Mar
14
Revoluciones científicas ¡La Relatividad!
por Emilio Silvera ~
Clasificado en Física Relativista ~
Comments (2)
Dentro de 150 años podríamos publicar una foto similar y decir:
Es la primera persona que alcanza los 158 años de edad y aparenta 50, se logró ralentizar el envejecimiento gracias a descubrimientos en genética, ya han quedado atrás aquellos factores que ahora, en el año 2.175 han desaparecido, tales como:
Aquellas afecciones más comunes de la vejez cabe citar la pérdida de audición, las cataratas y los errores de refracción, los dolores de espalda y cuello, la osteoartritis, las neumopatías obstructivas crónicas, la diabetes, la depresión y la demencia y otras ya desterradas casi por completo.
El Nuevo Acelerador de Partículas Albert Einstein, utilizando energías de 1019 GeV, ha logrado llegar hasta las cuerdas vibrantes de la Teoría, verificando así, cerca de 200 años más ta5rde, la dichosa teoría de Ed. Witten y otros antes y después que el. Ya sabemos realmente cuales son los componentes primigenios de la materia.
La Nave Aurora (que partió de la Tierra hace 9 días), llega al planeta Próxima b utilizando el Hiperespacio (una manera de doblar el Espacio acortando las distancias entre regiones muy lejanas), de tal manera que se logra burlar esa imposibilidad de alcanzar la velocidad de la luz (no de vencerla), y, por fin se podrá explorar esas regiones antes fuera de nuestro alcance.
Hoy, día 11 de enero de 2.175, se celebra el 40 aniversario de la publicación de la nueva Teoría de la Gravedad Cuántica que, las nuevas máquinas de computación cuántica pudieron confirmar que dicha teoría estaba subyacente en la Teoría de cuerdas.
El Modelo Estándar de la Física de Partículas está completo, ya operan en el las cuatro fuerzas fundamentales, y, cuando se juntan las Teorías de Planck y de Einstein… ¡No apareen los dichosos infinitos!
Hace ahora un años que se logró perforar la superficie de Europa, y, para el asombro de todos, se captaron imágenes con un robot sumergido, de asombrosos animales, algunos de inmensas proporciones. Todavía quedan muchos secretos por descubrir en aquel pequeño “mundo”.
Finalmente ese primer contacto se producirá
Hace ya más de 50 años que se pudo descartas la existencia de la “materia oscura”, confundida con la sustancia primigenia original en el Universo, gracias a la cual se pudieron formar las galaxias. Se pudo verificar que el movimiento anómalo de las galaxias era debido a la atracción gravitatoria que un universo vecino ejerce sobre el nuestro, al igual que el nuestro la ejerce sobre aquel.
Llegan a su fin las reuniones de los Presidentes de todos los Gobiernos del Mundo, las señales recibidas desde un mundo lejano (por fin verificadas que provienen de seres inteligentes por sus mensajes matemáticos (no importa los signos que puedan utilizar “ellos”, finalmente el resultado de sumar 2 + 2 = 4.
No sabemos como serán y qué intenciones tendrán, lo mejor es prevenir mejor que curar. La votación para elegir a un Presidente mundial dará comienzo el próximo día 7 de enero de 2.175. Se impone la necesidad de unificar criterios para poder hacer frente a lo que se avecina.
Así podríamos continuar formulando cientos de preguntas como: ¿Qué maravillas tendremos dentro de 150 años? ¿Qué adelantos científicos se habrán alcanzado? ¿Qué planetas habremos colonizado? ¿Habrá sucedido ya ese primer contacto del que tanto hablamos? ¿Cuántas “Tierras” habrán sido encontradas? ¿Qué ordenadores utilizaremos? ¿Será un hecho cotidiano el viaje espacial tripulado? ¿Estaremos explotando las reservas energéticas de Titán? ¿Qué habrá pasado con la Teoría de Cuerdas? Y, ¿Habrá, por fin aparecido la dichosa materia oscura? Haciendo todas estas preguntas de lo que será o podrá ser, nos viene a la memoria todo lo que fue y que nos posibilita hacer estas preguntas.
