martes, 15 de julio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Conociendo la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El proceso de división de los átomos se denomina fisión. En la foto, fisión colorida de partículas en colisión.

El proceso de división de los átomos se denomina fisión. En la foto, fisión colorida de partículas en colisión.

Entre 1.906 y 1.908 (hace ahora un siglo) Rutherford realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos.  La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol).  Pero no todos.  En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado.  Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido.

 

 

 

Rutherford supuso que aquellas “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad, desviaban los proyectiles que acertaban a chocar contra él.  Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de encontrar por fuerza muchos millones de átomos al atravesar la lámina metálica.

Era lógico suponer, pues, que los protones constituían ese núcleo duro.  Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido saber que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo.)

 

OQUIMIAJUDA: Prêmio Nobel de Química - 1908, Ernest RutherfordPremios Nobel - Química 1908 (Ernest Rutherford) - El Tamiz

 

En 1.908 se concedió a Rutherfor el premio Nóbel de Química, por su extraordinaria labor de investigación sobre la naturaleza de la materia.  El fue el responsable de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.

Desde entonces se pueden descubrir con términos más concretos los átomos específicos y sus diversos comportamientos.  Por ejemplo, el átomo de hidrógeno posee un solo electrón.  Si se elimina, el protón restante se asocia inmediatamente a alguna molécula vecina; y cuando el núcleo desnudo de hidrógeno no encuentra por este medio un electrón que participe, actúa como un protón -es decir, una partícula subatómica-, lo cual le permite penetrar en la materia y reaccionar con otros núcleos si conserva la suficiente energía.

Leer más

Creemos cosas que…, ¿serán ciertas?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

La teoría del caos

Diagrama de la trayectoria del sistema de Lorenz para los valores r = 28, σ = 10, b = 8/3.

Teoría del caos es la denominación popular de la rama de las matemáticas, la física y otras disciplinas científicas que trata ciertos tipos de sistemas dinámicos  muy sensibles a las variaciones en las condiciones iniciales. Pequeñas variaciones en dichas condiciones iniciales pueden implicar grandes diferencias en el comportamiento futuro, imposibilitando la predicción a largo plazo. Esto sucede aunque estos sistemas son en rigor determinísticos, es decir; su comportamiento puede ser completamente determinado conociendo sus condiciones iniciales.

FotoCrean el imán de un solo polo, un sueño de la Física

Crean el imán de un solo polo

Montaje experimental. Foto: HZB, D.J.P. Morris y A. Tennant. .

Hubo un tiempo, el el Universo muy temprano, en el que la temperatura estaba encima de algunos cientos de veces la masa del protón, cuando la simetría aún no se había roto, y la fuerza débil y electromagnética no sólo eran la misma matemáticamente, sino realmente la misma. Un físico que hubiera podido estar allí presente, en aquellos primeros momento, no habría podido observar ninguna diferencia real entre las fuerzas producidas por el intercambio de estas cuatro partículas: las W±, la Z y el Fotón.

 

 

Muchas son las sorpresas que nos podríamos encontrar en el universo primitivo, hasta la presencia de agua ha sido detectada mediante la técnica de lentes gravitacionales en la galaxia denominada MG J0414+0534 que está situada en un tiempo en el que el Universo sólo tenía dos mil quinientos millones de años de edad. El equipo investigador pudo detectar el vapor de agua presente en los chorros de emisión de un agujero negro super-masivo. Este tipo de objeto es bastante raro en el universo actual. El agua fue observada en forma de mases, una emisión de radiación de microondas provocada por las moléculas (en este caso de agua) al ser amplificadas por una onda o un campo magnético.

 

La gravedad desde el punto de vista de la Relatividad GeneralQué es la Gravedad? - EspacioCiencia.com

 

Siguiendo con el trabajo, dejemos la noticia de más arriba (sólo insertada por su curiosidad y rareza), y, sigamos con lo que hemos contado repetidas veces aquí de las fuerzas y la simetría antes de que, el universo se expandiera y enfriara para que, de una sola fuerza, surgieran las cuatro fuerzas que ahora conocemos: Gravedad que campa sola y no quiere juntarse con las otras fuerzas del Modelo Estándar, el electromagnetismo y las nucleares débil y fuerte.

mundo brana

Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundo-brana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil. Seguramente ese será el motivo por el cual, encontrar  al Bosón mediador de la fuerza, el Gravitón, resulta tan difícil.

