Dic
9
Incertidumbre, Orden, Caos, Entropía…Vida.
por Emilio Silvera ~
Clasificado en El Universo y la Entropía ~
Comments (1)


Moléculas, átomos y conexiones para formar pensamientos



A veces, al ver la presencia de vida en el Universo, uno está tentado de pensar que existe una Conciencia Cósmica
Imaginemos una mente inteligente que, en todo momento, pudiera tener conocimiento de todas las fuerzas que controlan la Naturaleza y también, de las condiciones en que se encuentran en cada momento todas las unidades de que consta ésta. Si esta mente tuviera una inteligencia suficiente para analizar todos estos datos, podría abarcar en una sola fórmula los movimientos de los cuerpos de mayor tamaño del universo y los de los átomos más ligeros; para ella nada sería incierto; el futuro y el pasado estarían ambos presentes ante sus ojos.

El equivalente moderno de esta mente sería un superordenador que conociera todas las posiciones y las velocidades de todas las partículas del universo, y pudiera utilizar las leyes de Newton y las que describen las fuerzas de la naturaleza (como la gravedad y el electromagnetismo), no solo para predecir la trayectoria futura de cada partícula, sino para averiguar toda la historia de su procedencia –porque en las leyes de Newton no hay nada que nos revele la dirección del tiempo y funcionan de la misma manera si éste transcurre en sentido contrario, como podemos ver fácilmente si nos imaginamos el proceso inverso del choque entre dos bolas de billar, o si invertimos el movimiento orbital de todos los planetas del Sistema Solar-.

Los científico0s dicen que los misterios de ,la Flecha del Tiempo está aquí. Solo hay que saber buscar
No hay una flecha del tiempo en las leyes de Newton y, según Laplace y muchos otros, estas leyes parecen describir un mundo completamente determinista en el cual el pasado y el futuro están fijados de una manera rígida y no hay lugar para el libre albedrío.
Lo que ninguno de estos científicos parece haber observado es que el argumento fundamental se desploma si, en cualquier momento y lugar del universo, se produce una colisión simultánea entre tres partículas –aunque la valoración de si esto sería suficiente para restablecer el libre albedrío es una cuestión cuya discusión prefiero dejar a la filosofía.

El tiempo y la entropía destructora
“…Con el paso de los Eones, hasta la misma muerte tendrá que morir”

En la física del movimiento y sus causas -Dinámica- las leyes de la naturaleza funcionan tanto si el tiempo transcurre “hacia adelante” como también si lo hiciera “hacia atrás”, es decir que son simétricas y reversibles en el tiempo. Si filmamos un choque entre dos partículas, o la órbita de un planeta entorno a su sol, y pasamos la película al revés, notaremos que las trayectorias están invertidas, lo cual es totalmente coherente para la física: no hay nada que nos indique que el tiempo está trascurriendo en sentido contrario. Si las leyes de la naturaleza no distinguen entre el pasado y el futuro, entonces ¿por qué notamos que el tiempo fluye en un sentido y no en otro? ¿De dónde sale esa asimetría del tiempo? ¿Por qué recordamos el pasado pero no el futuro?

- El físico expresó de la forma más bella los principios sobre la electricidad y el magnetismo
- “Los cuerpos del mismo signo se repelen y los cuerpos de signo diferente se atraen”.
Este mismo problema relativo al tiempo se planteó a partir de uno de los mayores triunfos de la física del siglo XIX: la investigación de la naturaleza de la luz y de otras formas de radiación electromagnética, que tuvo su momento culminante en la obra del escocés James Clerk Maxwell (1831-1879). La explicación dada por Maxwell sobre la radiación electromagnética se basa en la obra de Michael Faraday, que vivió entre 1791 y 1867, y propuso la definición de los “campos” eléctrico y magnético que surgen en torno a los objetos que poseen una carga eléctrica.

