lunes, 26 de enero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Noticias de Prensa

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

            Voyager 1, la sonda espacial que grabó el sonido del espacio interestelar, cumplirá 40 años - Future Music - SONICplug | Tecnología musical y sonido

La sonda Voyager 1 está mandando mensajes preocupantes a la Tierra

La sonda Voyager 1 está mandando mensajes preocupantes a la Tierra

La sonda Voyager 1 ha comenzado a enviar un patrón repetitivo de unos y ceros hacia la Tierra, como si estuviera experimentando una especie de «bloqueo». A pesar de que la nave sigue ejecutando las instrucciones sin problemas que recibe de los controladores de la misión de la NASA, los datos científicos y de ingeniería que transmite de regreso ya no son útiles.

La sonda Voyager 1 de la NASA

 

5 de septiembre: lanzamiento de la sonda espacial “Voyager 1” – SANA en Español

 

Lanzadas en 1977, las sondas Voyager 1 y Voyager 2 representan los objetos creados por humanos que se encuentran más distantes de la Tierra. Aunque viajan en direcciones opuestas, ambas han estado explorando la región más externa del sistema solar durante años.

Este año se ha celebrado el 46 aniversario del lanzamiento de la Voyager 1 desde el Cabo Cañaveral en 1977, con el propósito original de explorar Júpiter y Saturno. Inicialmente, la misión estaba planeada para permanecer dentro de los límites del Sistema Solar, pero ha superado con creces esas expectativas.

 

Generador termoeléctrico de radioisótopos - Wikipedia, la enciclopedia libre

 

La NASA tenía la esperanza de que los tres generadores termoeléctricos de radioisótopos (RTG) duraran al menos hasta el año 2025. La sonda está situada en el espacio interestelar, a más de 24.000 millones de kilómetros de distancia de la Tierra.

Problemas de comunicación

La agencia espacial estadounidense detalló en su comunicado que el Sistema de Datos de Vuelo (FDS) de la sonda no se está comunicando correctamente con uno de sus subsistemas, la Unidad de Telecomunicaciones (TMU).

El propósito del FDS es recopilar datos provenientes de los instrumentos científicos y de ingeniería relacionados con el estado y la salud de la nave. Este sistema consolida toda la información en un único paquete de datos, el cual se transmite a la TMU, responsable de enviarlos de regreso a la Tierra. Estos datos se envían en forma de ceros y unos, utilizando código binario, que luego los ingenieros descifran para su interpretación.

 

En el vacío del espacio, la Voyager 1 detecta un «zumbido» de plasma

Recientemente,

Recientemente, la NASA identificó que la TMU estaba transmitiendo un patrón repetitivo de ceros y unos, sugiriendo un posible «bloqueo». El equipo a cargo de la Voyager 1 investigó y determinó que el origen del problema residía en el FDS.

Durante el fin
Voyager 1, la primera sonda espacial en salir al sistema solar ha dejado de enviar datos a la Tierra | MVS Noticias

Durante el fin de semana pasado, los ingenieros realizaron un intento de reinicio del Sistema de Datos de Vuelo (FDS) para restaurarlo al estado previo al problema detectado, sin embargo, la sonda aún no está enviando datos útiles. En la actualidad, la NASA continúa buscando una solución, pero existe la posibilidad de que la vida operativa de la sonda haya llegado a su fin.

 

Linda Spilker, planetary scientist

Linda Spilker, una de las principales responsables de las misiones, junto con Suzanne Dodd, gerente de la Misión Interestelar Voyager, han confirmado que, a pesar de que persiste el fallo en los ordenadores y los datos transmitidos carecen de utilidad, la comunicación entre la Voyager 1 y el centro de control en la Tierra sigue activa. Esto indica que no se ha perdido el contacto entre la sonda y el equipo en la Tierra.

«La señal que transporta los datos sigue siendo emitida por la nave. Simplemente, no contiene ningún dato útil. El equipo es capaz de obtener alguna información de la señal que permita saber que la nave sigue recibiendo y ejecutando los comandos», han explicado las profesionales a la Agencia EFE.