Una cosa nos debe quedar bien clara, nada dentro de 150 años será lo mismo que ahora. Todo habrá cambiado en los distintos ámbitos de nuestras vidas y, a excepción del Amor y los sentimientos que sentiremos de la misma manera (creo), todo lo demás, habrá dado lugar a nuevas situaciones, nuevas formas de vida, nuevas sociedades, nuevas maneras y, podríamos decir que una Humanidad nueva, con otra visión y otras perspectivas.
Nuevas maneras de sondear la Naturaleza y desvelar los secretos. Son muchas las cosas que no sabemos
Pero echemos una mirada al pasado. Dejando a un lado a los primeros pensadores y filósofos, como Tales, Demócrito, Empédocles, Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:
Nuestra Física actual está regida y dominada por dos explosiones cegadoras ocurridas en el pasado: Una fue aquel artículo de 8 páginas que escribiera Max Planck, en ese corto trabajo dejó sentados los parámetros que rigen la Ley de la distribución de la energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de en una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.
En amigo físico me decía: cuando escribo un libro, procuro no poner ecuaciones, cada una de ellas me quita diez lectores. Siguiendo el ejemplo, procuro hacer lo mismo (aunque no siempre es posible) pero, en esta ocasión dejaremos el desarrollo de la energía de Planck del que tantas veces se habló aquí, y, ponernos ahora a dilucidar ecuaciones no parece lo más entretenido, aunque el lenguaje de la ciencia, no pocas veces es el de los números. Mira abajo sino es así.
¿Son tantas!
En cualquier evento de Ciencia, ahí aparecen esos galimatías de los números y letras que pocos pueden comprender, dicen que es el lenguaje que se debe utilizar cuando las palabras no pueden expresar lo que se quiere decir. Y, lo cierto es que, así resulta ser.
Después de lo de Planck y su radiación de cuerpo negro, cinco años más tarde, irrumpió en escena otra revolución de la Física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos dio un golpecito en nuestras cabezas para despertar en ellas nuestra comprensión de las leyes que gobiernan el Universo.
Nos dijo que la velocidad de la luz es la máxima alcanzable en nuestro universo, que la masa y la energía son la misma cosa, que si se viaja a velocidades cercanas a la de la luz, el tiempo se ralentiza pero, el cuerpo aumentará su masa y se contraerá en el sentido de la misma…Y, todo eso, ha sido una y mil veces comprobado. Sin embargo, muchas son las pruebas que se realizan para descubrir los fallos de la teoría, veamos una:
Los científicos que estudian la radiación gamma de una explosión de rayos lejanos han encontrado que la velocidad de la luz no varía con la longitud de onda hasta escalas de distancia por debajo de la longitud de Planck. Ellos dicen que esto desfavorece a algunas teorías de la gravedad cuántica que postulan la violación de la invariancia de Lorentz.
La invariancia de Lorentz se estipula que las leyes de la física son las mismas para todos los observadores, independientemente de dónde se encuentren en el universo. Einstein utilizó este principio como un postulado de la relatividad especial, en el supuesto de que la velocidad de la luz en el vacío, no depende de que se esté midiendo, siempre y cuando la persona esté en un sistema inercial de referencia. En más de 100 años la invariancia de Lorentz nunca ha sido insuficiente.
Interferómetro de Michelson
Sin embargo, los físicos siguen sometiendo a pruebas cada vez más rigurosas, incluyendo versiones modernas del famoso experimento con el interferómetro de Michelson y Morley. Esta dedicación a la precisión se explica principalmente por el deseo de los físicos para unir la mecánica cuántica con la relatividad general, dado que algunas teorías de la gravedad cuántica (incluyendo la teoría de cuerdas y la gravedad cuántica de bucles) implica que la invariancia Lorentz podría romperse. Granot y sus colegas estudiaron la radiación de una explosión de rayos gamma (asociada con una explosión de gran energía en una galaxia distante) que fue descubierto por la NASA Fermi Gamma-Ray Space Telescope, el 10 de mayo de este año. Se analizó la radiación en diferentes longitudes de onda para ver si había indicios de que los fotones con energías diferentes llegaron a los detectores de Fermi en diferentes momentos.