 

Las cuatro fuerzas fundamentales de la física | EnterarseCiencia Simple Para Todos: Fuerzas Fundamentales del Universo (Primera Parte)

 

De manera similar, aunque menos clara, las teorías de supersimetrías conjeturaban que las cuatro fuerzas tal vez estaban ligadas por una simetría que se manifestaba en los niveles de energía aún mayores que caracterizaban al universo ya antes del Big Bang. La introducción de un eje histórico en la cosmología y la física de partículas (como decía ayer en uno de los trabajos), beneficio a ambos campos. Los físicos proporcionaron a los cosmólogos una amplia gama de herramientas útiles para saber cómo se desarrolló el universo primitivo. Evidentemente, el Big Bang no fue una muralla de fuego de la que se burló Hoyle, sino un ámbito de sucesos de altas energías que muy posiblemente pueden ser comprensibles en términos de teoría de campo relativista y cuántica.

México podría tener su acelerador de partículas — Applelianos

Los aceleradores de partículas ¿Para qué sirven? - Teresa VersypCómo funciona el LHC y por qué debería importarte lo que hace?

 

La cosmología, por su parte, dio un tinte de realidad histórica a las teorías unificadas. Aunque ningún acelerador concebible podrían alcanzar las titánicas energías supuestas por las grandes teorías unificadas y de la supersimetría, esas exóticas ideas aún  pueden ser puestas a prueba, investigando su las partículas constituyentes del universo actual son compatibles con el tipo de historia primitiva que implican las teorías.

Gell-Mann, el premio Nobel de física, al respeto de todo esto decía: “Las partículas elementales aparentemente proporcionan las claves de algunos de los misterios fundamentales de la Cosmología temprana… y resulta que la Cosmología brinda una especia de terreno de prueba para alguna de las ideas de la física de partículas elementales.” Hemos podido llegar a descubrir grandes secretos de la naturaleza mediante los pensamientos que, surgidos de la mente desconocida y misteriosa de algunos seres humanos, han podido ser intuidos mediante ráfagas luminosas que nunca sabremos de dónde pudieron surgir )Lorentz, Planck, Einstein, Heisenberg, Dirac, Eddigton, Feymann, Wheeler… Y, una larga lista de privilegiados que pudieron ver, lo que otros no podían.

 

Ecos del Big Bang : Blog de Emilio Silvera V.Blog de Emilio Silvera V. » Física

                        Moléculas, átomos y conexiones para formar pensamientos

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. La cosmología sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero en las energías extremadamente altas del Big Bang original  y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas.

 

Resultado de imagen de Los núcleos atómicos

 

Si es así (que lo es), cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que no es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Ya ahí tenemos pruebas de historia. Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

 

Células Humanas O Animales Debajo Del Microscopio Stock de ilustración - Ilustración de macro, ciencia: 132841970Foto De Microscopio De Las Células Intestinales Humanas, Grandes. Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De Derecho. Image 63137312.

Célula Humana Abstracta Con El Tubo De La Aguja Bajo El Microscopio Primer Plano Extremo. Representación 3d Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De Derecho. Image 66981339.21 Fotos de Células

Estas imágenes son las que veremos si miramos con el microscopio electrónico parte de nuestro cuerpo

Para determinar dónde obtuvo la célula y el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

 

 

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

 

ADN (Ácido Desoxirribonucleico) | NHGRIÁcido desoxirribonucleico - Wikipedia, la enciclopedia libre

 

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados a átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

 

Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene. Sion embargo, nos queda la duda de: ¿Qué podrá haber más allá de los Quarks?

¿Qué no podremos hacer cuando conozcamos la naturaleza real del átomo y de la luz? El fotón,  ese cuánto de luz que parece tan insignificante, nos tiene que dar muchas satisfacciones y, en él, están escondidos secretos que, cuando sean revelados, cambiará el mundo. Esa imagen de arriba que está inmersa en nosotros en en todo el Universo, es la sencillas de la complejidad. A partir de ella, se forma todo: la muy pequeño y lo muy grande.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos y átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protones y neutrones. Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.

 

TOMOS Y MOLCULAS Historia del tomo Demcrito 460Cómo cambian los nucleones al ser confinados en un núcleo - La Ciencia de la Mula Francis

 

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quark que constituyen cada nucleón.

Uno de los misterios de la naturaleza, están dentro de los protones y neutrones que, conformados por Quarks, resulta que, si estos fueran liberados, tendrían independientemente, más energía que el protón que conformaban. ¿Cómo es posible eso?