Fuente O.K. Diario

Sueños… ¡Irrealizables!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://youtu.be/a-G370nYztQ

¡Será por Soñar!

El viaje a Próxima Centauri (en el presente), podrían durar algunos miles de años, esa es la velocidad a la que podemos aspirar en las naves más modernas de hoy. Todo lo demás, son ganas de lo que nos gustaría, conjeturas y aventurarse en lo que podría ser en el Futuro.

Si realmente se llevara (ahora) este proyecto, los viajeros tendrían que ser conscientes de que emprenderían el viaje de irás y no volverás.

Un viaje a Marte (trabajo publicado en Julio de 2014)

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En las vacaciones de este verano, no estaría nada mal poder contemplar, in situ, las vistas que nos ofrece el paisaje de Marte en la sima de Candor Chasma o de Ophir Chasma, ambas en el Valles Marineris, para tener ante nuestros ojos la prueba de que la historia de Marte no nos habla de un planeta estéril. Valles Marineris es, de hecho, el más complejo entramado de cañones fluviales de todo el Sistema solar, ya que tiene una longitud de 4.100 kilómetros, una anchura próxima a los quinientos y puntos en los que la profundidad alcanza los cuatro kilómetros. Aunque en sus agrestes formas parecen haber intervenidos mocimientos internos de la corteza marciana, se da por hecho que fue el agua el verdadero agente natural que modeló lo que podríamos considerar como uno de los más bellos “Parques Nacionales” de todo el Sistema solar.

                 

                              Escenarios increíbles, tormentas de polvo, radiación y… ¡misterio!

Todos hemos visto, en más de una ocasión, imágenes del planeta Marte de regiones dispares y de variado contenido. Marte, el cuarto planeta desde el Sol, aparece marcadamente rojizo cuando se observa a simple vista. Tiene una delgada atmósfera compuesta (en volumen) por alrededor del 95% de dióxido de carbono, 2,7% de Nitrógeno, 1,6% de Argón, 0,1% de Oxígeno, 0,1% de monóxido de carbono y pequeñas trazas variables de vapor de agua. La presión atmosférica en la superficie es de unos 6 mbar. Las temperaturas superficiales pueden variar entre 0 y -125ºC, siendo la media de -50ºC. Es relativamente común la presencia de nubes blancas de vapor de agua condensada o de dióxido de carbono, particularmente cerca del terminador  y en latitudes polares.

 

               

 

Existen dos casquetes  de hielo de agua permanentes en los polos, que nunca se funden. En invierno éstos aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado hasta alcanzar los 60º de longitud. Ocurren esporádicamente tormentas de polvo que llegan a cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares.

 

                     

 

Hace algún tiempo que estas imágenes de la NASA parecían mostrarnos “sombras de árboles” sobre la superficie de las dunas en el planeta, que en realidad son caminos de arena, según publicaron numerosos periódicos británicos. Un vídeo circulante en Internet nos mostraron imágenes de supuesta vida en Marte tras un retoque digital. Sobre Marte siempre hemos tenido esa obsesión de la presencia de vida en el planeta hermano.

La superficie de Marte es basalto volcánico con un alto contenido en hierro y, su oxidación, es la responsable de su color característico rojo oxido. El accidente oscuro más prominente, Syrtis Major, dirigida hacia el Este con una inclinación menor que 1º. Existen muchas áreas de dunas de arena rodeando las más grandes los casquetes polares y constituyendo los mayores campos de dunas del Sistema Solar.

 

         

                                                           Inmensas dunas rodean los polos del planeta

En el pasado existió una intensa actividad volcánica en Marte. Tharsis Montes es la mayor región volcánica, estando Olympus Mons situado en el Noroeste, y la vasta estructura colapsada Alba Patera, en el Norte. Juntas, estas áreas volcánicas constituyen casi el 10% de la superficie del planeta. Hoy no hay volcanes activos en Marte, aunque en el pasado produjeron llanuras de lava que se extendieron cientos de kilómetros.

