domingo, 20 de octubre del 2019 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Paul Dirac, gran físico y matemático

Autor por Emilio Silvera    ~    Archivo Clasificado en Carnaval de Física, General    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Algunas de las cosas que se cuentan de la vida de Dirac, el físico que predijo la existencia de la antimateria, el positrón.

Paul Dirac ocupó la cátedra lucaciana de matemáticas en Cambridge durante parte del tiempo en que Eddington estuvo viviendo en los observatorios. Las historias que se cuentan de Paul Dirac dejan muy claro que era un tipo con un carácter peculiar, y ejercía de matemático las 24 h. del día. Se pudo saber que su inesperada incursión en los grandes números fue escrita durante su viaje de novios (Luna de miel), en febrero de 1937.

Aunque no muy convencido de las explicaciones de Eddington, escribió que era muy poco probable que números adimensionales muy grandes, que toman valores como 1040 y 1080, sean accidentes independientes y no relacionados: debe existir alguna fórmula matemática no descubierta que liga las cantidades implicadas. Deben ser consecuencias más que coincidencias.

Esta es la hipótesis de los grandes números según Dirac:

“Dos cualesquiera de los números adimensionales muy grandes que ocurren en la naturaleza están conectados por una sencilla relación matemática, en la que los coeficientes son del orden de la unidad”.

Los grandes números de que se valía Dirac para formular esta atrevida hipótesis salían del trabajo de Eddington y eran tres:

N1 = (tamaño del universo observable) / (radio del electrón) = ct (e2/mec2) ≈ 1040

N2 = Razón fuerza electromagnética-a-gravitatoria entre protón y electrón = e2/Gme mp ≈ 1040

N = número de protones en el universo observable = c3t/Gmp ≈ 1080

Aquí t es la edad actual del universo, me es la masa de un electrón, mp es la masa de un protón, G la constante de gravitación, c la velocidad de la luz y e la carga del electrón.

Según la hipótesis de Dirac, los números N1, N2 y  eran realmente iguales salvo pequeños factores numéricos del orden de la unidad. Con esto quería decir que debe haber leyes de la naturaleza que exijan fórmulas como N1 = N2, o incluso N1 = 2N2. Un número como 2 ó 3, no terriblemente diferente de 1 está permitido porque es mucho más pequeño que los grandes números implicados en la fórmula; esto es lo que él quería decir por “coeficientes….  del orden de la unidad”.

Esta hipótesis de igualdad entre grandes números no era en sí misma original de Dirac. Eddington y otros habían escrito antes relaciones muy semejantes, pero Eddington no había distinguido entre el número de partículas del universo observable, que se define como una esfera centrada en nosotros con un radio igual a la velocidad de la luz multiplicada por la edad actual del universo, o lo que es lo mismo:

Universo observable: R = 300.000 × 13.500.000.000

El cambio radical expuesto por Dirac en su hipótesis de grandes números es que nos exige que creamos que un conjunto de constantes tradicionales de la naturaleza, como N2, debe estar cambiando a medida que el universo envejece en el tiempo, t:

Puesto que Dirac había incluido dos combinaciones que contenían la edad del universo, t, en su catálogo de grandes números, la relación que él propone requiere que una combinación de tres de las constantes de la naturaleza tradicionales no sea constante en absoluto, sino que su valor debe aumentar continuamente a medida que el universo se hace más viejo, de modo que

Dirac decidió acomodar este requisito abandonando la constancia de la constante de gravitación de Newton, G. Sugirió que estaba decreciendo en proporción directa a la edad del universo en escalas de tiempo cósmicas, como

Así pues, en el pasado G era mayor y en el futuro será menor que lo que mide hoy. Ahora veremos que  y la enorme magnitud de los tres grandes números es una consecuencia de la gran edad del universo: todas aumentan con el paso del tiempo.

La propuesta de Dirac provocó un revuelo entre un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, pero escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

La propuesta de Dirac levantó controversias entre los físicos, y Edward Teller en 1.948, demostró que si en el pasado la gravedad hubiera sido como dice Dirac, la emisión de la energía del Sol habría cambiado y la Tierra habría estado mucho más caliente en el pasado de lo que se suponía normalmente, los océanos habrían estado hirviendo en la era precámbrica, hace doscientos o trescientos millones de años, y la vida tal como la conocemos no habría sobrevivido, pese a que la evidencia geológica entonces disponible demostraba que la vida había existido hace al menos quinientos millones de años.

El eufórico George Gamow era buen amigo de Teller y respondió al problema del océano hirviente sugiriendo que podía paliarse si se suponía que las coincidencias propuestas por Dirac eran debidas a una variación temporal en e, la carga del electrón, con e2 aumentando con el tiempo como requiere la ecuación

Por desgracia, la propuesta de Gamow de una e variable tenía todo tipo de consecuencias inaceptables para la vida sobre la Tierra. Pronto se advirtió que la sugerencia de Gamow hubiera dado como resultado que el Sol habría agotado hace tiempo todo su combustible nuclear, no estaría brillando hoy si e2 crece en proporción a la edad del universo. Su valor en el pasado demasiado pequeño habría impedido que se formaran estrellas como el Sol. Las consecuencias de haber comprimido antes su combustible nuclear, el hidrógeno, hubiera sido la de convertirse primero en gigante roja y después en enana blanca y, por el camino, en el proceso, los mares y océanos de la Tierra se habrían evaporado y la vida habría desaparecido de la faz del planeta.