En múltiples trabajos publicados se habían considerado problemas en los que dos acontecimientos (eventos) que no ocurrían simultáneamente (al mismo tiempo) para un observador eran simultáneos para otro, o problemas en los que dos acontecimientos diferentes tenían lugar en la misma posición para uno de los observadores, lo cual nos permitía hacer una simplificación del tipo t = t’ o una simplificación del tipo x = x’. Pero hay acontecimientos que no ocurren al mismo tiempo para dos observadores distintos y que tampoco se repiten en el mismo lugar en ninguna de las coordenadas espaciales. Sobre este tipo de acontecimientos aún podemos llevar a cabo un análisis definiendo matemáticamente una “distancia” entre dichos acontecimientos que incluya en una sola definición las diferencias de tiempo (temporales) y las diferencias de posición (espaciales). Las transformaciones de Lorentz se utilizan como herramienta poderosa para 5resolver problemas.
Tal difusión de los tiempos de llegada parece indicar que la invariancia Lorentz efectivamente había sido violada, es decir que la velocidad de la luz en el vacío depende de la energía de la luz y no es una constante universal. Cualquier dependencia de la energía sería mínima, pero aún podría resultar en una diferencia mensurable en los tiempos de llegada de fotones debido a los miles de millones de años luz de a la que se encuentran las explosiones de rayos gamma.
De la calidad de Einstein como persona nos habla un detalle: Cuando el Presidente Chaim Weizmann de Israel murió en 1952, a Einstein se le ofreció la presidencia, pero se negó, diciendo que no tenía “ni la habilidad natural ni la experiancia para tratar con seres humanos.” Luego escribió que se sentía muy honrado por el ofrecimiento del estado de Israel, pero a la vez triste y avergonzado de no poder aceptarla.
Pero sigamos con la segunda revolución de su teoría que se dio en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general que varió por completo el concepto del Cosmos y nos llevó a conocer de manera más profunda y exacta la Gravedad de Newton.
Einstein nos decía que el espacio se curva en presencia de grandes masas
En la Teoría Especial de la Relatividad, Einstein se refirió a sistemas de referencias inerciales (no acelerados). Asume que las leyes de la física son idénticas en todos los sistemas de referencia y que la velocidad de la luz en el vacío, c, es constante en el todo el Universo y es independiente de la velocidad del observador.
La teoría desarrolla un sistema de matemáticas con el fin de reconciliar estas afirmaciones en aparente conflicto. Una de las conclusiones de la teoría es que la masa de un cuerpo, aumenta con la velocidad (hay una ecuación que así lo demuestra), y, tal hecho, ha sido sobradamente comprobado en los aceleradores de partículas donde un muón, ha aumentado más de diez veces su masa al circular a velocidades cercanas a la de la luz. Y el muón que tiene una vida de dos millonésimas de segundo, además, al desplazarse a velocidades relativistas, también ven incrementado el tiempo de sus vidas.
El LHC es un esfuerzo internacional, donde participan alrededor de siete mil físicos de 80 países. Consta de un túnel en forma de anillo, con dimensiones interiores parecidas a las del metro subterráneo de la Ciudad de México, y una circunferencia de 27 kilómetros. Está ubicado entre las fronteras de Francia y Suiza, cerca de la ciudad de Ginebra, a profundidades que van entre los 60 y los 120 metros debido a que una parte se encuentra bajo las montañas del Jura
Einstein también concluyó que si un cuerpo pierde una energía L, su masa disminuye en L/c2. Einstein generalizó esta conclusión al importante postulado de que la masa de un cuerpo es una medida de su contenido en energía, de acuerdo con la ecuación m=E/c2 ( o la más popular E=mc2).
Otras de las conclusiones de la teoría de Einstein en su modelo especial, está en el hecho de que para quien viaje a velocidades cercanas a c (la velocidad de la luz en el vacío), el tiempo transcurrirá más lento. Dicha afirmación también ha sido experimentalmente comprobada.
Todos estos conceptos, por nuevos y revolucionarios, no fueron aceptados por las buenas y en un primer momento, algunos físicos no estaban preparados para comprender cambios tan radicales que barrían de un plumazo, conceptos largamente arraigados.
Todo lo grande está hecho de cosas pequeñas
Fue Max Planck, el Editor de la Revista que publicó el artículo de Albert Einstein, quien al leerlo se dió cuenta de la enorme importancia de lo que allí se decía. A partir de aquel momento, se convirtió en su valedor, y, en verdad, Einstein, reconoció públicamente tal ayuda.
En la segunda parte de su teoría, la Relatividad General, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y, también la que hace posible la existencia de las Galaxias.