 

               4. Tharsis Montes

                                                               Tharsis Montes es la mayor región volcánica

Hay distribuidos cráteres de impacto a lo largo de todo Marte, aunque existe una altiplanicie casi completamente cubierta de cráteres, similar a las altiplanicies de la Luna, que cubre casi la mitad de la superficie del planeta, principalmente en el hemisferio Sur. Muchos de los cráteres de impacto más recientes, conocidos como cráteres de terraplén, tienen grandes pendientes en los bordes de su mantos de proyecciones, sugiriendo que la superficie estaba húmeda o llena de barro cuando se produjo el impacto.

Las cuencas de impacto más grandes mejor conservadas son Argyre y Hellas.

 

                       

 

Esta es una imagen de la parte de Marte con el Sino Sabaus y de Regio Deucalionis. El cráter a la derecha inferior es Flaugergues, y el doble cráter en la parte inferior izquierda es Wislicenus. Esta imagen fue tomada por el Mariner 6 en 1969. En esta imagen pueden encontrarse muchas características que sugieren ríos Marcianos, e incluso la salida de una llanura central. Se recomienda ver esta imagen en alta resolución. (Cortesía de la NASA/JPL)
(282K GIF)

Internamente,  Marte probablemente tienet una litosfera de cientos de kilómetros de grosor, una astenosfera rocosa y un núcleo metálico de aproximadamente la mitad del diámetro del planeta. Marte no posee un campo magnético importante. Tiene dos pequeños satélites, Phobos y Deimos. Su diámetro ecuatorial es de 6 794 Km, su período de rotación axial (sidéreo) es de 24,623 horas, su densidad media es de 3,94 g/cm3, y, si consideramos que la masa de la Tierra = 1, la de Marte es de 0,11, el volumen de Tierra = 1, el de Marte = 0,15. La velocidad de escape es de 5,02 Km/s. Su distancia al Sol es de 1,524 UA.

 

Percival Lowell | Mars Exploration, Planetary Science ...

             Percival Lowell y Willian Henry Pickering

Pero veamos otros aspectos del planeta Marte que, durante décadas impactó en la imaginación de hombres como Giovanni Virginio Schiaparelli, Percival Lowell y Willian Henry Pickering que, a finales del siglo XIX y principio del XX, insistían en despejar las dudas sobre si existían realmente los Canales que hicieron famosos estos personajes de leyenda.

 

El origen del fervor por los marcianos: los canales de Marte                                                                      Viking1_esp – Madrid Deep Space Communications Complex

 

Más tarde, hace (hace algunas décadas), algo curioso sucedió en las cercanías del planeta Marte. La nave Vikingo 1 de NASA se encontraba volando alrededor del planeta, tomando fotografías de posibles lugares para el aterrizaje de la nave hermana Vikingo 2, cuando descubrió, sobre la superficie, una figura en sombras muy semejante a una cara humana. Una cabeza enorme de unos tres kilómetros de extremo a extremo parecía estar devolviendo la mirada a la cámara desde una región del Planeta Rojo conocida como Cidonia.

 

Cara de Marte - Wikipedia, la enciclopedia libre

 

Imagínense la sorpresa de los controladores de la misión en el Laboratorio de Propulsión a Chorro, cuando la cara apareció en sus consolas. Sin embargo, la sorpresa duró poco tiempo. Los científicos fácilmente concluyeron que ésta era solo otra meseta Marciana, muy común en los alrededores de Cidonia, solo que esta tenía sombras extrañas que la hacían aparecer como un Faraón Egipcio.

Mars Global Surveyor - Wikipedia, a enciclopedia libre

         Mars  Global Surveyor

Pero, amigos míos, la nave Mars  Global Surveyor le ha abierto a la ciencia un nuevo horizonte en Marte. De alguna forma, el hombre, debe abordar de nuevo desde el principio la búsqueda de la vida en aquel planeta, lleno de secretos que sólo ahora empiezan a desvelarse después de más de un siglo de trepidantes debates entre astrónomos y aficionados.