Faraday y su teoría electromagnética que no supo explicar en ecuaciones y lo hizo Maxwell
Fue Faraday el primero en sugerir que la luz podría estar producida por algún tipo de vibración de las líneas de fuerza asociadas con imágenes y partículas “cargadas”, que vibrarían como lo hacen las cuerdas de un violín al ser pulsadas. El problema estaba en que, Faraday, carecía de los conocimientos matemáticos necesarios para desarrollar la idea de maneta tal que se desarrollara un modelo perfectamente configurado. Así, en la década de 1860, llegó Maxwell para rematar el trabajo de Faraday con sus maravillosas ecuaciones vectoriales para demostrar que todos los fenómenos eléctricos y magnéticos conocidos en aquella época, incluido el comportamiento de la luz, podía ser descrito mediante un conjunto de sólo cuatro ecuaciones, que actualmente se denominan ecuaciones de Maxwell.

Faraday fue el experimentador
Newton y Maxwell, dieron al mundo el conjunto de herramientas matemáticas necesarias para controlar todo lo que la física conocía a mediados del siglo XIX. Por otra parte, lo más maravilloso de las ecuaciones de Maxwell era que, sin que se hubiera pedido, proporcionaban una descripción de la luz –las ecuaciones se crearon para describir otros fenómenos electromagnéticos, pero incluían en sí misma una solución que describía las ondas electromagnéticas que se desplazaban por el espacio a cierta velocidad- Esta velocidad es exactamente la de la luz (que ya había quedado bien determinada en la década de 1860 y pronto podría medirse con una precisión aún mayor), no dejando lugar a dudas de que la luz se desplaza como una onda electromagnética.
Las ecuaciones de Maxwell tienen dos características curiosas: una de ellas pronto tendría un profundo impacto en la física, y la otra fue considerada hasta tiempos muy recientes sólo como una rareza de menor importancia. La primera característica innovadora de estas ecuaciones es que dan la velocidad de la luz como un valor constante, independientemente de cómo se mueva su fuente con respecto a la persona o al aparato que mida su velocidad (Einstein lo supo ver con claridad cuando lo incorporó a su teoría de la relatividad especial).
La Flecha del Tiempo en el Universo…siempre hacia el futuro
Claro que, como todo, también las ecuaciones de Maxwell tenían sus limitaciones, especialmente en la descripción de fenómenos que se producen a escalas muy pequeñas, tales como el comportamiento de los átomos y de las partículas que los componen. En este caso, es preciso modificar tanto la descripción clásica de las descripciones electromagnéticas (Maxwell), como la descripción clásica de las interacciones entre partículas (Newton), fenómenos en los cuales se cumplen las reglas de la física cuántica. Así, las ecuaciones de Maxwell, como las de Newton, tampoco contienen la flecha del tiempo.
Lo que fue durante mucho tiempo la explicación habitual la razón por la que vemos una dirección predominante del tiempo surgió a partir de otro gran triunfo de la física del siglo XIX: la descripción de la relación entre calor y movimiento (termodinámica). Esto tuvo una importancia práctica fundamental en el mundo industrial cuando se utilizaba la fuerza de las máquinas de vapor.
Lo cierto es que, la importancia de la termodinámica reside en que permite a los físicos explicar el comportamiento de gran número de objetos –en especial, partículas de gas- que, en cierto sentido, funcionan juntos en un sistema complejo. Esto incluye el uso de promedios y estadísticas, pero se basa en gran medida en la idea de que un gas está constituido por una cantidad innumerable de partículas diminutas (átomos y moléculas) que no cesan de rebotar y chocar entre sí y con las paredes del recipiente que las contiene, cumpliendo las leyes del movimiento de Newton. Esta teoría cinética de los gases fue un ejemplo importante del modo en que las leyes universales de la física ponían orden en el caos.
La palabra “gas” fue acuñada por el físico flamenco Joannes van Helmont a partir de la palabra griega que significa “caos”; este término apareció impreso por primera vez en el libro de van Helmont titulado Ortus medicinae, publicado cuatro años después del fallecimiento de Joannes, en 1648. La idea de que los gases eran como un caos se consideró acertada durante trescientos años, hasta que Maxwell desde Gran Bretaña, y su contemporáneo Ludwig Boltzmann, desde Viena, consolidaron la teoría cinética (que hasta entonces había sido sólo una especulación), dándole una firme base científica fundamentada en las leyes de Newton.
Segundo Principio de la Termodinámica
La segunda ley de la termodinámica es un principio general que impone restricciones a la dirección de la transferencia de calor, y a la eficiencia posible en los motores térmicos. De este modo, va más allá de las limitaciones impuestas por la primera ley de la termodinámica. Sus implicaciones se pueden visualizar en términos de la analogía con la cascada
Física Estadística y Termodinámica
Enunciados de Clausius y Kelvin-Planck
Equivalencia entre los enunciado de Clausius y de Kelvin-Planck
Límite en el rendimiento de un motor real
Variaciones de entropía en procesos irreversibles
![💪 TERMODINÁMICA. TODO lo que DEBES SABER para ESTUDIAR TERMODINÁMICA [👉 PARTE 1 ESPECIAL PARA TÍ] - YouTube](https://i.ytimg.com/vi/LAmBg7OzUcE/maxresdefault.jpg)
Lo que actualmente se conoce como segundo principio de la termodinámica se puede expresar de muchas formas diferentes, pero su primer enunciado se debe al físico británico William Thomson (quien fuera posteriormente lord Kelvin) en 1852. La cuestión principal sobre la que Thomson llamó la atención era la idea de la disipación –que, aunque el modo en que funciona el mundo natural se puede describir como un gran motor que convierte el calor en trabajo (o en movimiento, que viene a ser lo mismo), debe haber siempre algo de calor que se disipa durante el proceso, aunque realmente no se pierde, sino que se propaga por todo el universo, haciendo que la temperatura global suba una pizca, una cantidad imperceptible-Esto va más allá del principio, o ley, de la conservación de la energía (el primer principio de la termodinámica), porque en este caso, aunque la cantidad total de energía del mundo (expresión con la que los victorianos se referían a lo que actualmente llamaríamos el universo) se mantiene siempre igual, la cantidad de energía útil siempre está disminuyendo. Esto implica que los físicos necesitaban un método para cuantificar la cantidad de energía útil existente en un sistema cerrado, o en el mundo (el universo en toda su amplitud), de tal manera que pudiera tenerla en cuenta y manejarla en sus ecuaciones. Esto indujo a Rudolf Clausius a proponer el concepto de entropía, lo cual hizo en Alemania a mediados de la década de 1860.