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del Big Bang. Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

 

John Douglas Cockcroft y Errnest Walton; el primer acelerador de partículas y la primera desintegración de un núcleo atómico en la Historia. El 28 de abril de 1932, los físicos británicos, JohnEcos del Big Bang : Blog de Emilio Silvera V.

 

El acelerador de 200 Kev diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del Big Bang. Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo.  El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo.  El nuevo LHC proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

 

Científicos explican el recalentamiento qué ocurrió antes del Big Bang | Universo | La RepúblicaNoticias del LHC. Volvemos. Run-2.

 

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada.  A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes,  durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica.  Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más esclarecedora del Universo primitivo que la que teníamos antes.

A los cien millones de años desde el comienzo del tiempo, aún no se habían formado las estrellas, si acaso, algunas más precoces.  Aparte de sus escasas y humeantes almenaras, el Universo era una sopa oscura de gas hidrógeno y helio, arremolinándose aquí y allá para formar protogalaxias.

 

Antimateria! Y otros enigmas : Blog de Emilio Silvera V.Antimateria! Y otros enigmas : Blog de Emilio Silvera V.

 

He aquí la primera imagen jamás obtenida de antimateria, específicamente un “anti-átomo” de anti-hidrógeno. Este experimento se realizó en el Aparato ALPHA de CERN, en donde los anti-átomos fueron retenidos por un récord de 170 milisegundos (se atraparon el 0.005% de los anti-átomos generados).

 

 

Antimateria - Wikipedia, la enciclopedia libreQué es la antimateria? La... - Ciencias de bolsillo | Facebook

Un experimento en el >LHC nos dice por qué la materia ganó a la anti-materia

 

Evidencia de la partícula de antimateria más pesada hasta la fecha

Cuando se encuentran materia y anti-materia… ¡La destrucción está servida!

A la edad de mil millones de años, el Universo tiene un aspecto muy diferente.  El núcleo de la joven Vía Láctea arde brillantemente, arrojando las sobras de cumulonimbos galácticos a través del oscuro disco; en su centro brilla un quásar blanco-azulado.  El disco, aún en proceso de formación, es confuso y está lleno de polvo y gas; divide en dos partes un halo esférico que será oscuro en nuestros días, pero a la sazón corona la galaxia con un brillante conjunto de estrellas calientes de primera generación.

Para determinar dónde obtuvo la célula es esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes. Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

Claro que, nuestra historia está relacionada con todo lo que antes de llegar la vida al Universo pudo pasar. ¡Aquella primera célula! Se replicó en la sopa primordial llamada Protoplasma vivo y, siguió evolucionando hasta conformar seres de diversos tipos y, algunos, llegaron a adquirir la conciencia.

                   Macromolécula

Almacenado en un alfabeto de nucleótidos de cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

 

Cómo se propaga la enfermedad de Alzheimer a través del cerebro

                           célula cerebral

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas de una rareza y de una increíble y extraña belleza que sólo la Naturaleza es capaz de conformar.

 

Esquema de interacción entre las moléculas de ADN, ARN que permiten la... | Download Scientific Diagram

        Molécula de ADN

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión. Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol. Si podemos aumentar aún más, veremos los tríos de quarks que se  constituyen en protones y neutrones.

 

                                 Átomo de Carbono

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad. Una vez que fueron eliminados los anti-quarks, se unieron en tripletes para formar protones y neutrones que, al formar un núcleo cargado positivamente, atrajeron a los electrones que dieron lugar a formar los átomos que más tarde, conformaron la materia que podemos ver en nuestro universo.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores. Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía. Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

 Resultado de imagen de Representación de los Quarks dentro de los nucleones

Los Quarks dentro del núcleo están sometidos a la Interacción fuerte, es decir, la más potente de las cuatro fuerzas fundamentales del Universo, la que mantiene a los Quarks confinados dentro del núcleo atómico por medio de los Gluones.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del Big Bang.

 

 

       Haces de protones que chocan cuando viajan a velocidad relativista en el LHC

Esto implica que los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo. Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo.

El acelerador de 200 KeV diseñado en los años veinte por Cockroft y Walton reproducía algunos de los sucesos que ocurrieron alrededor de un día después del comienzo del Big Bang.