La nave encontró inequívocos signos de la presencia de agua líquida en el planeta, algo que los científicos llevaban décadas tratando de confirmar. Es conocido que el agua líquida es el principal requisito para la vida tal como la conocemos nosotros, y si en el planeta rojo existe ese preciado elixir, como se ha podido comprobar mediante las investigaciones de la NASA, las posibilidades de que Marte sea un mundo vivo siguen plenamente vigentes.

Nombrar aquí a todos los personajes que, de una u otra manera han intervenido en la esperanza de encontrar vida en el planeta hermano, sería algo tedioso, pero no puedo dejar atrás al astrónomo más destacado de la historia reciente, Carl Sagan fue quien mantuvo siempre la esperanza en un Marte vivo, aunque su muerte ni siquiera le concedió la oportunidad de asistir a las siguientes misiones de la NASA en el planeta rojo, que en contraposición al balance de las Vikings han permitido reabrir claramente las esperanzas de hallar vida allí, si no en el presente, tal vez si en el pasado.

 

                              Un cráter en suelo marciano que podría haberse formado por corrientes de agua

 

El examen de las rocas marcianas realizado por la Mars Pathfinder y su juguetón vehículo todoterreno Sojourner confirmó lo que ya tenían claro muchos expertos: el agua había pasado por allí, probablemente hace muchos millones de años, tal como revelan las huellas dejadas por gigantescas corrientes en las zonas de aterrizaje.

La NASA capta nubes en el cielo de Marte y son impresionantes | GQImpresionantes imágenes de Marte captadas por un rover de la NASA

Igual que un turista espera la iluminación adecuada para sacar una espectacular foto del Gran Cañón, el rover de la NASA Opportunity ha usado un ángulo de sol bajo para obtener una vista inolvidable de un gran cráter marciano, el Endeavor , de 22 kilómetros de diámetro. La visión panorámica, absolutamente espectacular -aún más si uno piensa que no es de este mundo-, incluye la sombra del rover (encaramado en el borde occidental del cráter) en primer plano y el gigantesco cráter al fondo.

 

La NASA comparte imágenes de impresionantes ondas 'azules' en Marte -  Robotitus

La NASA comparte imágenes de impresionantes ondas ‘azules’ en Marte

NOTICIAS RELACIONADAS

  La NASA publica las imágenes más impresionantes nunca vistas de Marte

 

FOTOGALERÍA) La NASA publica las imágenes más impresionantes nunca vistas  de Marte - EL LIBERAL

La NASA ha publicado esta impresionante imagen de Marte gracias a los avances tecnológicos, que han permitido revelar desde hace más de 56 años fotos del planeta rojo. El 15 de julio del año 1965 fue cuando la NASA, con la nave espacial Mariner 4, desde 13.000 kilómetros de distancia, capturó la primera imagen de Marte. En esta foto, que tiene más de 55 años,

 

Las impresionantes imágenes de un cráter de hielo en Marte | RPP NoticiasLas impresionantes fotos de Marte que hacen pequeño al Gran Cañón de los  Estados UnidosImpresionantes imágenes muestran la superficie de Marte como si alguien  hubiera “raspado sus uñas” – Enséñame de CienciaAgua líquida en Marte | Fotos | Ciencia | EL PAÍS

 

Estudiando el terreno en muchas de las regiones del planeta, de manera clara y precisa, se puede comprobar la presencia de agua que, al parecer, brota desde el subsuelo. Es preciso no perder de vista el carácter altamente volcánico de Marte que, hace mucho tiempo tuvo una gran actividad de importantes erupciones y, la enorme cantidad de lava que corría por inmensas zonas del planeta, entre otras cosas, debieron horadar el terreno abriendo enormes galerías subterráneas que, en la actualidad, al estar situadas en las profundidades del planeta, deben tener una temperatura mayor que en la superficie, están resguardadas de la radiación, y, si el agua corre por allí, no sería nada extraña que, colonias de bacterias, hongos y líquenes estuvieran bien asentadas a ese nivel interior.