La entropía mide la cantidad de orden que hay en un sistema y, si el desorden aumenta, también lo hace la entropía. Sabiendo que en el mundo real el desorden crece en todo sistema cerrado (las cosas se desgastan) a medida que pasa el tiempo, el inevitable aumento de la entropía define una dirección del tiempo, una flecha que parte del pasado ordenado y apunta hacia el futuro desordenado. Dado que este proceso parecía inevitable y universal, los especialistas en termodinámica de la era victoriana preveían un destino último del universo en el que toda la energía útil se habría convertido en calor y todo sería una mezcla templada de materia a temperatura uniforme, una situación desoladora que llamaban la “muerte térmica” del universo.



La vida, como sistema cerrado, está ineludiblemente sometida a la Entropía con el paso del Tiempo
La vida, por supuesto, parece desafiar este proceso creando orden y estructuras a partir de materiales desordenados (o, en todo caso, menos desordenados). No parece más que, el Universo, actúa como si tuviera una consciencia y, hubiera creado la vida para que, a través de ella, pudiera evitar ese final. Una planta, por ejemplo, construye su estructura, y puede fabricar flores de gran belleza, a partir del dióxido de carbono, agua y unos pocos restos de otros productos químicos. Pero sólo puede hacerlo con la ayuda de la luz solar, es decir, con energía procedente de una fuente externa. La Tierra, y en particular la vida que se desarrolla en ella, no es un sistema cerrado. Es posible demostrar, utilizando las ecuaciones desarrolladas por Thomson, Clausius y sus contemporáneos, que, en cualquier lugar del Universo donde aparece un foco de orden, esto se hace a costa de que se produzca más desorden en otro lugar.

