domingo, 21 de diciembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Hablamos del Futuro, o, ¡De Sueños!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

             Esto decían sin pensar siquiera en la imposibilidad tecnológica existente para tal empresa

Llevar al hombre a Marte es el gran reto de empresas privadas del segmento aeroespacial, pero la NASA también persigue ese objetivo, que ahora está combinando con otro igualmente llamativo.

La agencia espacial estadounidense ha recuperado un proyecto de los años 1960 para situar pequeños reactores de fisión nuclear en ese planeta para generar energía, otro de los elementos clave de esos teóricos asentamientos espaciales.

 

Reactores nucleares en Marte: así es el proyecto de 1960 que la NASA ha resucitado

          La NASA planea construir centrales nucleares en Marte

La agencia comenzará en septiembre a probar en Las Vegas un mini-reactor de prueba, de 1,9 metros de altura, diseñado para producir hasta 1 kilovatio de potencia eléctrica.

 

Kilopower: un reactor nuclear para misiones interplanetarias de la NASA - Eureka

La NASA se propone probar en enero próximos un reactor de fisión nuclear en el que lleva tres años trabajando, como fuente de energía para futuras bases en Marte.

 

Proyecto Kilopower - Wikipedia, la enciclopedia libreKilopower - NASA

Un Reactor Nuclear

El proyecto Kilopower, impulsado por el Space Technology Mission Directorate, se basa en pequeños reactores de fisión nuclear, que funcionan dividiendo átomos de uranio para generar calor, que luego se convierte en energía eléctrica.

Las pruebas van a tener lugar en el Nevada National Security Site cerca de Las Vegas. Su objetivo final es proveer suficiente energía en la superficie del Planeta Rojo para la producción de combustible, hábitats y otros equipos, cuando los seres humanos se instalen allí.

 

Marte: así son los reactores nucleares que NASA prepara para 2022 para llevar a Marte

El reactor de prueba, que mide unos 1,9 metros de altura, está diseñado para producir hasta 1 kilovatio de potencia eléctrica.

Los ingenieros de la NASA calculan que las expediciones humanas a Marte requerirán un sistema capaz de generar cerca de 40 kilovatios de potencia, lo cual es lo que se necesita para “unas ocho casas en la Tierra”, según la agencia. El RTG de Curiosity fue diseñado para suministrar alrededor de 125 vatios de energía, menos de lo que se necesita para alimentar un horno de microondas, aunque los niveles de potencia disminuyen a medida que el plutonio radiactivo se desintegra.

La energía solar es otra opción, pero que restringiría la generación de energía a las regiones que están expuestas a suficiente luz solar para cargar las baterías. Por ejemplo, el cráter Shackleton de la luna, un candidato principal para las misiones lunares debido a sus recursos hídricos, es completamente oscuro. Las manchas más soleadas en Marte reciben sólo alrededor de un tercio de la cantidad de luz solar que la Tierra.

 

Usando propulsión nuclear para viajar a Marte desde la estación Gateway - Eureka

Usando propulsión nuclear para viajar a Marte desde la estación Gateway.

Aunque la Luna es el destino oficial para la NASA a corto y medio plazo, Marte sigue siendo su objetivo final. Los últimos planes concebidos para alcanzar el planeta rojo hacen uso de la estación lunar Gateway y el sistema SLS/Orión, pero, debido a las limitaciones de carga del cohete SLS, se requieren múltiples lanzamientos de este lanzador para llegar a Marte. Una solución es apostar por sistemas de propulsión más eficientes que la propulsión química tradicional.

¿Cuánto tiempo llevamos oyendo estas historias? Se reconoce en todo esto la necesidad de la NASA de ibtener nuevas subvenciones del Gobierno para poder seguir “intentando” que no “consiguiendo”, el objetico anunciado de ese viaje soñado al planeta rojo.

La misma NASA publicó : ¿Por qué es difícil Viajar a Marte? I (Apuntes de la NASA)

 

Esta noche se emite Marte (The Martian) en Cuatro, una película de ciencia ficción dirigida por el director de Alien

Fotograma de la película ‘The martian’. AIDAN MONAGHAN

El estreno de la película ‘Marte’ (The Martian) ha despertado cierta curiosidad acerca de posibles futuros viajes humanos al planeta rojo. Después de haber ido a la Luna en varias ocasiones hace ya casi cinco décadas, y estando acostumbrados a ver astronautas viajar al espacio casi de forma rutinaria, es tentador pensar que enviar seres humanos a Marte pueda ser algo perfectamente plausible a día de hoy, o tal vez un tanto más complicado que lo hecho hasta ahora. Sin embargo, la realidad es que enviar seres humanos a Marte constituye un desafío de una dificultad y complejidad absolutamente descomunales que se aleja mucho de todo lo que se ha hecho hasta ahora en la historia de la exploración humana del espacio.

 

La NASA tiene planes de enviar una misión tripulada a Marte en los años 2030 (Imagen ilustrativa Infobae)

                        El sueño largamente acariciado

En esta y en la siguiente entrada hablaré de las razones por las que esta empresa constituye un desafío inmenso y sobre cómo se plantea en la actualidad una misión tripulada a Marte. Con objeto de ofrecer una perspectiva inicial para entender la dimensión del problema de una forma intuitiva, en esta entrada trataré de la razón principal que hace extremadamente difícil una misión a Marte, la razón de la que prácticamente se derivan casi todas las demás: la distancia.

 

                              Matt Damon in “The Martian.” Credit Aidan Monaghan/Twentieth Century Fox

Vemos astronautas viajar con frecuencia al espacio, a la Estación Espacial Internacional (ISS), antes a la estación Mir, a bordo de naves Soyuz, o antes a bordo del Transbordador Espacial, etc., y se suele tener la impresión de que el lugar al que se viaja en estas misiones es muy lejano; sin embargo, las altitudes típicas a las que estas estaciones y vehículos espaciales orbitan alrededor de la Tierra son de unos pocos cientos de kilómetros. La ISS, por ejemplo, orbita alrededor de la Tierra a una altitud que es equivalente a la distancia que hay en línea recta entre Madrid y Almería: unos 400 km. Esta región espacial a la que viajan los humanos de forma rutinaria está dentro de la conocida como ‘región de las órbitas bajas de la Tierra’, y técnicamente la llamamos LEO (del inglés Low Earth Orbit).

 

Profesor de Historia, Geografía y Arte: La Tierra en el universoÓrbita de la Luna - Wikipedia, la enciclopedia libre

Los viajes tripulados lunares implicaron viajar más allá de las órbitas LEO ya que la Luna orbita nuestro planeta a una distancia media de unos 380.000 km, lo que viene a ser unas 1.000 veces más lejos que las altitudes de estas órbitas bajas. Una tripulación y su nave se ponen en órbita alrededor de la Tierra poco después de su lanzamiento, mientras que la distancia a la Luna se cubría en las misiones Apolo en prácticamente 3 días.

En el caso de Marte la situación es muy diferente. Ir a Marte implica pasar de una misión geocéntrica a una centrada en el Sol, o heliocéntrica, lo que supone un salto enorme en las distancias involucradas. Aunque las distancias máxima y mínima entre la Tierra y Marte varían dentro de un cierto rango, la mínima distancia posible es de unos 55 millones de km y la máxima posible es de unos 400 millones de km.