                      Enormes tubos de lava en Marte y la Luna para acoger ciudades humanas

Enormes tubos de lava en Marte  para acoger instalaciones humanas en el futuro

Tenemos que convenir que Marte, sigue siendo uno de los planetas más misteriosos del Sistema Solar, y, desde luego, es un buen aspirante para encontrar signos de vida presente, o, en último caso, del pasado. Nada puede negar la posibilidad de la existencia de agua líquida que pueda subsistir de forma permanente bajo la protección del suelo marciano, y si existen oasis en el subsuelo no puede descartarse en absoluto que Marte albergue sus propios  ecosistemas  subterráneos, lejos de la mortífera radiación ultravioleta que llegan desde el Sol y de la que los seres vivos no pueden protegerse en la superficie al no haber una atmósfera lo suficientemente densa.

Antiguas colinas cortadas a capas en Marte |2023 enero 07 : Blog de Emilio Silvera V.Candor y Ophir Chasmata |

                                                                CandorOphir Chasma

 

Cualquiera, hasta un profano, que observe algunas de las fotografías obtenidas en la sima Candor o de Ophir Chasma, ambas en Valles Marineris, tendrá ante sus ojos la prueba de que la historia de Marte no nos habla de un planeta estéril. Valles Marineris es, de hecho, el más completo entramado de cañones fluviales de todo el Sistema Solar, ya que tiene una longitud de 4.100 Km, una anchura aproximada a los 500 y puntos en los que la profundidad, alcanzan los 4 km. Aunque en sus agrestes formas parecen haber intervenido los movimientos internos de la corteza marciana, se da por hecho que fue el agua el principal agente que modeló lo que podríamos considerar como uno de los más bellos y extensos “parques naturales” de todo el  Sistema Solar.

 

2023 enero 07 : Blog de Emilio Silvera V.

 

                     A mí, todos estos escenarios me hacen imaginar…¡tantas cosas!

Está claro que, hoy en día sabemos de los océanos y mares que, hace millones de años adornaban el planeta Marte, y, sus Imágenes de hoy, claramente nos hablan de las correntías de rumorosos torrentes fluviales que, corriente abajo, horadaban las superficie del planeta dejando la huella de su presencia allí.

 

 

                      Valles Marineris el Cañón natural más grande del Sistema solar

Valles Marineris y otros lugares del planeta tienen las pruebas de lo que Marte, en el pasado fue. Puede ser que Lowell se equivocara sobre la existencia de unos canales construidos por la mano de seres inteligentes en aquel planeta. Él concibió “los canales” como obras de ingenieria de una civilización inteligente para transportar el agua, pero quizá no lo estuviera en lo más importante, es decir, en su convicción sobre la existencia de vida en Marte. Es algo que no sabemos aún pero que, probablemente, no tardaremos mucho en saber.

 

MISTERIOSA FIGURA EN MARTE

 

Una fotografía de la sonda Explorer Spirit, misión de la Nasa que está en Marte, reveló una extraña figura humanoide en medio del terreno rojizo del planeta, que los científicos intentan explicar. Una foto sorprendente de la Nasa, perteneciente a su misión de la Mars Explorer Spirit, causó conmoción al revelar una figura inequívocamente humanoide caminando cerca de una formación rocosa del planeta. Según los escépticos, se trata de una caprichosa formación de las rocas, pero de todos modos la fotografía no deja de asustar y, de camino, despierta la imaginación de lo que podría ser.

De Marte, el planeta misterioso que tantos sueños y pensamientos pudo en nuestras jóvenes mentes, es el enigma que todos queremos desvelar. Si cerramos los ojos y nos imaginamos aquel planeta con océanos, mares, ríos y lagos que, con sus altos volcanes (uno de ellos tiene la friolera de más de 20 Km de altura) y sus bellos paisajes, con una atmósfera como la de la Tierra, en verdad, sería un planeta digno de ser visitado, o, ¿por qué no? para asentar allí la residencia.