A escala macroscópica, según unas leyes deducidas a partir de experimentos y observación siguiendo procedimientos científicos aprobados, ensayados y comprobados, el universo actúa de un modo irreversible. Nunca se puede hacer que las cosas vuelvan a ser como solían, todo lo que surge, aunque nos parezca igual, no lo es. Todo lo nuevo que surge a partir de lo que había, está más evolucionado y, de alguna manera, es diferente. Pero precisamente en nuestro sencillo y clásico ejemplo de irreversibilidad termodinámica, la entropía y la flecha del tiempo podemos observar con claridad la dicotomía aparente entre el mundo macroscópico y el mundo microscópico. A nivel de los átomos y las moléculas que componen el gas (en realidad un nivel sub-microscópico, pero nadie lo tiene en cuenta), toda colisión es, según las leyes de Newton, perfectamente reversible y, en ese modelo del movimiento inverso no habría nada que estuviera prohibido por las leyes de Newton. Obedeciendo ciegamente esas leyes, los átomos y las moléculas recorrerían su camino inverso para volver a quedarse en su posición original, con independencia del número de sucesos e interacciones que pudieran haber sufrido durante el proceso. Sin embargo, en el mundo real, nunca vemos que los sistemas actúen de esa manera. Las civilizaciones pasan y llegan otras nuevas, aquellas que se fueron, nunca volverán. De la misma manera, cuando una estrella, al final de su vida, explota como supernova y deja sembrado el espacio interestelar de una hermosa Nebulosa de la que, mucho más tarde, surgirán nuevas estrellas, éstas, serán de otra generación, más complejas y, aunque seguirán siendo estrellas, estarán clasificadas como diferentes, más complejas y evolucionadas que aquellas en las que tienen su origen.

El Caos fue siempre un tema matemático
Me proponía al comenzar este trabajo a exponer muchas más cosas pero, como siempre pasa, el espacio y el tiempo no dan para tanto en este lugar y, dejo pendiente explicar cómo surge el Caos a partir del Orden y el Orden a partir del Caos, cómo podemos llegar al borde del Caos y qué transiciones de fase tienen que producirse para que, la normalidad y la simetría vuelva a reinar a partir de ese desorden que, en un principio, podría parecer irreversible.
De todo lo que aquí hemos hablado, se puede tomar razón y llegar a tener una razonada conciencia en el estudio de una galaxia espiral que, con sus millones de estrellas brillantes en los brazos espirales y sus estrellas rojas y más viejas en el centro galáctico, nos hablan claramente de la flecha del tiempo y de la entropía al considerar, la galaxia, como el sistema cerrado que, poco a poco, va tornándose más y más compleja en la composición de la materia que la conforma que, de manera irreversible va sufriendo transformaciones de todo tipo que, finalmente, la llevará a un estado crítico que hasta se podría transformar en un inmenso agujero negro como resultado final del proceso.
Mucho es lo que nos queda por saber, lo que sabemos, reconociendo que no es poco para el exiguo tiempo que llevamos aquí (en la medida del reloj del universo), es aún insuficiente para lo que la Humanidad necesita saber. Nuestra ignorancia es grande, muy grande…, casi infinita, si la contraponemos con todo aquellos que nos queda por descubrir de los secretos de la Naturaleza. Nunca podremos acabar ese aprendizaje que se pierde en la lejanía de la flecha del tiempo en ese infinito que llamamos futuro.
emilio silvera
Dic
9
¿La vida fuera de la Tierra? ¡Antes de que finalice el siglo!
por Emilio Silvera ~
Clasificado en El Universo y la Vida ~
Comments (11)

La vida microscópica está por todas partes…¡En otros mundos (creo) que también
“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente prec-opernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

Así se expresaba Fred Hoyle. Fred Hoyle fue un astrofísico inglés conocido principalmente por su teoría de la nucleosíntesis estelar y sus posturas a menudo controvertidas, especialmente su rechazo a la teoría del Big Bang.

Icebergs gigantes: Belleza y peligro de hielo
![]()
Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

Son engañosos en su tamaño, solo dejan ver una mínima parte, el resto lo ocultan en la profundidad
Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).



Los familiares paisajes de Marte
Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.
Una enorme mayoría de científicos apuestan por la presencia de la Vida en otros mundos, en otros lugares fuera de la Tierra

Titán con su espesa atmósfera y sus mares de metano, es un pequeño mundo muy parecido a la Tierra hace algunos millones de años. Las primeras señales de vida que encontramos en la Tierra están referidas a fósiles hallados en las rocas más antiguas en Australia que tienen una edad de 3.800 M de años.