¡La Gravedad! Siempre está presente e incide en los comportamientos de la materia
Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el Universo y que crear esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann ) sobre la distorsión del espacio-tiempo.
Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.
No deja de crecer al engullir la materia circundante, su diámetro se hice mucho más grande
Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m.: л = 3,14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿ Cómo puede ser esto ? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.
Con esta teoría de la Relatividad General, entre otros pasos importantes, está el hecho de que dió lugar al nacimiento de la Cosmología que, de alguna manera, era como mirar con nueva visión a lo que l Universo podía significar, Después de Einstein, el Universo no fue el mismo.
El análisis de la Gravitación que aquí quedó plasmado interpreta el Universo como un continuo espacio-tiempo de cuatro dimensiones en el el que la presencia de una masa (como decía antes) curva el espacio para crear un campo gravitacional.
De la veracidad y comprobación de las predicciones de ésta segunda parte de la Teoría Relativista, tampoco, a estas alturas cabe duda alguna, y, lo más curioso del caso es que, después de casi un siglo (1.915), aún los físicos están sacando partido de las ecuaciones de campo de la teoría relativista en su versión general o de la Gravedad.
Tan importante es el trabajo de Einstein que, en las nuevas teorías, en las más avanzadas, como la Teoría M (que engloba las cinco versiones de la Teoría de Cuerdas), cuando la están desarrollando, como por arte de magía y sin que nadie las llame, surgen, emergen, las ecuaciones de Einstein de la Relatividad General.
Emilio Silvera Vázquez
Mar
9
No lo sabemos explicar pero, es tan importante en nuestras vidas. Me...
por Emilio Silvera ~
Clasificado en Física ~
Comments (2)
¿Fue el Tiempo el único testigo de…
Si miramos hacia atrás en el Tiempo, podremos comprobar que, desde siempre, hemos estado a merced de los agentes naturales que llegaron para causar grandes estragos en la población que según los casos se vio mermada por miles y millones de muertos. El que nos asedió en 2019, tengo la sensación de que no es tan natural, y, si algún día se llega a saber que fue provocado… Y si los humanos seguimos comportándonos así ¡Traerá malas consecuencias para el Mundo!
Nosotros, los Humanos, somos bastante prepotentes y, a estas alturas nos podemos creer que lo sabemos todo y que nada puede hacernos mella, nuestros conocimientos nos pueden librar de todo… ¡Cuan equivocado estamos! Pero vayamos a repasar algunos detalles y hechos en los que, el actor principal es el Tiempo. Durante su transcurrir crecemos y nos educan para estar preparados cada cual en el ámbito elegido para servir al colectivo, no importa si se es mecánico, doctor o físico, todo es necesario para el bien común
“La didáctica es la rama de la pedagogía que se ocupa de orientar la acción educadora sistemática, y en sentido más amplio, es el conjunto de conocimientos aplicables a todo sujeto, plantea las cuestiones generales de toda enseñanza comunes a todas las materias.
La didáctica es la disciplina pedagógica del carácter practico y normativo que tiene por objeto especifico la técnica de la enseñanza, esto es, la técnica de incentivar y de orientar eficazmente a los alumnos y alumnas en el aprendizaje”Agricultor o panadero, cirujano o científico investigador, astrónomo o historiador, Físico de partículas o Asesor Fiscal, Empresario o Filósofo… ¡Ah! También la Política es necesaria cuando se desarrolla de manera adecuada, Todos desarrollan una misión en la Sociedad que, con otras muchas, conforman el entramado de conocimientos que hacen posible la convivencia y que sigamos avanzando hacia el futuro.
Colectivamente, el tiempo es muy importante, cada uno de nosotros hacemos un trabajo y desarrollamos una actividad que se va sumando a la de los demás, con el tiempo, el trabajo, ese conocimiento adquirido, continúa aumentando y, ese tiempo “infinito” es el que necesitamos, nosotros y los que vendrán detrás para resolver problemas muy graves que se presentarán en el futuro y que, de poder o no poder resolverlos, dependerá que la Humanidad perdure.
El tiempo será la mejor herramienta con la que podemos contar para resolver todos los problemas. Así lo dijo Hilbert:
“Por muy inabordables que parezcan estos problemas, y por muy desamparados que nos encontremos frente a ellos hoy, tenemos la íntima convicción de que debe ser posible resolverlos mediante un número finito de deducciones lógicas. Y, para ello, la mejor herramienta es el tiempo, él nos dará todas las respuestas a preguntas que hoy no podemos ni sabemos contestar”.