 

El "Día de las Cuevas" nos invita a descubrir los secretos del subsuelo  vasco | Ocio y cultura | Cadena SER

Hasta que no podamos ir a Marte, no podremos desvelar sus secretos, y, sobre todo la vida bacteriana en el subsuelo

Nadie puede sacar de mi cabez<a esas ideas que por ella rondan de que, en el pasado muy activo de los volcanes de Marte, la intensa actividad hizo correr la lava que se abrió paso a través de túneles y grutas horadados en las rocas del subsuelo, y, en esas regiones profundas del interior del planeta, el clima es húmedo y más caluroso que en la superficie, además de estar a resguardo de la radiación también, hace posible la presencia de agua líquida en esos lugares, y, si el agua está presente… ¡La Vida andará cerca!: Líquenes y hongos, bacterias y… ¿Quién sabe las formas de vida que podrían estar presentes en aquel planeta?

Cuando podamos ser nosotros, y no los robots, los que vayamos a buscar esas formas de vida… ¡Aparecerán!

¿Qué,  el viaje a Marte os haya gustado?

emilio silvera

No dejan de insistir y veremos accidentes irreparables

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://youtu.be/an96GV4Bk5E

El sueño de viajar a Marte no deja de salir a la luz de vez en cuando. De todas las maneras, creo que con la fecha señalada se han equivocado, para dentro de siete años no tendremos la tecnología necesaria para garantizar la vida de los viajeros, y, desde luego, las naves que podamos construir para entonces no tendrían los medios que son necesarios para la seguridad, tales como evitar la radiación, la ingravidez, los materiales inteligentes que eviten accidentes de los micro-meteoritos que pueden perforar el casco de la nave que se repararía solo de manera automática…

Donde dicen la verdad es en los conductos subterráneos por los que hace millones de años corría la lava volcánica del planeta, en esas cavidades profundas, la temperatura es mayor y el agua corre líquida, por lo que los líquenes, hongos y bacterias abundarán, y, en cavidades grandes, los viajeros de la Tierra podrían disponer estancias adecuadas y seguras.

Por lo demás, es mayor el deseo que lo que realmente se podrá realizar para esas fechas.

 

¿Por qué es curva la geometría del Universo? ¿Será la materia la...

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Así representan algunos como sería el camino para burlar la velocidad de la luz y desplazarnos por el espaciotiempo a distancias inmensas en tiempos y espacios más cortos. Es el famoso agujero de gusano o el “doblar” el espacio trayendo hacia nuestro propio espacio el lugar que deseamos visitar. La forma del universo es un nombre informal de un tema de investigación que busca determinar la morfología del universo dentro de la cosmología física, que es la ciencia encargada de estudiar el origen, la evolución y el destino del universo. Los cosmólogos y los astrónomos describen la geometría del universo incluyendo dos modalidades: la geometría local, es decir, aquella referida a la forma del universo observable, y la geometría global que trata de describir el espaciotiempo del universo completo. Su estudio está vagamente dividido en -entre otras disciplinas científicas- curvatura y topología,  aunque estrictamente hablando su investigación incluya a ambos temas relacionado.

Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

 File:End of universe.jpg

La geometría local del universo se determina aproximadamente si Omega es menos que, igual a o mayor de 1. De arriba hacia abajo: un universo esférico (“riemanniano” o de curvatura positiva), un universo hiperbólico (“lobachevskiano” o de curvatura negativa) , y un universo plano o de curvatura 0.

La curvatura del espacio–tiempo es la propiedad del espacio–tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein nos explica y demuestra que el espacio–tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

Los Modelos Cosmológicos son variados y todos, sin excepción, nos hablan de una clase de universo que está conformado en función de la materia que en él pueda existir, es decir, eso que los cosmólogos llaman el Omega negro. La Materia determinará en qué universo estamos.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio–tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson–Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio–tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein–de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

 

Curvatura del espacio, geometría del Universo : Blog de Emilio Silvera V.

