiente de los datos experimentales y de la causalidad, rechando conceptos tales como que la luz es una “cualidad”, e intentándo cualificar cosas tales como luz y las fuerzas de la materia. Algunos, como Weinberg, siguen considerando a Newton como el científico más importante que ha existido:
“Transformó el mundo intelectual que había creado Aristóteles” . En cuanto a la metodología y la forma de ver el mundo, Weinberg dice que tofavía vivímos en el mundo de Isaac (los físicos actuales tratan a Aristóteles con ciertto desdén).
Otro gran paso de la Fisica se produjo cuando llegó la Teoría cuántica, unos años más tarde de que Max Planck escribiera aquel famoso artículo de ocho páginas en el que dejó sentada sus bases y nos habló del “cuanto” de acción h, que nos llevaba a la convicción de que la energía se transmitia de manera no continua a través de paquetes dicretos…”los cuantos”.
Galileo, Newron, Faraday el experimentador y su colega Maxwell el teórico, entre otros, levantaron el inmenso edificio de la física clásica. Conocíamos la mecánica del movimiento de los objetos, como se propagaba la radiación electromagnética por el universo; teníamos una enorme cantidad de conocimientos relativos al mundo físico. Por ejemplo, la segunda Ley de Newton, F = ma (fuerza igual a masa por acelración)es uno de los mantras de la física clásica. Más tarde los físicos cuánticos descendieron a las profundidades del átomo y descubrieron un nuevo mundo.
TIEMPO A TRAVES DEL CRISTAL