En la tumba de David Hilbert (1862-1943), en el cementerio de Gotinga (Alemania), dice:
“Debemos saber. Sabremos”.
Mar
4
¿Dónde estaba la materia perdida?
por Emilio Silvera ~
Clasificado en Física ~
Comments (13)
Los físicos se vieron durante mucho tiempo turbados por el hecho de que a menudo, la partícula beta emitida en una desintegración del núcleo no alberga energía suficiente para compensar la masa perdida por el núcleo. En realidad, los electrones no eran igualmente deficitarios. Emergían con un amplio espectro de energías, y el máximo (conseguido por muy pocos electrones), era casi correcto, pero todos los demás no llegaban a alcanzarlo en mayor o menor grado. Las partículas alfa emitidas por un nucleido particular poseían iguales energías en cantidades inesperadas. En ese caso, ¿Qué era errónea en la emisión de partículas beta? ¿Qué había sucedido con la energía perdida?
En 1.922, Lise Maitner se hizo por primera vez esta pregunta, y, hacia 1.930, Niels Bohr estaba dispuesto a abandonar el gran principio de conservación de la energía, al menos en lo concerniente a partículas subatómicas. En 1.931, Wolfgang Pauli sugirió una solución para el enigma de la energía desaparecida.
El investigador austriaco Wolfgang Pauli propuso en 1930 la idea de que había una partícula que no tenía carga, y él pensaba que también una masa despreciable, y que era la que se llevaba la parte de energía que faltaba. La llamó neutrino.
Tal solución era muy simple: junto con la partícula beta del núcleo se desprendía otra, que se llevaba la energía desaparecida. Esa misteriosa segunda partícula tenía propiedades bastante extrañas. No poseía carga ni masa. Lo único que llevaba mientras se movía a la velocidad de la luz era cierta cantidad de energía. A decir verdad, aquello parecía un cuerpo ficticio creado exclusivamente para equilibrar el contraste de energías.
Sin embargo, tan pronto como se propuso la posibilidad de su existencia, los físicos creyeron en ella ciegamente. Y esta certeza se incrementó al descubrirse el neutrón y al saberse que se desintegraba en un protón y se liberaba un electrón, que, como en la decadencia beta, portaba insuficientes cantidades de energía. Enrico Fermi dio a esta partícula putativa el nombre de “neutrino”, palabra italiana que significa “pequeño neutro”.
Mar
1
¿Qué será la materia?
por Emilio Silvera ~
Clasificado en Física ~
Comments (7)
¿Estábamos muy atrasados en el conocimiento de la materia?
Bueno tenemos unas reglas que nos dicen de qué está hecha. Sin embargo, otros hablan de unas cuerdas vibrantes que serían los componentes primigenios, situados más allá de los Quarks
en los colegios, cuando estábamos en primaria nos decían que la materia estaba en tres estados: Sólido, Líquido y Gaseoso. No contaban con el estado más abundante de la materia en el Universo que era el Plasma.
Sí, la materia conforma maravillas, la vida la mayor de ellas
No podemos dejar de asombrarnos de la presencia de la Vida en el Universo
¿Cómo pudo surgir la Vida a partir de la materia “inerte”
¿Cómo ha podido surgir la Conciencia de la materia?
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.
¡Parece que la materia está viva!
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.
Si se encuentran electrón y positrón… ¡Se aniquilan!
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).
El electrón es onda y partícula
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Mar
1
La perfección imperfecta
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (5)
Me refiero al Modelo estándar y, algunos han llegado a creer que sólo faltan algunos detalles técnicos y, con ellos, la física teórica está acabada. Tenemos un modelo que engloba todo lo que desamos saber acerca de nuestro mundo físico. ¿Qué más podemos desear?
Bueno, lo que hasta el momento hemos logrado no está mal del todo pero, no llega, ni con mucho, a la perfección que la Naturaleza refleja y que, nosotros perseguimos sin llegar a poder agarrar sus múltiples entresijos y parámetros que conforman ese todo en el que, sin ninguna clase de excusas, todo debe encajar y, de momento, no es así.
Fuente: Prog. Part. Nucl. Phys. 106: 68-119 (2019).