 

La geometría del espacio-tiempo en estos modelos de universos está descrita por la métrica de Robertson-Walker y es, en los ejemplos precedentes, curvado negativamente, curvado positivamente y plano, respectivamente (Alexander AlexandrovichFriedmann). Y, las tres representaciones gráficas de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

 

Teoría de la relatividad: espacio-tiempo, geometría y gravitación – Ciencia  UANLEso que llamamos “Tiempo” – En la Relatividad General | El Cedazo

 

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividad especial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

 

gemelos en el tiempo

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, es ya un  anciano jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. Parece mentira que la velocidad con la que podamos movernos nos puedan jugar estas malas pasadas.

Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

 

Durante diez dias del mes de enero de 1999 astrofísicos italianos y estadounidenses efectuaron un experimento que llamaron Boomerang. El experimento consistió en el lanzamiento de un globo con instrumentos que realizó el mapa mas detallado y preciso del fondo de radiación de microondas (CMB) obtenido hasta el momento. Su conclusión: el universo no posee curvatura positiva o negativa, es plano. La curvatura parece darse sólo a nivel local, es decir, cuando cuerpos grandes como las estrellas, por ejemplo, están presentes.

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein–de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

Mapa estelar con 100.000 estrellas en 3D | UNIVERSO Blog

Mapa estelar con 100.000 estrellas en 3D | UNIVERSO

Existe un proyecto que inició su andadura en marzo de 2012 y que continuó hasta la primavera de 2014, y tenía como objetivo el estudio del Universo lejano, midiendo distancias precisas de unas 5.000 galaxias y llegando a los 10 billones de años luz. El mapa 3D publicado comprende 1.100 galaxias y abarca 600 millones de años luz en dirección angular y 2 millones de años luz en dirección radial, con lo que muestra una estructura del Universo a gran escala de 4,7 billones de años después del Big Bang. Queremos saber dónde estamos y por qué este lugar es como lo podemos contemplar. Para poder saberlo, observamos y diseñamos modelos por ordenador que nos diga como sería si…

En otras ocasiones hemos mencionado la importancia que tiene para diseñar un modelo satisfactorio del universo, conocer el valor de la masa total de materia que existe en el espacio. El valor de la expansión o de la contracción del universo depende de su contenido de materia. Si la masa resulta mayor que cierta cantidad, denominada densidad crítica, las fuerzas gravitatorias primero amortiguarán y luego detendrán eventualmente la expansión. El universo se comprimirá en sí mismo hasta alcanzar un estado compacto y reiniciará, tal vez, un nuevo ciclo de expansión. En cambio, si el universo tiene una masa menor que ese valor, se expandirá para siempre. Y, en todo esto, mucho tendrá que decir “la materia oscura” que al parecer está oculta en alguna parte.

 

Todo lo que debes saber sobre la materia oscura

             Aquí se ha querido significar la materia oscura en azul. Como no saben lo que es la representan de mil maneras distintas, y, ninguna, probablemente la pueda representar, entre otras cosas porque existe la posibilidad de la la “materia oscura”… ¡No exista!

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

 

Densidad Crítica : Blog de Emilio Silvera V.

 

No dejamos de enviar ingenios al espacio para tratar de medir la Densidad Crítica (el omega negro que dirían los cosmólogos) y poder saber en qué clase de universo nos encontramos: plano, cerrado o abierto. Otra cuestión a tener en cuenta es que, el Universo no es estático y que no deja de expandirse, en cualquier región que podamos mirar, como las galaxias se alejan las unas de las otras a una gran velocidad, cada vez la materia es más escasa en un lugar determinado aunque, en conjunto, siempre sea la misma.

 

Relatividad general, espaciotiempo y luz | Cuentos Cuánticos

Relatividad general, Espacio-tiempo y Gravedad

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. En la imagen se quiere representar tal efecto.