Estas son distancias enormes en comparación a todo lo que se ha volado en misiones tripuladas al espacio hasta ahora. La distancia máxima a Marte viene a ser 1.000 veces mayor que la que hay entre la Tierra y la Luna, lo que viene a ser 1.000.000 de veces mayor que la distancia que separa la superficie terrestre de las órbitas LEO a las que se viaja normalmente.

 

Cuál es la distancia entre cada planeta del Sistema Solar? | Explora | UnivisionPor qué es difícil ir a Marte? | Apuntes desde la NASA | Blogs | elmundo.es

Distancias aproximadas mínima y máxima posibles entre la Tierra y Marte. Como referencia, la distancia media de la Tierra a la Luna es de 380.000 km.

Sin necesidad de conocer nada más, los datos acerca de la distancia a Marte ya constituyen una buena pista para empezarnos a asomar a la magnitud del problema. Para apreciarlo mejor, y sin entrar en detalles relativos a métodos de propulsión o dinámica orbital, vamos a comparar en números redondos dos misiones tripuladas, una orbital alrededor de la Tierra para un solo tripulante y otra lunar de tres tripulantes, para hacernos una idea de la progresión en la masa necesaria de los cohetes involucrados para llevar a cabo estas misiones y entender el contexto de lo que supondrá una misión a Marte.

 

 

Empezamos con la primera misión orbital del Programa Mercury de principios de los ’60: la Mercury 6 de John Glenn. Aquí se precisó de un cohete Atlas de 120 toneladas y 29 metros de altura para poner en una órbita de 200 km de altitud media alrededor de la Tierra una masa útil de 1,2 toneladas formada por una cápsula Mercury con su único tripulante, el cual permaneció en el espacio 5 horas.

Veamos ahora lo que cambia la situación al tener a la Luna como destino unas 1.000 veces más lejos. En el caso del Apolo 17 -la última misión de exploración lunar-, su módulo de mando y servicio más su módulo lunar, sumando todo cerca de 50 toneladas, hubieron de ser lanzados a la Luna por el poderoso cohete Saturno V de unas 3.000 toneladas y de 110 metros de altura para una misión de una duración total de unos 12 días y medio en la que 2 de sus tripulantes permanecieron sobre la superficie lunar algo más de 3 días.

 

Saturno V, el sueño lunar de un ingeniero nazi

Cohete lunar Saturno V junto al cohete Atlas del Programa Mercury para un tripulante (Transbordador Espacial incluido como referencia). Fuente: http://historicspacecraft.com/.

Vemos así el salto cuantitativo necesario cuando queremos ir a otro mundo que está 1.000 veces más allá de las órbitas bajas de la Tierra tanto en la masa útil a lanzar (de 1,2 a 50 toneladas) como en el tamaño del cohete lanzador requerido (de 120 a 3.000 toneladas). Comparemos todo esto con una misión a Marte. Aquí la tripulación constará de 6 astronautas y su duración, tomando como ejemplo la oportunidad en 2037, sería de 174 días para la ida y 201 días para la vuelta, con una estancia de 539 días en Marte. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de centenares de toneladas de combustible. Todo esto supone un total de 914 días, o 2 años y medio.

 

 

Como vemos, el salto entre la Luna y Marte es descomunal, ya que doblar la tripulación y extender la duración a cerca de 73 veces la de la misión lunar más larga, supone la necesidad de proveer y transportar cerca de 150 veces más suministros. Por otra parte, una mayor duración de viaje interplanetario supone la necesidad de proveer a la tripulación de mayor protección contra las radiaciones, lo que se consigue en parte añadiendo aún más masa, aunque este problema no está aún resuelto.

Otro problema de la larga duración es que las cosas se rompen a lo largo de tanto tiempo. O bien se tendrá que mejorar sustancialmente la durabilidad de los equipos o estos habrán de poder ser repuestos por recambios que también habrá que transportar, lo que implica una mayor masa. Las naves de carga que visitan la ISS pueden abastecerla de repuestos cuando algo se estropea a bordo pero esta opción no será posible en una misión a Marte.

 

La nave de carga Cygnus llegó a la ISS - Actualidad Aeroespacial

La nave de carga Cygnus llegó a la ISS

Una vez dicho todo esto, al igual que cuesta más acelerar y frenar un camión que un turismo por tener el primero más masa, tengamos en cuenta que enviar más masa a Marte implica transportar también más combustible para acelerar toda esa carga hacia Marte, para frenarla a la llegada a ese planeta, y para volver a la Tierra desde allí; y pensemos que todo ese combustible (centenares de toneladas) también hay que lanzarlo al espacio inicialmente.

En total, para una misión a Marte se requerirá lanzar al espacio entre 850 y 1.250 toneladas. Esta es una cantidad enorme si tenemos en cuenta que la Ia ISS tiene una masa de unas 420 toneladas y que una nave con la que estamos familiarizados como el Transbordador Espacial solo podía enviar al espacio entre 15 y 25 toneladas aproximadamente, dependiendo de la altitud de la órbita final. El Ariane 5 es capaz de poner unas 20 toneladas en órbita baja alrededor de la Tierra, al igual que el cohete ruso Protón, por ejemplo.

 

NeoFronteras » ¿Cómo se podría viajar a Marte? - Portada -

Las naves a Marte tendrán que ser muy distintas a las que ahora utilizamos

Así pues, a partir de todo esto, y sin saber mucho más, ya podemos anticipar de forma intuitiva que no se podrá utilizar un único cohete para ir a Marte, sino que se precisarán varios lanzamientos de cohetes -tanto o más poderosos que el Saturno V de los años ’60- para ensamblar en el espacio distintos elementos de propulsión, módulos de combustible, hábitats y naves, que habrán de enviarse a Marte por separado y por anticipado, además de la nave con la tripulación, que sería enviada en último lugar. Entraremos en estos detalles en la siguiente entrada.

Aunque depende de diversos factores, se requerirán, de hecho, del orden de 10 lanzamientos de cohetes con la capacidad del Saturno V o similar; pero recordemos que el número total de cohetes Saturno V que se enviaron a la Luna en todo el Programa Apolo fue de 9. El Saturno V fue retirado de servicio después del Programa Apolo pero ostenta el récord, aún a día de hoy, como el cohete operativo más poderoso que haya habido nunca, capaz de poner algo más de 120 toneladas en órbita baja alrededor de la Tierra y de enviar 50 toneladas a la Luna. Tuvo que ser específicamente diseñado y construido en su día para poder alcanzar la Luna, y no existe un lanzador de tanta capacidad en la actualidad. El cohete que se encargaría de la mayor parte de los lanzamientos en una futura misión a Marte se está desarrollando en la actualidad y se llama SLS (Space Launch System), el cual tendrá prestaciones parecidas o acaso un tanto mayores que el Saturno V.

Por otra parte, un tiempo de 174 días de ida en condición de ingravidez afecta profundamente a la fisiología humana, algo especialmente preocupante al llegar a un planeta donde no hay nadie para asistirte. Las naves que se pueden ver en las películas (incluida la película ‘Marte’), con un amplio y confortable habitáculo en forma de donut girando para simular la aceleración de la gravedad, no son realistas en la actualidad.