Encélado y Europa

Así se cree que es Europa la Luna de Júpiter por dentro
Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado
Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.
Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

Europa y sus geiseres, podría albergar alguna clase de vida
En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

El experimento que explicó por accidente las líneas rojas de la superficie de Europa, luna de Júpiter
Un experimento con agua y dos diamantes del tamaño de un grano de arena fue la clave para ofrecer una teoría sobre el satélite de Júpiter.
Europa es uno de los satélites de Júpiter y se caracteriza por ser un cuerpo liso congelado con unas marcas rojas entrecruzadas que recorren todo su territorio. Los científicos han observado por décadas a Europa y están casi seguros de que debajo de la aquella capa helada llena de surcos hay un mar salado. El satélite, en su mayoría, es todavía un misterio, pero un nuevo experimento de la Universidad de Washington, EE UU, ha arrojado un poco de luz sobre su naturaleza.
![]()
Cristal de cloruro de sodio. Sal común
Mientras experimentaban con hielo sometido a alta presión, los científicos descubrieron que las moléculas de agua y de sal se convirtieron en algo nunca antes visto. Al comprimir una gota de agua a 25 mil atmósferas con la ayuda de dos diamantes del tamaño de un grano de arena, los investigadores presenciaron la formación de dos nuevos hidratos de cloruro de sodio.

La exploración de tres lunas heladas de Júpiter servirá para comprobar si cuentan con condiciones de habitabilidad.NASA/JPL/Universidad de Arizona / Montaje: 20BITS
Mientras la NASA tiene la mirada fija en la Luna con su proyecto Artemis, la Agencia Espacial Europea (ESA) pretende viajar hasta las lunas heladas de Júpiter con su misión JUpiter ICy moons Explorer (JUICE). La intención del equipo que hay detrás del programa comenzó un 13 de abril de hace algunos años, con el lanzamiento de la nave, y la llegada a su primer destino se espera que se produzca a principios de la década que viene.

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.
![]()
Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.
Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.
Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

Titán
No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.


Io la luna de Neptuno y su compañera Tritón
Llegó a su órbita actual en dirección contraria, igual que un conductor suicida. Y arrasó, literalmente, al resto de las hasta entonces pacíficas lunas interiores de Neptuno. Por culpa de Tritón , en efecto, el octavo planeta hace gala de una de las más extrañas colecciones de satélites de todo el Sistema Solar.
Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.



Paisajes de la Tierra Prehistórica, lluvia de metano, ¿Cuántas sorpresas más? De esta Tierra ígnea surgieron aquellas primeras células replicantes que dieron lugar a otras formas de vida más complejas
Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió. De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.


Con sus mares de metano

En unos cientos de años podría ser un pequeño mundo habitable
La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.
La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.
¡Ya veremos!
emilio silvera
Dic
9
El Fino equilibrio de la Vida en el Universo
por Emilio Silvera ~
Clasificado en General ~
Comments (2)
La presencia de la Vida en el Universo…¡Siempre trajo de cabezas a los grandes pensadores!
El ajuste fino es muy real, si alguno de ellos se desequilibra… ¡Mal irían las cosas para la vida!
Dic
8
¡Los pensamientos! Nos hacen saber y crear
por Emilio Silvera ~
Clasificado en Los Pensamientos ~
Comments (0)

De los átomos hemos llegado a saberlo “casi” todo, en muchos trabajos anteriores explicando temas de Mecánica cuántica hemos dejado al descubierto los muchos secretos desvelados a la Naturaleza de ese “universo” de lo infinitesimal.