Para la mayoría de los físicos el modelo estándar es una teoría efectiva: el límite a baja energía de una teoría más fundamental desconocida. El lagrangiano ℒ del modelo estándar es un operador de dimensión cuatro (ya que la acción es S = ∫ℒ d⁴x). La física más allá del modelo estándar modificará dicho lagrangiano añadiendo términos de mayor dimensión; por ejemplo, ℒ + ∑ Cᵢ ?ᵢ /Λ², donde el sumatorio recorre los 2499 operadores ?ᵢ de dimensión seis y Λ es una nueva escala de energía (que será mucho mayor que la masa del quark top). El físico John Ellis (CERN) nos recuerda que ajustar estos 2500 parámetros (los ?ᵢ y Λ) usando las colisiones del LHC y otros colisionadores es imposible. La única solución es asumir simetrías que reduzcan dicho número parámetros. En su último artículo nos propone usar las simetrías SU(3)⁵ y SU(2)²×SU(3)³. Por supuesto, hay muchas otras alternativas.
La física de partículas se suele separar en física experimental (observacional), física teórica (fundamental) y física fenomenológica; las teorías efectivas son parte de esta última, siendo su objetivo desvelar los primeros indicios (lo que inglés se llama evidences) de física más allá del modelo estándar. Hoy en día disponemos de un conocimiento en teoría cuántica de campos suficiente para desarrollar de forma sistemática todas las teorías efectivas posibles; un elemento clave a tener en cuenta son las redefiniciones de campos, una redundancia cuya eliminación nos permite obtener lo que se llama una base de operadores. Una vez obtenida podemos ajustar sus parámetros con los datos de colisiones que se recaban en los grandes colisionadores de partículas (como el LHC en el CERN).
Por desgracia, el número de parámetros de estas teorías efectivas más allá del modelo estándar es enorme. John von Neumann decía que «con cuatro parámetros puedo ajustar un elefante, y con cinco puedo lograr que mueva su trompa» [LCMF, 27 may 2010]. Ajustar muchos parámetros, incluso cuando se dispone de una vasta cantidad de observaciones, requiere lidiar con el problema estadístico de las comparaciones múltiples (que en física de partículas se suele llamar look-elsewhere effect): pueden aparecer indicios espurios (señales con más de tres sigmas de significación estadística) que solo son falsos positivos. En un espacio de 2500 parámetros es muy fácil caer en este problema; incluso cuando se usa un espacio paramétrico mucho más pequeño (por ejemplo, la extensión supersimétrica mínima del modelo estándar, el modelo MSSM, tiene 124 parámetros libres).
Nadie dijo nunca que la búsqueda de física más allá del modelo estándar fuera sencilla. Y tampoco que fuera fácil de automatizar. La intuición física (que a veces se llama «búsqueda de la belleza») juega y jugará un papel fundamental en la labor de los físicos fenomenológicos (al menos hasta que no se les pueda sustituir por futuras inteligencias artificiales). El nuevo artículo es John Ellis, «SMEFT Constraints on New Physics Beyond the Standard Model,» arXiv:2105.14942 [hep-ph] (31 May 2021), que resume los resultados de John Ellis, Maeve Madigan, …, Tevong You, «Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory,» Journal of High Energy Physics 2021: 279 (29 Apr 2021), doi: https://doi.org/10.1007/JHEP04(2021)279, arXiv:2012.02779 [hep-ph] (04 Dec 2020). También muestro resultados del artículo de Jens Erler, Matthias Schott, «Electroweak Precision Tests of the Standard Model after the Discovery of the Higgs Boson,» Progress in Particle and Nuclear Physics 106: 68-119 (2019), doi: https://doi.org/10.1016/j.ppnp.2019.02.007, arXiv:1902.05142 [hep-ph] (13 Feb 2019).

“El número de parámetros del modelo estándar, que está basado en interacciones gauge con simetrías SU(3)×SU(2)×U(1), depende de la física de los neutrinos (ignoramos si son fermiones de Dirac o de Majorana). Si los neutrinos no tuvieran masa serían 18 parámetros (llamados electrodébiles); en esta figura se añaden dos parámetros adicionales al final que están relacionados con la cromodinámica cuántica en régimen no perturbativo. Como los neutrinos tienen masa hay que añadir sus 3 masas y los parámetros de la mezcla de sus sabores en la matriz PMNS, que serían 4 para neutrinos de Dirac y 6 para Majorana. Además, habría que añadir un parámetro relacionado con la violación de la simetría CP en la interacción fuerte (que estaría relacionado con la masa de los axiones, si estos existieran). Así el número de parámetros del modelo estándar estaría entre 25 y 28.