 

La Tierra vista desde Marte 

Dos años y medio es un tiempo muy largo también por razones psicológicas. La Tierra será vista por la tripulación como un punto de luz semejante a una estrella durante la mayor parte del viaje y será apenas imperceptible en la noche marciana cuando fuera visible. La tripulación tendrá que convivir en una condición de confinamiento permanente en un espacio reducido en una situación de gran estrés, y con la imposibilidad de mantener conversaciones fluidas con los seres queridos en la Tierra debido al tiempo de viaje de la señal.

Después de todo esto, y aunque no se han mencionado todas las dificultades técnicas, tecnológicas y operativas, creo que ahora puede apreciarse un poco mejor a lo que nos enfrentamos en una misión a Marte. A partir de aquí, y una vez expuesta esta perspectiva para contextualizar el problema y entrar en materia, en la siguiente entrada explicaré cómo se plantea en la actualidad una misión humana a Marte y cómo se relaciona con lo que se ve en la película ‘Marte’ (The Martian).

sigue en la II parte

Fuente: NASA

¿Por qué es difícil viajar a Marte? II (Desde la NASA)

 

Podríamos llegar a Marte en solo 45 días gracias a este nuevo cohete

 

¡Starship a Marte! ¿Cómo será el viaje de la nave de SpaceX.

En otros trabajos hemos  contextualizamos el problema de una misión humana a Marte para apreciar la dimensión del desafío que supone. Como vimos, la principal razón que la hace difícil es la enorme distancia que nos separa de ese planeta, lo que implica que la misión tendría una duración total de aproximadamente 2 años y medio. En esta entrada vamos a concretar cómo se plantea hoy en día esta misión, tomando como ejemplo la oportunidad para el año 2037.

 

Imagen de la película.

 

Marte (The Martian)‘ de Ridley Scott se ha convertido uno de los éxitos de la temporada de crítica y público. De hecho, su grado fidelidad es tal que ha recibido la felicitación de la comunidad científica y de los astronautas. No en vano la NASA se volcó con el proyecto para intentar alimentar la pasión por llegar pronto al Planeta Rojo. Sin embargo, no todo en la cinta protagonizada por Matt Damon rigor científico, también hay ‘licencias cinematográficas’ ¿Cuándo manda la ciencia y cuando la ficción en Marte?

Según está propuesto en la actualidad, para completar una misión humana a Marte serán necesarias 3 naves: dos de carga y una para la tripulación. Una de las naves de carga transportará a Marte el hábitat que albergará a la tripulación durante su estancia de 539 días en la superficie marciana. Este hábitat se denomina SHAB (Surface Hábitat), y es ahí donde Mark Watney, el protagonista de ‘Marte’ The Martian, trata de sobrevivir en solitario.

 

 

La otra nave de carga es el denominado ‘vehículo de descenso y ascenso’, o DAV (Descent and Ascent Vehicle). El DAV es la nave a bordo de la que la tripulación, una vez acabada su estancia en Marte, abandonará este planeta, y es, por tanto, la nave que utiliza la tripulación al principio de la película para abortar su estancia en la superficie marciana en medio de una feroz tormenta de arena.

La nave con la tripulación es conocida como ‘vehículo de transferencia para Marte’, o MTV (Mars Transfer Vehicle), y es la que se encargará de transportar a la tripulación en sus dos trayectos interplanetarios: el de ida a Marte y el de regreso a la Tierra (las naves de carga solo tienen tiques de ida).

 

Por qué es difícil ir a Marte? (II) | Eduardo García Llama • NASA/JSC

Concepto de vehículo de transferencia de tripulación para Marte. Fuente: NASA.

Estas tres naves habrán de ensamblarse en una órbita baja alrededor de la Tierra antes de ser enviadas por separado a Marte, pero estos ensamblajes y envíos se harán en tiempos distintos. Las naves de carga (SHAB y DAV) serán las primeras en ser ensambladas, y serán lanzadas al planeta rojo dos años antes que el MTV con la tripulación. ¿Por qué dos años? Porque es aproximadamente cada dos años que se da la posición relativa precisa entre Marte y la Tierra que permite que entre ambos planetas se pueda volar una trayectoria por la que se minimiza la cantidad de combustible a utilizar. Esto es de gran importancia porque son muchas las toneladas de combustible que se necesitan para hacer posible una misión así, como veremos luego.

 

Es realista el plan de Elon Musk para colonizar Marte? | EL MUNDO

       Concepto de nave de carga para Marte. Fuente: NASA.

Una vez ensamblada cualquiera de estas tres naves en órbita alrededor de la Tierra, cada una de ellas es lanzada desde ahí hacia Marte a través del encendido de sus motores durante un corto espacio de tiempo. La nave es así acelerada hasta adquirir la velocidad necesaria para abandonar la influencia gravitatoria terrestre y dirigirse hacia Marte a lo largo de una trayectoria interplanetaria que es, en realidad, una órbita elíptica alrededor del Sol y cuyo punto más lejano interestelar con el paso de Marte por ese punto en el momento preciso. Cuando la velocidad deseada ha sido alcanzada, los motores se apagan y permanecen así durante toda la travesía (se encenderán en algún momento para hacer alguna corrección en la trayectoria). A pesar de encender los motores durante un corto espacio de tiempo, del orden de pocos minutos o decenas de minutos, la cantidad de combustible que se utiliza es enorme (decenas de toneladas).

 

Trans Mars InjectionISRO's Mars Orbiter Mission - Trans-Mars Injection The much awaited, mother of all slingshots, intended for hurling ISRO's Mars Orbiter Mission spacecraft into that crucial orbit around Sun is scheduled for 00:49

Este lanzamiento hacia Marte desde una órbita baja alrededor de la Tierra se denomina ‘inyección trans-marciana’, y nos referimos a él como TMI (Trans-Mars Injection). Nótese que al regreso de la tripulación desde Marte, el mismo proceso ocurrirá desde allí en sentido inverso: desde una órbita alrededor de Marte, la nave encenderá sus motores por un corto espacio de tiempo en lo que se denomina ‘inyección trans-terrestre’, o TEI (Trans-Earth Injection).

 

 

Una vez llegada una nave a las proximidades de Marte, esta debe frenarse para quedar capturada en una órbita alrededor de ese planeta desde donde acometer las siguientes operaciones. Esta maniobra de frenado se denomina ‘inserción en órbita marciana’, o MOI (Mars Orbit Insertion). El MOI puede hacerse de forma propulsada, encendiendo los motores otro corto espacio de tiempo, o de forma aereo-asistida, utilizando la atmósfera marciana para frenar la nave en una maniobra llamada ‘aereo-captura’. Esta última opción se ha propuesto solo para las naves de carga de forma que sería mucho el combustible que se ahorraría en la misión. El problema es que nunca se ha volado una aereo-captura hasta la fecha, con lo que esta capacidad habría de ser demostrada antes. El SHAB (la nave portando el hábitat) permanecerá en órbita alrededor de Marte a la espera de la tripulación, pero el DAV (vehículo de descenso y ascenso) descenderá a la superficie marciana de forma autónoma.

 

La alemana Rocket Factoy Augsburg presenta su nave espacial ...

 

El DAV será la nave de ascenso que utilizará la tripulación en su día para despegar de la superficie al acabar su estancia en el planeta rojo. Con objeto de ahorrar el combustible necesario para ese lanzamiento, se propone que el DAV no porte el combustible con él, sino que lo produzca en Marte, in situ. Y es que sería prohibitiva la masa de una nave que descendiera a la superficie de Marte con el combustible para el lanzamiento posterior de 6 personas al finalizar su estancia allí. De hecho, se propone que el DAV no solo produzca in situ el combustible, siendo el metano/oxígeno la opción preferida, sino que también produzca el oxígeno, nitrógeno y el agua necesarios para la tripulación. Esta es otra área que precisa investigación y desarrollo tecnológico.