 

foto

        Aquel acelerador nada tenía que ver con el LHC de ahora, casi un siglo los separa

Los aceleradores construidos en los años cuarenta y cincuenta llegaron hasta la marca de un segundo. El Tevatrón del Fermilab llevó el límite a menos de una milmillonésima de segundo después del comienzo del Tiempo. El nuevo super-colisionador superconductor proporcionara un atisbo del medio cósmico cuando el Universo tenía menos de una billonésima de segundo de edad.

 

Nueva física en el Tevatrón? • La Hora CeroEL TEVATRON DE FERMILAB DEJA DE FUNCIONAR HOY DESPUÉS DE 26 AÑOS – UNIVERSITAM

 

1 octubre 2011. No hay plazo que no se cumpla, dicen por ahí. Así le llegó la hora al colisionador de partículas Tevatron, del laboratorio Fermilab, instalado bajo la tierra en las afueras de Chicago en Estados Unidos.

Tras 26 años de operación, los últimos rayos de partículas se detendrán hoy después de que el financiamiento para el laboratorio se terminara. Sumándolo al fin del programa de transbordadores, hay varios que ven a EE.UU. frenando su dominio científico en múltiples áreas a medida que el presupuesto para este sector se ha ido haciendo menor.

 

Universo. Revelan nueva edad; cuántos años tiene

 

Esta es una edad bastante temprana: una diez billonésima de segundo es menos que un pestañeo con los párpados en toda la historia humana registrada. A pesar de ello, extrañamente, la investigación de la evolución del Universo recién nacido indica que ocurrieron muchas cosas aún antes, durante la primera ínfima fracción de un segundo.

Todos los teóricos han tratado de elaborar una explicación coherente de los primeros momentos de la historia cósmica. Por supuesto, sus ideas fueron esquemáticas e incompletas, muchas de sus conjeturas, sin duda, se juzgaran deformadas o sencillamente erróneas, pero constituyeron una crónica mucho más aclaradora del Universo primitivo que la que teníamos antes.

 

                        Recreación del Universo primitivo

 Bueno amigos, el trabajo era algo más extenso y entrábamos a explicar otros aspectos y parámetros implicados en todo este complejo laberinto que abarca desde lo muy grande hasta la muy pequeño, esos dos mundos que, no por ser tan dispares, resultan ser antagónicos, porque el uno sin el otro no podría exisitir. Otro día, seguiremos abundando en el tema apasionante  que aquí tratamos.

Emilio Silvera Vázquez

¡Las partículas! ese universo infinitesimal II

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En 1930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.

 

                                                     Imagen de miniatura de un resultado de Lens

Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1963 se descubrió que los positrones figuraban también entre las radiaciones primarias.

Descubrimiento de los rayos cósmicos - Saberes y Ciencias | Saberes y CienciasLeptonsChina's bid for a circular electron–positron collider – CERN CourierComputer art of a positron-electron collision - Stock Image - A130/0030 - Science Photo LibraryEl origen lejano de los rayos cósmicos

 

Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.

Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1951, el físico americano de origen austriaco  Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.

 

SVS: Positron-electron AnnihilationElectrón - Aniquilación De Positrones Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De Derecho. Image 24660575.

 

Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1936.

 

Irène y Frédéric Joliot-Curie: radiactividad a la carta - Mujeres con  ciencia

   Irène y Frédéric Joliot-Curie

Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones. Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.

 

Partícula alfa - Wikipedia, la enciclopedia libreDescomposición Alfa Con Liberación De Partícula Alfa Ilustración del Vector - Ilustración de geiger, alfa: 192045139

Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:

aluminio 27 + helio 4 = silicio 30 + hidrógeno 1

Nótese que los números másicos se equilibran:

27 + 4 = 30 + 1

Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.

 

El letal cuaderno de Marie Curie que puede matarte con el mero contacto incluso 100 años despuésEl letal cuaderno de Marie Curie que casi 100 años después aún puede matarte

                   El letal cuaderno de Marie Curie 

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio.

Isotopos De Hidrogeno : discover, dream, dream , Én, én, en, explore, qp, template, templatesgedu | Glogster EDU - Interactive multimedia posters

 

Isótopo - Vikidia

                     Isótopos del Hidrógeno

Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

Hidrógeno Pesado Fotos e Imágenes de stock - AlamyHidrógeno Pesado Contenedor De Almacenamiento Fotos, Retratos, Imágenes Y Fotografía De Archivo Libres De Derecho. Image 48929913.Nuclear Notation

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.

Rosetta mide un elevado contenido de deuterio en el cometa 67P | Meteoritos y ciencias planetarias | SciLogs | Investigación y CienciaNuclear Fusion

El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión  a 20’5º K.

Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre, las matemáticas, la única que finalmente lo podrá explicar todo.

Emilio Silvera V.

Saber de donde venimos (gracias a ellos estamos aquí)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El sendero recorrido por nuestros ancestros fue terrorífico, no lo tuvieron nada fácil. Sin embargo, soportando todos los inconvenientes lograron que la especie fuese evolucionando, a base de pasar calamidades y de observar lo que sucedía a su alrededor fueron aprendiendo y adaptándose  para finalmente, conseguir un a especie de simbiosis con el planeta que nos coge y… ¡Aquí estamos!

¿!Qué hacia donde vamos?

Eso es más difícil de predecir, lo único que sabemos es que el Futuro es incierto, que no siempre sucede lo que esperamos, y, que existe algo llamado Azar que, en cualquier momento puede romper las previsiones y desviar los caminos previstos por la causalidad.

Esperemos que nuestras propias ambiciones no superen los niveles permitidos, que a veces siento que nos llevan a caminos que sobrepasan nuestras posibilidades, al ver como algunos tratan de recrear la creación y también, se creen “dioses” e intentan crear una nueva especie artificial que, realmente, no sabemos en que puede desembocar.

Aconsejo mirar hacia atrás, retrotraernos en el Tiempo, ver lo que pasó y lo que tuvieron que soportar nuestros ancestros, y, por todos los medios posibles, evitar volver a tiempos que ya están en el olvido.

Emilio Silvera Vázquez

Fue un largo camino y muy doloroso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pero no nos equivoquemos, el camino sigue siendo tortuoso y… ¡Doloroso también!

Antes nos acechaban peligros que estaban por todas partes en el deambular del día a día, en busca de comida, de refugios en la oscuridad de la noche y en la lluvia y la tormenta.

 

Hombre de las cavernas - Wikipedia, la enciclopedia libreEscena Superior De La Vida Del Hombre De Cueva Imagen editorial - Imagen de restos, cueva: 45934995El hombre primitivo769 Hombre De Las Cavernas Stock Photos, High-Res Pictures, and Images - Getty Images | Neandertal, Homo sapiens, Cavernicolas

Ahora miramos hacia atrás en el Tiempo y podemos ver las reproducciones que intentamos plasmar en imágenes guiadas por los datos que nos han dado los hallazgos arqueológicos de aquellos lejanos antepasados.

 

Yuval Noah Harari advierte sobre el peligro de la IA: "Puede manipular a las personas para alcanzar sus objetivos"

En el presente, los peligros que nos acechan son distintos pero… ¡Mucho más sofisticados y de un nivel de ocultación que… ¡No los veremos venir! La Inteligencia Artificial, las enfermedades, la falta de medios para vivir dignamente, en función del lugar de nacimiento… ¡Los políticos! Esa lacra moderna de la que no nos podemos librar y nos chupan la sangre con la excusa del bien común que, cuando investigamos, se traduce en el bien de sus privilegios (que me perdonen algunos que (inocentes ellos), llegaron a la política con buenas intenciones -pero son pocos-.

 

Consejos Vivienda: ¿Qué hacer si tengo problemas para pagar la hipoteca? - Noticias Spainhouses.net

Ellos no tenían que pagar por la agonía de pagar la hipoteca todos los meses que se lleva la mitad del sueldo, los servicios y suministros, la Comunidad, los supermercados, los estudios de los niños, la renovación del coche que tiene más de 15 años, el novio de la niña que no nos gusta, el hijo mayor que no estudia (ha repetido tres años), el trabajo y su precariedad…

Otros peligros que nos mantienen en una tensión bastante insoportable, y, si me dicen que conteste a la pregunta:

¿Qué vida era mejor a pesar de los peligros, la de nuestros ancestros en el Pasado o la nuestra en el presente?

No sabría que contestar.

 

Hombre Primitivo: su evolución y características

Claro que no era una vida placentera

Ellos, nuestros antepasados lejanos, a pesar de la vida arrastrada que llevaban, estaban centrados en su papel, no profundizaban mentalmente, no se planteaban preguntas de por qué vivían así. Se limitaban a ir tirando lo mejor posible viviendo el día a día sin pensar en el mañana.