 

File:Rotating Black Hole.jpg1 - Curso de Relatividad General - YouTube

                              Una Teoría que nos trajo una nueva Cosmología

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante. No digamos de lo que hace la Gravedad cuando está presente un Agujero negro.

 

 

Hay pruebas sólidas de que el Universo nació tal como pensamos que se  originó" - Levante-EMV

 

Hay pruebas sólidas de que el Universo está cohesionado por los hilos invisibles de la Gravedad, y, al mismo Tiempo también se expande

Esta fuerza es la responsable de tener cohesionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea.

Un sistema solar en el que los planetas aparecen cohesionados alrededor del cuerpo mayor, la estrella. Todos permanecen unidos gracias a la fuerza de Gravedad que actúa y los sitúa a las adecuadas distancias en función de la masa de cada uno de los cuerpos planetarios.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

 

 

CAMPO DE FUERZA, ESCUDO DEFLECTOR ELECTROMAGNÉTICO -  Cientificosaficionados.com

En el Futuro se construirán escudos magnéticos que protegerán a las ciudades y también personales

No pocas veces hemos querido utilizar la fuerza electromagnética para crear escudos a nuestro alrededor, o, también de las naves viajeras, para evitar peligros exteriores de la radiación o de posibles ataques. Es cierto que, habiéndole obtenido muchas aplicaciones a esta fuerza, aún nos queda mucho por investigar y descubrir para obtener su pleno rendimiento. Esos escudos electromagnéticos alrededor de naves o ciudades… De momento, es sólo un sueño.

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Los mejores microscopios del mercado para iniciarte en el mundo de la  Ciencia

 

Para saber dónde se encuentra una partícula hay que iluminarla. Pero no se puede utilizar cualquier tipo de luz: hay que usar luz cuya longitud de onda sea por lo menos, inferior a la partícula que se desea iluminar. Pero sucede que cuanto más corta es la longitud de onda, más elevada es la frecuencia, de modo que esa luz transporta una muy elevada energía. Al incidir sobre la partícula ésta resulta fuertemente afectada.
El científico puede finalmente averiguar donde esta la partícula, pero a cambio de perder toda información acerca de su velocidad. Y a la inversa, si consigue calcular la velocidad, debe renunciar a conocer su posición exacta.

Se denomina cuerpo negro a aquel cuerpo ideal que es capaz de absorber o emitir toda la radiación que sobre él incide. Las superficies del Sol y la Tierra se comportan aproximadamente como cuerpos negros.

 

 

Las cuatro claves fundamentales que necesitas para comprender la física  cuántica

 

La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell.  En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.
Densidad Crítica : Blog de Emilio Silvera V.

        La radiación está presente en todos los objetos y cuerpos

Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”, que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).

 

Magnétar - Wikipedia, la enciclopedia libre

                                                                                              Magnétar

 

“Un magnétar o magnetoestrella es un tipo de estrella de neutrones con un campo magnético extremadamente fuerte. Se trata de una variedad de púlsar cuya característica principal es la expulsión, en un breve período (equivalente a la duración de un relámpago), de enormes cantidades de alta energía en forma de rayos X y rayos gamma. El decaimiento del campo magnético es la fuente de la radiación electromagnética de alta energía, principalmente en forma de rayos X y rayos gamma.”

Existen en el Universo configuraciones de fuerzas y energías que aún no podemos comprender. La vastedad de un Universo que tiene un radio de 13.700 millones de años, nos debe hacer pensar que, en esos espacios inmensos existen infinidad de cosas y se producen multitud de fenómenos que escapan a nuestro entendimiento. Son fuerzas descomunales que, como las que puedan emitir agujeros negros gigantes, estrellas de neutrones magnetares y explosiones de estrellas masivas en supernovas que, estando situadas a miles de millones de años luz de nuestro ámbito local, nos imposibilita para la observación y el estudio a fondo y sin fisuras, y, a pesar de los buenos instrumentos que tenemos hoy, siguen siendo insuficientes para poder “ver” todo lo que ahí fuera sucede.

¡El Universo! Todo lo que existe.

emilio silvera