Dos años después de haber enviado las dos naves de carga, y después de comprobar que los consumibles (combustible, aire, agua) hayan sido producidos en Marte y de que todo allí funcione correctamente, la tripulación será lanzada finalmente al planeta rojo desde la Tierra. Una vez en órbita alrededor de Marte, el MTV (la nave en la que viaja la tripulación) se encontrará con el SHAB, que lo espera en órbita alrededor de Marte. Los astronautas pasarán al SHAB y procederán a bordo de esta nave al descenso a la superficie, donde aterrizarán a una corta distancia del DAV.

 

Por qué es difícil ir a Marte? (II) | Eduardo García Llama • NASA/JSCTres formas de poner un ser humano en la superficie de Marte en 2037 - Eureka

                Ejemplo de misión a Marte propuesta para la oportunidad de 2037. Fuente: NASA

El descenso a Marte de naves de tanta masa es a día de hoy un problema no resuelto. Hasta la fecha se han enviado a Marte vehículos exploradores y aterrizadores de muy poca masa. El principal problema reside en que la atmósfera marciana es muy tenue y no consigue frenar una nave de reentrada lo suficiente sin necesidad de emplear retropropulsión supersónica o enormes superficies de frenado si la nave es lo suficientemente masiva. La tecnología a día de hoy permite como máximo aterrizar en Marte masas de alrededor de una tonelada, un valor muy lejano de las naves de varias decenas de toneladas que habrá que poder aterrizar en una misión humana, por lo que nuevas técnicas y tecnologías deberán también ser desarrolladas para este propósito, un área de investigación en el que personalmente trabajo parcialmente en la actualidad.

 

Después de los 539 días de estancia en Marte, la tripulación será lanzada en la etapa de ascenso del DAV al encuentro del MTV, que habrá permanecido en órbita alrededor de Marte todo ese tiempo. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de ingentes cantidades de combustible. Una vez transferidos al MTV, se procederá a la inyección trans-terrestre por la que los astronautas regresarán a casa unos 200 días después, para acabar haciendo una reentrada en la atmósfera de la Tierra a bordo de una cápsula Orion, la cual está siendo desarrollada en la actualidad.

 

Cápsula Orion alcanzó mayor distancia de la Tierra

 

Muchas personas me preguntan si sería posible reducir la estancia en Marte. Efectivamente, la estancia podría reducirse a tiempos de entre 30 y 90 días; pero, en ese caso, los tránsitos interplanetarios habrían de ser muy largos, de mas de 200 días de ida y de unos 400 días de vuelta; requiriendo, además, maniobras de asistencia gravitatoria en el camino; de otra manera, el coste sería prohibitivo. Se favorece la opción de viajes cortos y estancias largas para reducir la exposición de la tripulación a la radiación. Estando en Marte, el mismo planeta bloquea el 50% de la radiación a la que estarían expuestos los astronautas, ademas de que ciertas medidas de protección serian mas fáciles de implantar.

 

Eureka: Un ciudadano soviético en Marte

Como se ha dicho constantemente, las masas involucradas en una misión humana a Marte son enormes. Un elemento que contribuye significativamente a esto es el combustible, y es por esta razón que se ha propuesto la opción de utilizar propulsión nuclear-térmica en lugar de propulsión química, tal y como ha sido el caso en todas las misiones tripuladas hasta la fecha. Esta no es una decisión baladí ya que el ahorro en combustible entre una opción y otra es de unas 400 toneladas; esto es, aproximadamente la masa de una Estación Espacial Internacional (ISS). Para poner esto en perspectiva, apuntemos que se precisaron 10 años para ensamblar la ISS y algo más de una treintena de lanzamientos (aunque de menor capacidad que el Saturno V).

 

 

Según se estima en la actualidad, para llevar a cabo una única misión a Marte habrá que lanzar al espacio desde la Tierra un total de 850 toneladas en caso de que se utilice propulsión nuclear-térmica, o 1.250 toneladas en caso de utilizar propulsión química. Esto son 2 o 3 Estaciones Espaciales Internacionales. Asumiendo que un cohete lanzador de prestaciones similares al Saturno V de las misiones lunares puede emplazar 120 toneladas en una órbita baja alrededor de la Tierra, el número de lanzamientos requeridos en una sola misión humana a Marte sería aproximadamente de 7 u 11, dependiendo del tipo de combustible, y asumiendo que todos los elementos necesarios puedan ponerse en órbita con un lanzador así. El envió de la tripulación precisaría de un lanzamiento especifico a bordo de un cohete de menor capacidad, por ejemplo, y es posible que ciertas tareas de ensamblaje puedan requerir asistencia humana también.

Existen muchas variaciones en las arquitecturas propuestas para misiones tripuladas a Marte pero lo expuesto aquí refleja lo que viene a ser la arquitectura de referencia que se considera hoy en día. En cualquier caso, la envergadura de una misión humana a Marte es sobrecogedora. Espero que estas dos ultimas entradas hayan ayudado a entender un poco mejor la magnitud de una empresa tan ambiciosa y compleja. Las dificultades técnicas, operativas y tecnológicas que encierra no son para nada triviales, y resulta imposible siquiera mencionarlas todas en una entrada de un blog. Se requiere aún el desarrollo de tecnologías inexistentes en la actualidad para llevar a cabo una misión así, y muchas de las cuestiones planteadas no están aún resueltas. Aún estamos lejos de poder enviar seres humanos a Marte, pero también hace un siglo se estuvo muy lejos de alcanzar el espacio y la Luna. Estoy seguro de que el ser humano llegará a Marte algún día si así lo desea, pero creo, y esta es una opinión estrictamente personal, que ese día está más lejos de lo que muchos puedan pensar.

Fuente: NASA

Publica el Blog de Emilio Silvera V., que añade a todo lo anterior:

Estamos lejos, muy lejos de poder viajar al Espacio con naves tripuladas sin peligro para los viajeros. Como nos dicen los datos de la misma NASA,  la idea está lejos de poder plasmarse en realidad. No contamos ni con los medios técnicos, ni materiales, ni humanos para poder enfrentarnos a un proyecto de ese calibre en el Presente, y según todos los indicios, así seguiremos por mucho, mucho, muchísimo tiempo más.

Mientras ese momento del futuro llega… ¡Seguiremos soñando con viajes a otros mundos, a otras estrellas, a otras galaxias.

¿Será por soñar.

 

Escenario ¿Fantástico? de lo que puede ser el futuro

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                             Finalmente, ¿se apoderará de todo la I.A.?

La Inteligencia Artificial, dijo John McCarthy cuando acuñó el término en las conferencias de Darmouth de 1956, es: “…la ciencia e ingeniería de hacer máquinas inteligentes, especialmente programas de cómputo inteligentes.” Ese sentido no ha cambiado desde entonces. En cambio, las técnicas y aplicaciones de la Inteligencia Artificial son cada más variadas, profundas y sorprendentes. A pasos exponenciales inundarán nuestras vidas y pronto serán tan omnipresentes que apenas las percibiremos, como hoy nos sucede con la televisión, los modernos teléfonos móviles y el Internet que forman parte de nuestras vidas y, de alguna manera nos podríamos preguntar: ¿Qué haríamos sin todo esto?