En el otro extremo de la escala, también conseguimos llegar a las galaxias. En la que el sistema planetario que acoge a la Tierra y a nosotros, nos hemos introducido hasta sus entrañas, y, allí en el centro galáctico descubrimos un “monstruo” al que pusimos el nombre de Sagitario A, un Agujero negro que se traga todo lo que se acerca a su alrededor.
Así, en el mundo de lo pequeño y de lo grande, encontramos materia más que suficiente para poder estudiar los secretos mejor guardado de la Naturaleza que desde Empédocles con sus elementos y Demócrito con su átomo, no hemos dejado de insistir en saber del mundo que nos rodea, de ese otro “universo” que no podemos ver, y, finalmente de lo que está situado fuera del alcance del ojo desnudo, y, con grandes aparatos de tecnologías muy avanzadas, logramos alcanzarlos y traer sus imágenes hasta nosotros para saber como eran hacen miles de millones de años.
“¿Qué es el tiempo en física? En física se llama tiempo a una magnitud que sirve para medir la duración o la separación de uno o más acontecimientos. Esto permite ordenarlos en una secuencia (pasado, presente, futuro) y determinar si ocurren o no en simultáneo.
El tiempo se representa con la variable t, su unidad de medición en el Sistema Internacional es el segundo (s), en un marco sexagesimal (60 unidades constituyen una unidad mayor) y el aparato con el que se mide es el reloj.
El tiempo puede pensarse como la duración de las cosas que están sujetas al cambio, y es una de las magnitudes físicas más importantes. Dentro de las consideraciones físicas, se la considera una variable que, combinada con otras, permite determinar la posición, el movimiento, la velocidad y muchas otras magnitudes de un objeto o sistema.”
Pero el TIEMPO es mucho más que todo eso, sin el Tiempo existiría nada, su inexorable transcurrir hace posible los cambios y la renovación continuada de todo lo que existe, nada permanece y todo cambia. Junto al Tiempo está la Entropía que hace su trabajo en todos los sistemas cerrados, y, como decía un gran pensador: “… Con el paso de los Eones, hasta la misma muerte tendrá que morir”.


Es curioso observar como cuando mi mente está libre y divagando sobre una gran diversidad de cuestiones que sin ser a propósito, se enlazan o entrecruzan en un revoltijo de ideas las unas con las otras, y lo mismo estoy tratando de sondear sobre el verdadero significado del número 137 (sí, ese número puro, adimensional, que encierra los misterios del electromagnetismo, de la luz y de la constante de Planck – se denomina alfa (α) y lo denotamos 2πe2/hc), o que me sumerjo en las profundidades del número atómico para ver de manera clara y precisa el espesor de los gluones que retienen a los quarks. Sin embargo, mi visión mental no se detiene en ese punto, continúa avanzando y se encuentra con una sinfonía de colores que tiene su fuente en miles y miles de cuerdas vibrantes que, en cada vibración o resonancia, producen minúsculas partículas que salen disparadas para formar parte en otro lugar, de algún planeta, estrella, galaxia e incluso del ser de un individuo inteligente.
¿De qué está hecha la materia?
Me pregunto por el verdadero significado de la materia, y cuanto más profundizo en ello, mayor es la certeza de que allí están encerradas todas las respuestas. ¿Qué somos nosotros? Creo que somos materia evolucionada que ha conseguido la conquista de un nivel evolutivo en el que ya se tiene conciencia de ser, de estar, de comprender para poder generar ideas propias sobre las cosas de la Naturaleza que nos creó.

Las dos imágenes representan la materia: Una es Naturaleza “inerte” y, la otra, de pensamientos
A veces, la Naturaleza nos muestra escenarios difíciles de asimilar… Pero ahí están
Pienso que toda materia en el universo está cumpliendo su función para conformar un todo que, en definitiva, está hecho de la misma cosa, que interaccionan con las fuerzas que rigen el Cosmo y toda la naturaleza del universo que nos acoge. La luz, la gravedad, la carga eléctrica y magnética, las fuerzas nucleares, todo, absolutamente todo, se puede entender a partir del comportamiento de la materia en sus distintos estadios y situaciones, tanto a niveles microscópicos como en nuestro más cotidiano mundo macroscópico, todo son aspectos y escenarios distintos, en los que la materia, se pone distintos ropajes para representar su papel en la más grande función del Teatro del Universo: para que existan estrellas y galaxias, planetas, árboles, desiertos, océanos y multitud de espacies de seres vivos y, algunas como la nuestra por ejemplo, hemos podido evolucionar hasta alcanzar la Conciencia de Ser.
Todos somos iguales pero… ¡Con pensamientos tan diversos!
Mirando a mi alrededor, de manera clara y precisa, puedo comprobar que el mundo está compuesto por una variedad de personas que, siendo iguales en su origen de especie, son totalmente distintas en sus mentes, en sus costumbres, en sus creencias y en sus conocimientos del mundo que nos rodea localmente y en ese otro que saliendo de nuestras fronteras nos lleva hasta el microscópico mundo del átomo, o, al extremo opuesto, el de las grandes estructuras de las galaxias. Desgraciadamente, no todos conocemos de cuestiones esenciales que conforman el “mundo” y, consecuentemente, también a nosotros.
La mayor parte, se aplica en sus vidas cotidianas y sin grandes sobresaltos: al trabajo, la familia y dejar transcurrir el tiempo. Es la mayoría silenciosa. Una parte menor, conforman el grupo de los poderosos; sus afanes están centrados en acumular poder, dirigir las vidas de los demás y de manera consciente o inconsciente, dañan y abusan de aquella mayoría. Son los grandes capitalistas y políticos, que con sus decisiones hacen mejor o peor las vidas del resto. Por último, existe una pequeña parte que está ajena y “aislada” de los dos grupos anteriores; se dedican a pensar y a averiguar el por qué de las cosas. La mayor preocupación de este grupo de “elegidos” es saber, quiero decir ¡SABER!, de todo y sobre todo; nunca están satisfechos y gracias a ellos podemos avanzar y evitar el embrutecimiento de nuestra especie que, a pesar de todo… ¡Se puede salvar!

