jueves, 25 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




De neutrinos, de luz y de otras maravillas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo.  En realidad, los electrones no eran igualmente deficitarios.  Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado.  Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas.  En ese caso, ¿qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?

En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1.930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas.  En 1.931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.

Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida.  Esa misteriosa segunda partícula tenía propiedades bastante extrañas.  No poseía carga ni masa.  Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía.  A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.

Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y se liberaba un electrón, que, como en la decadencia beta, portaba insuficientes cantidades de energía.  Enrico Fermi dio a esta partícula putativa el nombre de “neutrino”, palabra italiana que significa “pequeño neutro”.

Leer más

Confirmar las nuevas teorías

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La teoría M de cuerdas es una teoría muy adelantada a su tiempo, incluso las matemáticas necesarias para desarrollarla al completo, nos son desconocidas.  Por otra parte, como me he cansado de escribir en otros trabajos anteriores, la energía necesaria para verificarla, no está a nuestro alcance. Y, sin embargo, podríamos tener alguna sorpresa al llegar a ella por otros medios.

La fuerza del argumento a favor de la teoría de cuerdas parece residir en varias relaciones matemáticas notables entre “situaciones físicas” en apariencia diferentes (normalmente, algo alejadas de la física del mundo real de la Naturaleza).

¿Son una “coincidencia” estas relaciones, o hay alguna razón más profunda tras ellas? Si hablamos de matemáticas, las coincidencias sin una razón determinada, suelen ser más bien escasas.  Me inclino y apuesto por el hecho de que, para muchas de estas “coincidencias” hay realmente una razón, todavía no descubierta. Aunque yo, personalmente, aconsejaría no perder de vista el número mágico, 24, de Ramanujan.

Algunos, generalmente mediocres y sin ilusiones, guiados por la envidia hacia sus compañeros más lúcidos, han llegado a decir que, los que están a vueltas con las teorías de cuerdas, no es seguro que estén haciendo física.  O, si la hacen, ¿qué área de la física están explorando realmente?

Se me ocurre pensar que, el mismo ambiente contrario encontró A. Einstein, en su tiempo, al formular sus famosas teorías relativistas y, sin embargo, nos trajo hasta aquí.

Leer más

Muy interesante 4/30

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Cuál es la geometría del universo?

Según Einstein, el universo es un continuo en el tiempo-espacio que podría adoptar tres formas, según el contenido de materia y energía:

  • Forma esférica (curvatura positiva). Viaje en una dirección y eventualmente regresará al punto de partida. Sin energía oscura, este universo detendrá su expansión y se colapsará sobre sí mismo. Con ella, la expansión continuará.
  • Plano (sin curvatura). El viajero nunca regresará a su punto de partida. Incluso sin energía oscura, este universo continuará expandiéndose eternamente, aunque cada vez más lentamente. Con la energía oscura, la expansión se acelerará cada vez más. Según las últimas observaciones, esta es la forma de nuestro universo.
  • Forma de silla de montar (curvatura negativa). El viajero nunca regresará. La expansión apenas desacelerará, incluso sin la presencia de la energía oscura.

Texto extraído de Muy interesante