 

Investigadores chinos aseguran haber creado una inteligencia artificial que puede leer la mente

 

Puede que vivamos en un mundo donde cada persona se conectará mentalmente con una red de ordenadores con miles de mentes pensantes también conectadas. O puede que las máquinas realicen todas las tareas para nosotros y nos permitan vivir con total lujo durante toda nuestra vida. Pero ¿Qué ocurriría si las máquinas nos vieran como algo innecesario – o algo peor-? Si las máquinas llegan al punto donde se puedan reparar ellas mismas o incluso crear versiones mucho mejores, ¿podrían llegar a la conclusión de los humanos son simplemente una molestia? Realmente es un escenario que asusta. ¿Podría ser cierta la versión de Vinge del futuro? ¿Hay alguna manera de evitarlo?

 

Científicos están enseñando a la IA cómo leer la mente humana

He dado muchas vueltas a la IA y a la consciencia de los seres vivos. Las conclusiones a las que he podido llegar son que el pensamiento consciente debe involucrar componentes que no pueden ser siquiera simulados adecuadamente por una mera computación; menos aún podría la computación por sí sola, provocar cualquier sentimiento o intención consciente. En consecuencia, la mente debe ser realmente algo que no puede describirse mediante ningún tipo de términos computacionales. Sin embargo, noticias que llegan de nuevos descubrimientos te hacen dudar de hasta dónde podrán llegar esos “seres” artificiales creados por el hombre.

 

Crean una inteligencia artificial que permite leer la mente: Todo lo que necesitas saber

De todas las maneras, no dejamos de insistir y queremos llegar a conseguir poder insertar los sentimientos en esos seres artificiales que cada día creamos con mayor perfección. ¿No somos conscientes del peligro que conlleva imitar a los humanos de esa manera? Las consecuencias son impredecibles y, como tantas otras cosas, cuando queramos darnos cuenta…será tarde.

 

La inteligencia artificial nos hace más humanos? | Formación | Economía | EL PAÍS

Si llegan a tener conciencia de Ser… ¡estaremos perdidos!

Investigadores europeos están desarrollando un software que dará a los robots la capacidad de aprender cuándo una persona está triste, feliz o enfadada. Existe un proyecto que está uniendo sencillos robots que pueden detectar diferentes parámetros (expresiones faciales, voz y cercanía) para determinar estados emocionales. El objetivo del proyecto es desarrollar un robot que pueda servir a los humanos con necesidades especiales, como los enfermos y los ancianos mediante redes neuronales adaptables, el robot puede aprender la manera correcta de responder a las emociones de la gente a partir de la experiencia. Por ejemplo, si alguien tiene miedo, el robot puede aprender a cambiar su comportamiento para parecer menos amenazante. Si alguien parece feliz, el robot puede tomar nota mental (¿positrónica, positrónica…?) de lo que logró esa respuesta. Y si alguien parece enfadado o solitario, puede darle una palmadita en la espalda, ofrecerle una bebida fuerte y decir: “No te preocupes, te mereces a alguien mejor”. Sólo podemos esperar que no se hayan olvidado de las tres leyes de Asimov.

 

Colorida Ilustración De Una Inteligencia Humana, Mente De Una Mujer Llena De Imaginación Y Creatividad. IA Generada. Fotos, retratos, imágenes y fotografía de archivo libres de derecho. Image 200345217Científicos, contundentes sobre la IA: "Podrá leer la mente de los humanos"

¿De igual a igual máquinas y humanos? ¿No estaremos perdiendo el Norte?

Bien es verdad que no tenemos una comprensión científica de la mente humana. Sin embargo, esto no quiere decir que el fenómeno de la consciencia deba permanecer fuera de la explicación científica. Ya se están buscando caminos científicos para dar esa explicación del misterio más profundo (seguramente) del Universo. Y, a pesar de no conocer a fondo nuestra mente, ya estamos tratando de incorporar, a mentes artificiales lo poco que de ella sabemos. ¿No será una temeridad?

La comprensión es, después de todo, de lo que trata la ciencia; y la ciencia es mucho más que la mera computación mecánico-electrónica. Sin embargo, parece que la realidad desmiente estos pensamientos y, podría llegar el momento en el que, la Inteligencia Artificial,  alcance niveles preocupantes al dotar, a esos “seres” artificiales de pensar por sí mismos y, si me apuran, hasta de tener sentimientos.

 

I. A. : Blog de Emilio Silvera V.

 

¿Cuál es el campo de acción de la ciencia? ¿Son solamente los atributos materiales de nuestro Universo los que son abordables con sus métodos, mientras nuestra existencia mental debe quedar para siempre fuera de su alcance? ¿O podríamos llegar algún día a una comprensión científica adecuada del profundo misterio de la mente? ¿Es el fenómeno de la consciencia humana algo que está más allá del dominio de la investigación científica, o podrá la potencia del método científico resolver algún día el problema de la propia existencia de nuestro yo consciente?

 

¿Podemos leer la mente mediante la Inteligencia artificial?

 

De seguir por este camino emprendido en el que tratamos de dar a “seres artificiales” entendimiento y conciencia… Llegaremos a dejarlo todo en sus manos, desentendernos de todo, que la I.A. se ocupe de nuestro trabajo, de realizar todos nuestros proyectos, de plasmar en realidad nuestros sueños, y, lo más probable será que, en posesión de la Consciencia de Ser, terminen por realizar sus propios sueños y dictarnos la manera en la que debemos vivir, como comportarnos con la excusa de que no nos hagamos daño….

 

La IA será más inteligente que un ser humano y tendrá consciencia?

 

El Futuro siempre será incierto, nadie nunca podrá viajar a ese Tiempo por venir y contarnos lo que vio para prevenir escenarios nocivos para la Humanidad. Así que, todos estos “mundos” futuros que nos “dibujan” la propia I.A., tienen bastantes probabilidades de suceder.

A nivel mundial en el Presente, nadie, ningún Gobierno, está tomando las medidas oportunas para que nada de esto pueda suceder en el mañana.

Algunas voces de expertos se han alzado advirtiendo del peligro cierto que nos acecha. Sin embargo, deseñan tales advertencias y siguen su camino que es el de hacer prevalecer los beneficios.

Pero, ¿Qué pasa con el destino de la Humanidad?

Qué más da lo que pase, ellos, , los que han hecho posible tal barbaridad… ¡Ya no estarán aquí!

¡La Humanidad! ¿Quién la entiende! Ya lo dijo aquel hombre sabio:

“Al final del camino, descubriremos que, la Humanidad forma parte del problema que trata de resolver.” 

Lo que nos lleva a que, siendo parte del problema, no podemos contemplar en su totalidad, es lo que nos pasa con la Galaxia Vía Láctea, podemos tomar imágenes de otra cualquiera menos de la nuestra, porque estamos dentro de ella.

Emilio Silvera V.