Es cierto que, el Modelo estándar es casi (en algunos momentos), pero no permanentemente, perfecto. En primer lugar, podríamos empezar a quejarnos de las casi veinte constantes que no se pueden calcular. Pero si esta fuese la única queja, habría poco que hacer. Desde luego, se han sugerido numerosas ideas para explicar el origen de estos números y se han propuesto varias teorías para “predecir” sus valores. El problema con todas estas teorías es que los argumentos que dan nunca llegan a ser convincentes.”
Fuente: Ciencia de la Mula Francis.
¿Por qué se iba a preocupar la Naturaleza de una fórmula mágica si en ausencia de tal fórmula no hubiera contradicciones? Lo que realmente necesitamos es algún principio fundamental nuevo, tal como el principio de la relatividad, pero nos resistimos a abandonar todos los demás principios que ya conocemos; ¡esos, después de todo, han sido enormemente útiles en el descubrimiento del Modelo estándar! una herramienta que posibilitado a todos los físicos del mundo, construir sus trabajos en ese fascinante mundo de la mecánica cuántica, donde partículas infinitesimales interactúan con las fuerzas y podemos ver, como se comporta la materia en determinadas circunstancias. El mejor lugar para buscar nuevos principios es precisamente donde se encuentran los puntos débiles de la presente teoría.
Es cierto que la materia le habla al Espacio y el espacio le habla a la materia
La regla universal en la física de partículas es que cuando las partículas chocan con energías cada vez mayores, los efectos de las colisiones están determinados por estructuras cada vez menores, más pequeñas en el espacio y en el tiempo. Supongamos por un momento que tenemos a nuestra disposición un Acelerador de Partículas 10.000 veces más potente que el LHC, donde las partículas pueden adquirir esas tantas veces más energías de las alcanzadas actualmente. Las colisiones que tendrían lugar nos dirían algo acerca de los detalles estructurales de esas partículas que ahora no conocemos, que serían mucho más pequeños que los que ahora podemos contemplar. En este punto se me ocurre la pregunta: ¿Seguiría siendo correcto el Modelo estándar? 0, por el contrario, a medida que nos alejemos en las profundidades de lo muy pequeño, también sus normas podrían variar al mismo tiempo que varían las dimensiones de los productos hallados. Recordad que, el mundo no funciona de la misma manera ante lo grande que ante lo infinitesimal.
El LHC consiguió en menos de un mes el Bosón W
¿Podéis imaginar conseguir colisiones a 70.000 TeV? ¿Qué podrías ver? Y, entonces, seguramente, las protestas de algunas de que “ese monstruo” podría abrir un agujero de gusano en el espacio tiempo…¡tendría algún fundamento! No sabemos lo que puede pasar si andamos con fuerzas que no podemos dominar.
Hoy, el Modelo estándar es una construcción matemática que predice sin ambigüedad cómo debe ser el mundo de las estructuras aún más pequeñas. Pero tenemos algunas razones para sospechar que tales predicciones resultan estar muy alejadas de la realidad, o, incluso, ser completamente falsas.
Encendamos nuestro super-microscopio imaginario y enfoquémoslo directamente en el centro de un protón o de cualquier otra partícula. Veremos hordas de partículas fundamentales desnudas pululando. Vistas a través del super-microscopio, el Modelo Estándar que contiene veinte constantes naturales (o algunas más), describen las fuerzas que rigen la forma en que se mueven. Sin embargo, ahora esas fuerzas no sólo son bastante fuertes sino que también se cancelan entre ellas de una forma muy especial; están ajustadas para conspirar de tal manera que las partículas se comportan como partículas ordinarias cuando se vuelven a colocar el microscopio en la escala de ampliación ordinaria. Si en nuestras ecuaciones matemáticas cualquiera de estas constantes fueran reemplazadas por un número ligeramente diferente, la mayoría de las partículas obtendrían inmediatamente masas comparables a las gigantescas energías que son relevantes en el dominio de las muy altas energías. El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural.