Su trabajo es pensar, experimentar, buscar la verdad de la Naturaleza para saber, el por qué de las cosas
Pensando en el cometido de estos tres grupos me doy cuenta de lo atrasados que aún estamos en la evolución de la especie. El grupo mayor, el de la gente corriente, es muy necesario; de él se nutren los otros dos. Sin embargo, el grupo de mayor importancia “real”, el de los pensadores y científicos, está utilizado y manejado por políticos, militares y capitalistas que, en definitiva, aprueban los presupuestos y las subvenciones de las que se nutren los investigadores. Si el dinero empleado en inútiles ejercitos y armas, se empleara en investigación y desarrollo… ¿Dónde estaríamos ya?
La II Guerra Mundial de mal recuerdo. ¿Qué sacamos de ella? ¿Destrucción y muerte? En las dos grandes guerras mundiales (sobre todo en la segunda), tenemos un ejemplo de cómo se utilizaron a los científicos con fines militares. Los que no se prestaron a ello, lo pasaron mal y fueron marginados en no pocos casos.
Es una auténtica barbaridad el ínfimo presupuesto que se destina al fomento científico en cualquiera de los niveles del saber. Cada presupuesto, cada proyecto y cada subvención conseguida es como un camino interminable de inconvenientes y problemas que hay que superar antes de conseguir el visto bueno definitivo, y lastimosamente, no son pocos los magníficos proyectos que se quedan olvidados encima de la mesa del político o burócrata de turno, cuyos intereses particulares y partidistas miran en otra dirección.
La I+D española no solo sufre los ajustes presupuestarios, sino que además tiene partidas sin utilizar. La ciencia y la tecnología, incluidas actividades civiles y militares, sufrirán el año próximo una reducción de la financiación de un 8,4% respecto a 2010, según el proyecto presupuestario, lo que se acumula al 5,5% de recorte de este año respecto a 2009. “Esto entierra definitivamente la etapa de crecimiento del gasto en I+D+i de la anterior legislatura”, señala un análisis sobre la política de investigación realizado por CC OO a partir de datos oficiales.
España partió de un retraso en este ámbito respecto a los países más desarrollados, “atraso que se corrige muy lentamente y, al ritmo actual, la convergencia con Europa tardará aún muchos años”, advierte el estudio. Igualmente se aleja el ansiado cambio del modelo productivo.