¿Vida sólo en la Tierra? ¡Qué disparate!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionada

 

                                          La Tierra primitiva

 

Generado por AI El paisaje de un planeta alienígena en el espacio profundo es un paisaje extraterrestre | Imagen Premium generada con IAPaisaje extraterrestre del planeta alienígena en el espacio profundo IA generativa | Imagen Premium generada con IA

                                      Paisajes de otros mundos

 Una Tierra primitiva y caliente que, situada en la zona habitable del Sol, hizo posible la llegada de la vida al planeta, donde, en presencia de agua líquida, y una atmósfera amigable, pudo evolucionar hasta nosotros y las especies que aquí vivieron y ahora continúan habitando este mundo.

De la misma manera, habría que considerar que el proceso se puede haber repetido en otros muchos mundos que, como la Tierra, estén situados en la zona habitable de su estrella, que se den las condiciones precisas para el surgir de la vida.

 

 

“Árbol filogenético mostrando la divergencia de las especies modernas de su ancestro común en el centro.33​ Los tres dominios están coloreados de la siguiente forma; las bacterias en azul, las arqueas en celeste, y los eucariotas de color verde.”

La vida (a partir de su primer paso, del primer individuo de cada especie) viene de la vida. Ha surgido en el Universo de manera metódica y compleja en la que la materia creada en las estrella se conformaron en sustancias químicas y otras formas de materia y, el Azar, bajo ciertas circunstancias muy especiales que estaban presentes en lugares privilegiados del Universo, dio lugar al surgir de la vida tal como la conocemos y, posiblemente, de muchas más formas desconocidas para nosotros. Y, todo eso amigos, es Entropía Negativa. Ahora, Las características de un ser vivo son siempre una recombinación de la información genética heredada.

 

VARIABILIDAD GENÉTICA, ADAPTACIÓN Y SELECCIÓN NATURAL – BIOLOGÍA y GEOLOGÍA

 

El cruce de distintos genes hacen que se produzcan variaciones dentro de la misma especie

CONSECUENCIA LOGICA: Las variaciones dentro de una misma especie son el resultado de una gran cantidad de información genética presente ya en sus antepasados y, como consecuencia de la lógica evolución, de la aparición espontánea de nueva información genética…

 

 

Retrato de Fred Hoyle en los años 50.

 

Fred Hoyle decía:

“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente pre-copernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

 

Iceberg: ¿Qué es y cómo se forman? - Fundación Aquae

Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

 

Existen dos casquetes  de hielo de agua permanentes en los , que nunca se funden. En invierno éstos aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado hasta alcanzar los 60º de longitud. Ocurren esporádicamente tormentas de polvo que llegan a cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares.

 

Es una imagen de la parte de Marte con el Sino Sabaus y de Regio Deucalionis. El cráter a la derecha inferior es Flaugergues, y el doble cráter en la parte inferior izquierda es Wislicenus. Esta imagen fue tomada por el Mariner 6 en 1969. En esta imagen pueden encontrarse muchas características que sugieren ríos Marcianos, e incluso la salida de una llanura central. Se recomienda ver esta imagen en alta resolución. (Cortesía de la NASA/JPL)

 

Encuentran pruebas de restos de agua líquida en Marte ...Descubren un lago de agua en Marte

Los indicios de la presencia de agua en el planeta Marte son innegables. Han descubierto un lago de agua en aquel planeta, y, los indicios de la presencia de agua son innegables.

 

Agua líquida en Marte | Fotos | Ciencia | EL PAÍS

25,560 imágenes, fotos de stock, objetos en 3D y vectores ...

 

Nadie puede negar la presencia de agua en este lugar, quizás no con la abundancia del pasado. Sin embargo agua hay, y, me gustaría a mí saber como se presenta en el subsuelo del planeta, donde a temperaturas más benignas puede que corra libre y líquida para hacer posible que florezcan líquenes, hongos y bacterias. El paisaje marciano nos habla de correntías violentas que surcaron la tierra  y dejando a la vista esos inmensos cañones naturales.

 

 

El río Colorado ha estado al menos cinco o seis millones de años horadando lo que conocemos como el Gran Cañón del Colorado, una impresionante depresión en el desierto de Arizona que fue revelando capas y capas de terreno formadas en los últimos 2.000 millones de años. Lenta pero inexorablemente, el agua ha creado un valle de 446 kilómetros de largo, 29 de ancho y de unos 1.850 metros de profundidad, que es un testimonio vivo y activo de la historia de la geología de nuestro planeta.

 

Imagen compuesta de una parte de Valles Marineris. Las dimensiones verticales están exageradas cuatro veces

 

Pero no muy lejos, en la negrura del cielo estrellado, acecha la presencia de una formación tan inmensa que convierte al Gran Cañón en una pequeña anécdota geológica: se trata de Valles Marineris, el cañón más inmenso del sistema solar . Es una vasta y profunda red de abismos y paredes que recorre el ecuador del planeta Marte como si de una gigantesca cicatriz se tratase: mide unos 4.000 kilómetros de largo y ocupa un cuarto de la circunferencia del planeta. Es al menos diez veces más antiguo que el Gran Cañón, alcanza una anchura de hasta 200 kilómetros y una profundidad de siete.

Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).

 

 

Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.

 

Visión artística de Encélado

Visión artística del cielo de Encélado, por David Seal (NASA). Encelado tiene mucha actividad volcánica y también, es poseedor de mucha agua en su interior. Es una de las lunas de Saturno que deben ser estudiadas.

Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.

 

Por qué Europa, la luna helada de Júpiter, es el mejor candidato para encontrar vida extraterrestre en el Sistema Solar? - BBC News Mundo

El Planeta Marte y la “luna” Europa

 

El sorprendente hallazgo de la NASA en Titán, la luna más grande de Saturno

El sorprendente hallazgo de la NASA en Titán, la luna más grande de Saturno

La agencia espacial encontró algo clave en sus océanos de metano y etano que podría afirmar que hay vida más allá de la Tierra.

Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

 

 

Hoy tenemos solo hipótesis. La más popular hoy describe un origen hidrotermal, en las posibles correntias presentes en el subsuelo de Marte, en el que existen grandes conductos y túneles por los que, en el pasado, corrían ríos de lava del rico pasado volcánico del planeta. Allí hace calor y se generan muchos componentes, y por eso existe la idea de que la vida pudo surgir en esos lugares.

 

Océanos subterráneos, ¿vida oculta en mundos donde no debería existir? | Noticias de la Ciencia y la Tecnología (Amazings® / NCYT®)

En un Mar de agua salada, las posibilidades de alguna clase de vida… ¡Son altas!

En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

 

2001: A Space Odyssey (in 3D). 2001: Una Odisea del Espacio (en 3D)

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2001, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

 

Imagen relacionada

 

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.

 

Lanzada Europa Clipper: la compleja sonda que estudiará el océano de Europa a partir de 2030 - Eureka

Lanzada Europa Clipper: la compleja sonda que estudiará el océano de Europa a partir de 2030

Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.

 

Imagen relacionada

Imagen relacionada

Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.

 

CassiniHuygens_esp - Madrid Deep Space Communications Complex

Cassini y Huygens, la misión de mayor rendimiento en el Espacio

Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

 

Tenemos motivos -también- para estar orgullosos

No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.

Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.

 

1.300+ Titán Luna Fotografías de stock, fotos e imágenes ...

No estaría nada mal construir un Hotel en Titán y, por la venta, ver todas las mañanas la magnificencia de Saturno y todo el entorno que con el camino por el espacio interestelar.

Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió.

 

La sonda Huygens

De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.