Gamow tuvo varias discusiones con Dirac sobre estas variantes de su hipótesis de G variable. Dirac dio una interesante respuesta a Gamow con respecto a su idea de la carga del electrón, y con ello la constante de estructura fina, pudiera estar variando.

Recordando sin duda la creencia inicial de Eddington en que la constante de estructura fina era un número racional, escribe a Gamow en 1.961 hablándole de las consecuencias cosmológicas de su variación con el logaritmo de la edad del universo.

“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, pero los experimentadores dicen ahora que no es un entero, de modo que bien podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad también estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión entre ella y los neutrinos, pero esto ha fracasado.”

Dirac no iba a suscribir una e variable fácilmente, como solución al problema de los grandes números. Precisamente, su trabajo científico más importante había hecho comprensible la estructura de los átomos y el comportamiento del electrón, y dijo que existía el positrón. Todo ello basado en la hipótesis, compartida por casi todos, de que e era una verdadera constante, la misma en todo tiempo y todo lugar en el universo, un electrón y su carga negativa eran exactas en la Tierra y en el más  alejado planeta de la más alejada estrella de la galaxia Andrómeda. Así que Gamow pronto abandonó la teoría de la e variable y concluyo que:

“El valor de e se mantiene en pie como el Peñón de Gibraltar durante los últimos 6×109 años.”

Pero lo que está claro es que, como ocurre siempre en ciencia, la propuesta de Dirac levantó una gran controversia que llevó a cientos de físicos a realizar pruebas y buscar más a fondo en el problema, lo que dio lugar a nuevos detalles importantes sobre el tema.

¡Qué cosas!

 

  1. 1
    David
    el 29 de junio del 2013 a las 17:10

    Buenisimo este blog, me sirve para profundizar en mi trabajo de grado y gracias a la persona que lo escribio, en verdad me ha dado ideas.. 

    Responder
    • 1.1
      Emilio Silvera
      el 30 de junio del 2013 a las 3:16

      ¡Hola, David!

      De eso se trata, de que de alguna manera, lo que aquí aparece sirva a las personas que nos visitan, unos se entretienen, otros como tú mismo, lo aprovechan para sus estudios y otros, aprenden cosas que no sabían.

      Saludos.

      Responder
  2. 2
    CARLOS A.
    el 23 de enero del 2015 a las 19:33

    ¿ha sido Dirac quien ha dicho que “nada puede salir de la nada”?
     ¿ SE PODRÍA DECIR QUE LA NADA ES EL VACÍO EXENTO CUALQUIER TIPO DE ENERGÍA O RADIACIÓN?

    Saludos 

    Responder
    • 2.1
      Emilio Silvera
      el 24 de enero del 2015 a las 8:11

      ¡Hola, amigo Carlos A.!

      En cuanto a lo que preguntas, lo cierto es que, la creencia más extendida está escrita en los libros y muchos grandes pensadores del pasado pensaron en ello:

       

      Nada surge de la nada, o de la nada, nada proviene, son expresiones con las que se indica un principio metafísico según el cual ningún ente puede empezar a existir a partir de la nada. El pensamiento se suele atribuir al filósofo griego  Parménides.

      El principio suele plantearse en relación al origen del universo. Dado que el universo existe, entonces o bien existió siempre, o bien tuvo un comienzo. Si tuvo un comienzo, entonces significa que surgió de la nada (también cabe la posibilidad de que no sepamos de donde vino o surgió y como consecuencia de qué), porque el universo es por definición todo lo que existe. Pero esto contradice el principio de que nada surge de la nada. Luego, si el principio es cierto, el universo existió siempre. Siguiendo este tipo de razonamientos, muchas religiones han postulado que el universo no surgió de la nada sino que fue el producto de fluctuaciones del espacio tiempo en el vacío cuántico ya existente, posiblemente, en otro universo anterior.

       

      En la filosofía griega.un principio relacionado era aquel según el cual un ente no puede desaparecer en la nada, sino sólo transformarse. El principio puede pensarse como un antecedente de la ley de la conservación de la masa y la ley de la conservaci´çon de la energía. Entonces llegamos a la certexa de que;

      “Nada puede surgir de la Nada y, si surgi´ço, es porque había”

       

      El principio también está muy ligado a la pregunta filosófica que MartinHeidegger y Gottfried Leibbniz, entre otros, destacaron: ¿por qué hay ente, y no más bien nada?

      En la Crítica de la razón pura, Immanuel Kant argumentó que no es posible determinar si el mundo tiene o no un comienzo en el tiempo.

      Como puede ver, la cosa viene de lejos y el dileme sigue siendo motivo de profundos pensamientos. Sin embargo, una cosa debe quedar clara: De la Nada, nada puede surgir y, si surgió… ¡Es porque había!

      Saludos.

      Responder

Deja un comentario



Comentario:

XHTML

Subscribe without commenting