 

Agobiado por deudas? Cuidado, el estrés financiero podría causarle estas afectaciones | Ahorro | Mis finanzas | PortafolioManejar la desesperación por las deudas - Templaris

                                                Deudas y falta de trabajo

El riesgo de estar en paro siendo joven y sin estudios se triplica entre los migrantes

  Los jóvenes finalizan los estudios y no encuentran trabajo, tienen que emigrar

 

Las devastadoras drogas "K" que la mayor organización criminal de Sudamérica decidió dejar de vender - BBC News Mundo

                                                La lacra de la Droga

 

Cómo mejorar el Plan de Control Tributario de la AEAT?

Soportar el control de una Agencia Tributaria que por Recaudar, comete abusos y produce injusticias con su enorme maquinaria que, no siempre utiliza sin vulnerar la Normativa y a la Ley. Dicen que hay que Contribuir a los Gastos generales del Estado en proporción a los ingresos, y, que se prohíbe la Confiscación.

Lo cierto mes que, imputan expedientes por mil motivos y tratan de retorcer la Ley tratando de hacer ver que esta dice lo contrario de lo que pretendía decir el Legislador.

 

Un impuesto de sucesiones muy caro e injusto – notin.es

                                No se si reír o llorar

Estudiamos hasta quedarnos dormido con la cabeza encima del libro, y, después de muchos años de sacrificio, encontramos un trabajo, una profesión a la que dedicamos toda nuestra vida. Y, como pasa siempre, nos casamos y tenemos familia a la que tratamos de darle más de lo que nuestros padres nos dieron, nos sacrificamos, ahorramos para el mañana, nos privamos de muchas cosas,  poco a poco nos hacemos con un pequeño patrimonio: La vivienda habitual, una casita en el campo, el apartamento de la playa.

 

Cómo realizar el pago ante notario por transferencia?

Pagamos al Notario en el momento de la compra por el otorgamiento de las Escrituras, para ahorrar algún dinero, tramitamos nosotros mismos las declaraciones del Impuesto de Transmisiones patrimoniales (autoliquidación), pagamos la cuota resultante en función del tipo aplicable y el valor de la vivienda, la llevamos al Registro de la propiedad para su inscripción, la damos de alta a nuestro nombre para pagar el Impuesto de la Contribución Urbana (IBI), el municipio nos cobrará las tasas municipales, tendremos que apechugar con el pago de la Comunidad de propietarios y las obras de mantenimiento, y, al final del camino, cuando después de todo ese esfuerzo queremos dejarlo a nuestros hijos… ¡Nos vuelven a pedir que paguemos por la Herencia?

Y, me pregunto Yo ¿Estuvieron ellos cuando había que apretarse el cinturón, cuando se anulaba el viaje de las vacaciones, cuando las pasábamos p. y nos privamos de tantas cosas para que nuestros hijos tuvieran algo?

Bueno lo dejo aquí, podríamos seguir como aquel cuento de nunca jamás, la idea inicial era simplemente esbozar aquel escenario del pasado de nuestros ancestros, y, también el que tenemos hoy, y, como un juego, elegir el más benigno.

 

El Impacto en la Vida Moderna de los Avances Científicos y TecnológicosAvances científicos y tecnológicos de la Edad Moderna – EolapazGrandes avances de la medicina en los últimos 100 años - Union Medical6 nuevos conceptos tecnológicos que necesitas saber para comprender el futuro - BBC News MundoEl Futuro de la Robótica: Transformando Industrias y Revolucionando la Vida Cotidiana | Atlantic International UniversityExploración espacial mediante robots autónomos: nuevos horizontes en la conquista del espacioEl telescopio espacial James Webb - Revista ¿Cómo ves? - Divulgación de la Ciencia, UNAMEl Gran Colisionador de Hadrones (LHC) - Divulgación CIEMAT - Projects

 

Antes de elegir de manera precipitada que no os dejéis engañar por la Sociedad moderna, por todo lo que tenemos, los avances de los que podemos disfrutar, el enorme salto que ha dado la Ciencia, de como hoy conocemos secretos de la Naturaleza que impensables hace solo doscientos años…

Comparando los dos escenarios está claro que, los humanos del presente no podrían vivir como lo hicieron nuestros ancestros. Sin embargo, tendremos que mentalizarnos para impedir que ningún Gobierno abuse de nosotros, que no confisquen el rendimiento de nuestro trabajo, que no nos digan en qué gastamos nuestro dinero, como debemos pagar lo que compramos, o, lo que tenemos que comer…

¡Pandilla de sinvergüenzas!

Por catalogarlos de manera muy benigna (que no es lo que se merecen).

Emilio Silvera Vázquez