 

Titán resulta fascinante con sus lagos de metano

 

“El Telescopio Espacial James Webb (JWST) nos ha brindado unas nuevas imágenes que no parece encajar con las que hemos visto hasta ahora. En ellas podemos entrever Titan, una de las lunas de Saturno que más interesa a los astrónomos. No le pasa nada al Webb, nos enseña un aspecto clave del satélite: sus nubes.”

La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.

La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.

¡Ya veremos! De todo esto me viene de nuevo a la memoria aquel que intuyendo hechos del futuro decía:

Mi abuelo tiene un cabrito,

Dice que lo matará, 

Del pellejo hará un pandero,

¡Lo que sea sonará!

Sí, por lo general, casi siempre suenan los acontecimientos que intuimos para el futuro, y, se confirman las intuiciones o se niegan para siempre. Lo que nos deja el camino libre para continuar con otras intuiciones nuevas. Bueno, también las podemos llamar conjeturas y teorías.

Emilio Silvera Vázquez

¿Hasta dónde llegaremos?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Las grandes firmas que trabajan en el desarrollo de la Inteligencia Artificial, están alcanzado cotas inimaginables.

Si todo esto sigue así… ¡No se sabe hasta donde podemos llegar, y, sobre todo… ¿Qué consecuencias tendrá todo esto? Sobre todo, en lo que se refiere a la Robótica, ese sueño de algunos que tratan de construir seres artificiales que piensen por sí mismo.

Necesitamos una Ley bien estructurada y avalada por todos los Gobiernos del mundo, que normalice y limite de alguna manera el alcance de desarrollo de la Inteligencia Artificial, de tal manera que nunca pueda dañar a nuestra especie-.

Emilio Silvera Vázquez

Nuestra Imaginación es mucho más rápida que la luz

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Primeras imágenes de Marte en 3D: Publican video del planeta hecho por la cámara estéreo

               ¿Cuántas veces habré “visitado” Marte con la Imaginación?

Pero bajemos hasta la realidad y pongamos los pies en el suelo, veamos que cosas pasan por aquí, en nuestro mundo real que, a veces, también resultan tan fantásticas como viajar a Marte con el pensamiento.

Gravity Probe B - Wikipedia, la enciclopedia libre

Satélite Gravity Probe B.

Dedicado a medir la curvatura del campo gravitatorio terrestre debido a la teoría de la relatividad de Einstein. La gravedad ha sido medida y comprobada de muchas maneras pero… ¡Gravedad cuántica! ¿qué es eso? La imaginación anda más rápida que los conocimientos. Sin embargo, así hemos ido avanzando en el transcurrir del Tiempo. Hace algunos miles de años algunos imaginaron la existencia del átomo y de los elementos y, ya sabéis lo que de esas cuestiones sabemos hoy.

 

                                             Gravedad cuántica

 

La llamada gravedad cuántica trata de fundir en una sola las dos teorías físicas más soberbias con las que contamos, la relatividad general y la mecánica cuántica, que en el estado actual de nuestro conocimiento parecen incompatibles. Su estudio, ahora mismo, es en algunos aspectos análogo a la física de hace cien años, cuando se creía en los átomos, pero se ignoraban los detalles de su estructura.

Desde aquel día en que Kaluza, le escribió a Einstein una carta con su teoría de las cinco dimensiones, en la que unía la Gravedad con el Electromagnetismo, la puerta de las dimensiones más altas quedó abierta y a los teóricos se les regaló una herramienta maravillosa: el hiperespacio; todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí sí es posible encontrar esa soñada teoría de la gravedad cuántica.

Así que las teorías se han embarcado a la búsqueda de un objeto audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos; una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.

 

       Ecuaciones - Relatividad General Esta ecuación fue formulada por Einstein como parte de su revolucionaria teoría general de la relatividad en 1915. La teoría revolucionó la forma de entender la gravedad, medianteEnséñame de Ciencia - En física, las ecuaciones de campo de Einstein son un conjunto de diez ecuaciones de la teoría de la relatividad general de Albert Einstein, que describen la interacción

            Algunas ecuaciones nos dicen hasta donde puede llegar la mente humana

Claro que saber, lo que el universo es, leyendo una ecuación, por muy ingeniosa que ésta sea y por mucho que la misma pueda abarcar… Parece poco probable. ¿Dónde radica el problema? El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC, la máquina más potente del mundo hasta el momento.

La verdad es que la teoría que ahora tenemos, el modelo estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. ¡Necesitamos algo más avanzado!

 

        Dibujo20150727 alice - cms - atlas - lhcb - ridge -ppb collisionss - lhc cern - La Ciencia de la Mula Francis

 

A pesar de su grandeza, se queda corto para que nos pueda decir, lo que necesitamos saber: Si nos habló del Bosón de Higgs, por el momento no está nada mal, y, ahora, en su nueva etapa, seguramente nos dará alguna sorpresa y nos puede desvelar algún que otro secreto de la materia, del universo que presentimos y no podemos ver.

Se dijo  que la función de la partícula de Higgs era la de dar masa a las partículas que carecen de ella, disfrazando así la verdadera simetría del mundo. Cuando su autor lanzó la idea a la comunidad científica, resultó además de nueva, muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resultó ser complejo, lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, y, el núcleo, una parte entre cien mil del total del átomo, resultó ser de una complejidad asombrosa.

 

           Murray Gell-Mann, acuñó el término quark y su clasificación de las partículas elementales introdujo el orden en el caos | Rincón EducativoNúcleo atómico - Wikipedia, la enciclopedia libre

El núcleo del átomo es una parte de cien mil, y, en esa infinitesimal superficie, están los nucleones que tienen confinados a los tripletes de Quarks sujetos por la fuerza nuclear fuerte que es transmitida por medio de las partículas de la familia de los Bosones que llamamos Gluones, y, además, ese núcleo infinitesimal posee el 88,8% de la masa del átomos. La fuerza nuclear fuerte es la más potente de las cuatro fuerzas naturales, y, la única de las cuatro que crece con la distancia.

Por qué los quarks no pueden estar libres: el misterio del confinamiento |  Astronoo

 

¿No es una maravilla de la Naturaleza?

Allí los nucleones (protones y neutrones) resultaron estar hechos por tripletes de Quarks que, confinados por la fuerza nuclear fuerte, eran retenidos por los Gluones, los Bosones transmisores de esa fuerza de la naturaleza.  Así que un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo, cuando fue descubierto en todo su contenido, fue motivo de un gran asombro entre la comunidad científica. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún; los quarks que estaban instalados en nubes de otras partículas llamadas gluones, y ahora queremos continuar profundizando, sospechando que después de los quarks puede haber algo más.

 

                                         

 

Nos dicen que existen lugares que llaman los Océanos de Higgs, y, por ellos, circula libremente el dichoso Bosón que, también según nos dicen, proporciona la masa al resto de las partículas. Todo el Universo está permeado por esa especie de sustancia -como el viejo éter- que los griegos llamaban Ylem cósmico y que, a medida que el tiempo avanza, le vamos cambiando el nombre. Pues bien, ahí, en ese “océano” dicen que está el Bosón dador de masas que según parece, descubrieron hace un par de años.

 

                     Materia Cósmica - Teosofía WikiLa Materia Mancante nei Filamenti della Rete Cosmica - Universo Astronomia

 

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes, es decir, que si miramos a las estrellas en una noche clara, estamos mirando el campo de Higgs. Las partículas influidas por este campo toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado otras veces, tales como: del campo gravitatorio o del electromagnético.