¡Qué lastima! Haber llegado a esta situación tiene un motivo de todos conocido. Sin embargo, muchos son los interesados en que el tiempo pase y no se hable de ello. Los responsables están bien instalados, tienen muy alta e inmerecidas pensiones y, mientras tanto, el Pueblo llano, la Ciencia, y la gente de la calle en general, padecen y sufren lo que otros hicieron que, además, no sólo no pagaron su culpa, sino que se encuentran tan ricamente en sus mansiones, sus viajes, sus abultadas cuentas corrientes… ¡Qué canallas y miserables! Es la peor condición humana a la que podemos llegar.
A pesar de ello, milagrosamente, el avance continúa implacable gracias a personajes que, como Ramón y Cajal -en su momento-, con medios insuficientes pero con sacrificio e inteligencia, triunfan sobre estas adversidades materiales que superan por amor a la ciencia, con trabajo y con ingenio.
![]()
Un ejemplo de lo que digo:
“Juan Ignacio Cirac Sasturain (11 de octubre de 1965, Manresa, provincia de Barcelona, Cataluña) es un físico español reconocido por sus investigaciones en computación cuántica y óptica cuántica, enmarcadas en la teoría cuántica y en la física teórica. Desde 2001 es director de la División Teórica del Instituto Max-Planck de Óptica Cuántica (Max-Planck-Institut für Quantenoptik) en Garching, Alemania“.
Einstein nos decía algo parecido a:
“el hombre encuentra su verdad detrás de cada puerta que la ciencia logra abrir”.
Ese momento mágico de comprobar que la teoría coincide con la Naturaleza
Ese encuentro maravilloso con la luz suprema del saber es un momento mágico, que reciben y el precio que pagan al científico por sus esfuerzos, y es el incentivo que necesitan para seguir trabajando en la superación de los muchos secretos que la naturaleza pone ante sus ojos para que sean desvelados.
Cuando me pongo a escribir sin un programa previamente establecido, vuelco sobre el papel en blanco todo lo que va fluyendo en mis pensamientos, y a veces me sorprendo a mí mismo al darme cuenta de cómo es posible perder la noción del tiempo inmerso en los universos que la mente puede recrear para hacer trabajar la imaginación sin límites de un ser humano.

¡Nuestra Imaginación! ¿Dónde estará el límite? NO, no hay límites, el único límite está impuesto por el conocimiento de la propia Naturaleza
Aunque es cierto que nuestras limitaciones son enormes y enorme nuestra ignorancia, también lo es que, son inmensamente enormes las posibilidades que tenemos de poder ir desvelando los secretos del Universo. Las carencias se pueden compensar con la también enorme ilusión de aprender y la inagotable curiosidad y espíritu de sacrificio que tenemos en nuestro interior, que finalmente, van ganando pequeñas batallas en el conocimiento de la naturaleza, y que sumados hacen un respetable bloque de conocimientos que, a estas alturas de comienzos del siglo XXI, parecen suficientes como punto de partida para despegar hacia el interminable viaje que nos espera.

A veces tengo que sonreir al ver el esfuerzo de mi mujer: Pone delante de mí un reloj para que sea consciente del tiempo. Sin embargo, sumergido en las cuestiones que me inquietan, el tiempo transcurre tan lentamente que… ¡No parece transcurrir! Lo que no deja de ser una maravilla si consideramos que, estoy en total reposo y es, únicamente mi mente, la que desbocada, corre mucho más rápido que lo pueda hacer la luz.

Nuestro Sol en 5.000 M de años, será una gigante roja, una Nebulosa planetaria y una enana blanca
Es tal la pasión que pongo en estas cuestiones que, literalmente, cuando estoy pensando en el nacimiento y vida de una estrella y en su final como enana blanca, estrella de neutrones o agujero negro (dependiendo de su masa), siento cómo ese gas y ese polvo cósmico estelar se junta y gira en remolinos, cómo se forma un núcleo donde las moléculas, más juntas cada vez, rozan las unas con las otras, se calientan e ionizan y, finalmente, se fusionan para brillar durante miles de millones de años y, cuando agotado el combustible nuclear degeneran en enanas blancas, veo con claridad cómo la degeneración de los electrones impide que la estrella continúe cediendo a la fuerza de gravedad y queda así estabilizada. Lo mismo ocurre en el caso de las estrellas de neutrones, que se frena y encuentra el equilibrio en la degeneración de los neutrones, que es suficiente para frenar la enorme fuerza gravitatoria. Y, cuando llego a la implosión que dará lugar a una singularidad, ahí quedo perdido, mi mente no puede, como en los casos anteriores, “ver” lo que realmente ocurre en el corazón del agujero negro, ya que, lo que llamamos singularidad, parece como si desapareciera de este mundo.
emilio silvera
Dic
7
¡Qué barbaridad!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
















Totales: 84.652.766
Conectados: 57