 

                             

 

Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquirirá energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra. Como E = mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein: la masa, m, tiene en realidad dos partes; una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) en los aceleradores, o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

 

  

 

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas. Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan estas al campo de Higgs cuando interaccionan con él.

La influencia de Higgs en las masas de los quarks y de los leptones nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

 

 

Hasta ahora no tenemos ni idea de qué reglas controlan los incrementos de masa generados por Higgs (de ahí la expectación creada -en su momento- por el nuevo acelerador de partículas LHC), pero el problema es irritante: ¿por qué sólo esas masas ­­- las masas de los W+, W, Z0, y el up, down, encanto, extraño, top y bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van desde la del electrón (0’0005 GeV) a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnética y débil. En la unidad hay cuatro partículas mensajeras sin masa – los W+, W, Z0 y el fotón – que llevan la fuerza electrodébil. Además está el campo de Higgs, y rápidamente, los W y Z absorben la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos), y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen las teorías. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

 

                                                   

Todo lo que es materia, está hecho de Quarks y Leptones, desde un vaso de leche hasta un árbol, y, también los seres vivos

“En la actualidad, prácticamente todos los fenómenos subatómicos conocidos son explicados mediante el modelo estándar, una teoría ampliamente aceptada sobre las partículas elementales y las fuerzas entre ellas. Sin embargo, en la década de 1960, cuando dicho modelo aún se estaba desarrollando, se observaba una contradicción aparente entre dos fenómenos. Por un lado, la fuerza nuclear débil entre partículas subatómicas podía explicarse mediante leyes similares a las del electromagnetismo (en su versión cuántica). Dichas leyes implican que las partículas que actúen como intermediarias de la interacción, como el fotón en el caso del electromagnetismo y las partículas W y Z en el caso de la fuerza débil, deben ser no masivas. Sin embargo, sobre la base de los datos experimentales, los bosones W y Z, que entonces sólo eran una hipótesis, debían ser masivos.

En 1964, tres grupos de físicos publicaron de manera independiente una solución a este problema, que reconciliaba dichas leyes con la presencia de la masa. Esta solución, denominada posteriormente mecanismo de Higgs, explica la masa como el resultado de la interacción de las partículas con un campo que permea el vacío, denominado campo de Higgs. El modelo estándar quedó finalmente constituido haciendo uso de este mecanismo.”

                                             
“¿Qué hace que el bosón de Higgs sea una partícula especial? No, no es que un editor le pusiera un título llamativo a la biografía del premio Nobel Leon Lederman. Tampoco lo es que encontrar esta partícula nos permita entender la condensación del campo de Higgs que llevó a que las partículas ganaran masa. Incluso en las teorías sin Higgs o con un Higgs compuesto, la condensación del campo de Higgs y el proceso de ruptura espontánea de la simetría se da igualmente y de forma muy similar (pues hay muchas pruebas indirectas de este fenómeno).

Tampoco el Higgs es una partícula especial porque sea una excitación del del campo de Higgs que nos permita explorar sus propiedades, porque en las teorías sin Higgs o con Higgs compuesto también hay excitaciones del vacío que nos permiten explorar el campo.” Eso nos dicen en el magnifico Blog de Francis (th)E mule Science’s News.

Partícula Símbolo Masa (en GeV/c2) Carga eléctrica Espín Interacción
Fotón \ \gamma 0 0 1 electromagnética
Bosón W W± 80,4 ± 1 1 débil
Bosón Z Z0 91,187 0 1 débil
Gluón g 0 0 1 fuerte

 

Las masas de los W y Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil, y las relajadas sonrisas de los físicos teóricos nos recuerdan que Hooft y Veltman dejaron sentado que la teoría entera está libre de infinitos.

Todos los intentos y los esfuerzos por hallar una pista de cuál era el origen de la masa fallaron. Feynman escribió su famosa pregunta: “¿por qué pesa el muón?”. Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa. Una voz potente y segura nos dice “¡Higgs!”. Durante más de sesenta años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo de Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente, y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen en entredicho que el concepto de masa sea un atributo fundamental de la materia. Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “re-normalizándolo”, ese truco matemático que emplea cuando no saben hacerlo bien.

 

             ¿Sabremos alguna vez cómo adquieren masa las partículas?

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas. Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en la que los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

 

                       

 

Una cosa más; hemos hablado de los bosones gauge y de su espín de una unidad. Hemos comentado también las partículas fermiónicas de la materia (espín de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espín cero. El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos donde quiera que estén y sin direccionalidad. Al Higgs se le llama a veces “bosón escalar” (sin dirección) por esa razón.

La interacción débil, recordaréis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV. Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar nuevas partículas que puedan despejar algunos interrogantes.

 

 

Recuerdo cuando andaban a la caza del Bosón de Higgs y decían “Pero todavía hay que responder montones de preguntas: ¿Cuáles son las propiedades de las partículas de Higgs? y, lo que es más importante, ¿Cuál es su masa? (Bueno, parece que, en el último experimento apareció se localizó un bosón con ~125 GeV que, según parece, podría ser el esquivo Higgs)¿Cómo reconoceremos una si nos la encontramos en una colisión del LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas o sólo las hace incrementarse? ¿Cómo podemos saber más al respecto? Cómo es su partícula, nos cabe esperar que la veremos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.”

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del universo, añadiendo pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Éstas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuado que las partículas y la cosmología pintan juntas de un universo primitivo puro y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10-5 grados Kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas. Así, por ejemplo, antes del Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

 

                    No, esto no es el Higgs, es, simplemente, una burbuja multicolor

El universo se expande y se enfría, y entonces viene el Higgs (que “engorda” los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que les hiciera parecer que tienen mucha masa.  Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas formas, es tanta la ignorancia que tenemos sobre el origen de la masa que nos agarramos como a un clavo ardiendo, en este caso, a la partícula de Higgs, que algunos han llegado a llamar “la partícula divina”. Lo mismo nos pasa con la dichosa “materia oscura” para ocultar lo que no sabemos sobre la expansión del Universo.

¡Ya veremos en qué termina todo esto!

 

                                            Física Cuántica : Blog de Emilio Silvera V.

 

Arriba tenemos nada más y nada menos que: a John Mather, Carlo Rubbia, Martinus Veltman, Gerardus ‘t Hooft at the Lindau Nobel Meetings 2010. Si científicos  como ellos no vienen a nuestro rescate, y nos sacan del atolladero en el que estamos inmerso y hasta el cuelo de ignorancia…¡Mal hirían las cosas!

 

                                                    

 

Lo cierto es que (al menos de momento), la materia y energía oscura, las supercuerdas, sí son la alfombra que decía Veltman, aquel físico serio y Premio Nobel que, no confesaba con ciertas ruedas de molino. Él, quería hablar de cosas tangibles y, tampoco le gustaban las partículas virtuales.

Sobre estas ideas, Veltman, uno de los arquitectos de la Física, dice que es una alfombra bajo la que barremos nuestra ignorancia. Glashow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales. La objeción principal: que no tenemos la menor prueba experimental. Ahora, por fin, la tendremos con el LHC. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menor de 1 TeV, ¿por qué?; si tiene más de 1 TeV el modelo estándar se vuelve incoherente y entra  en crisis.

Emilio Silvera V.