Los ajustes finos del universo
“Si uno se pone a examinarlo con detalle, resulta que el universo está maravillosamente ajustado para poder permitir la vida. A esto se le llama el problema del fine tuning o ajuste fino del universo. Normalmente, por ajuste fino se suele entender el hecho de que los valores de ciertas constantes, de ser ligeramente modificados, incluso muy ligeramente modificados, tendrían como resultado que la vida compleja como nosotros sería imposible.
Hugh Ross
Quizá el ejemplo más claro sea el de los valores de las fuerzas fundamentales (gravitatoria, nuclear débil, nuclear fuerte y electromagnética). Según Hugh Ross, una fuerza gravitatoria un poco más débil impediría estrellas como nuestro Sol; todas las estrellas que podrían formarse serían bastante más masivas y consumirían su combustible muchísimo antes de que la vida compleja pudiera emerger. Por otro lado, una fuerza de la gravedad más intensa no permitiría estrellas como el Sol, todas las estrellas serían muy ligeras e incapaces de sintetizar los elementos más pesados que la vida necesita. La fuerza nuclear fuerte también está increíblemente bien ajustada: un poco más fuerte y todo el hidrógeno se habría consumido al principio del universo, impidiendo la formación de estrellas con una vida larga; un poco más débil y muchos de los elementos químicos actuales serían radiactivos, con evidentes consecuencias negativas para la vida. Pueden encontrarse más ejemplos en la página de Wikipedia sobre el problema del ajuste fino (donde he sacado mucha información). El astrofísico Martin Rees, en su libro Solo seis números, determinó que en esencia eran 6 los parámetros (constantes universales o combinación de ellas) que si hubiesen variado siquiera un mínimo habrían impedido la vida:
–
, la relación entre la fuerza electromagnética y la gravitatoria. Además de los problemas asociados con la evolución estelar ya mencionados, si N fuera más pequeña, el universo se hubiera expandido y re-contraído muy rápidamente, sin permitir la formación de entidades complejas.
–
, mide la eficiencia del hidrógeno para convertirse en helio en las reacciones nucleares en las estrellas. Cuatro átomos de hidrógeno se convierten en uno de helio y se libera un 0.7 % de energía. Si
fuera 0.006 (una variación de una parte en diez mil) solo existiría el hidrógeno, con lo que toda química mínimamente compleja sería imposible. Por encima de un valor de 0.008 no existiría hidrógeno ya que la reacción sería «demasiado eficiente» y se habría fusionado todo poco después del Big Bang (con respecto a este valor de 0.008 hay que decir que hay autores que consideran que la horquilla es un poco más amplia).
no es una constante fundamental del universo, viene determinada por el valor de la fuerza nuclear fuerte (la que mantiene ligados a los protones y neutrones, es decir, a los quarks en el interior de los átomos).
–
. La letra griega omega indica la densidad del universo. Es el cociente entre la fuerza de contracción (la gravedad) y la energía de expansión. Con una
el universo se habría contraído rápidamente sobre sí mismo, volviendo a un estado similar al del Big Bang; con una
la gravedad es tan débil que no se forman estrellas. El valor medido está increíblemente próximo a 1, es decir, a la planitud.
–
.
mide el valor de la constante cosmológica (la energía que hay en el vacío) dividida por la densidad crítica del universo (la
de antes, que en su valor crítico es 1). En unidades naturales (las llamadas unidades de Planck) la constante cosmológica tiene un valor increíblemente pequeño, de modo tal que la expansión del universo es irrelevante para las escalas habituales en las que vivimos (no vemos que en nuestro mundo los objetos estén cada día más lejos de donde los dejamos la noche anterior). Con un valor no tan pequeño, las estrellas no podrían formarse. Curioso: si seguimos la teoría cuántica de campos, obtenemos para la energía del vacío un valor 120 órdenes de magnitud (
) más alto que lo que medimos para la constante cosmológica; si esto fuera así no habría estrellas y el universo se estaría expandiendo a una velocidad alucinante (de hecho, no estaríamos aquí para observarlo); a esto se le llama el problema de los 120 órdenes de magnitud y se ha dicho que es la peor predicción de la historia de la Física.
–
, Rees introdujo este poco conocido parámetro para estimar cuánta energía habría que usar para disociar por completo una galaxia utilizando su masa como energía (
). Más pequeño indicaría que no se podrían formar estrellas, más grande y el universo sería demasiado violento como para poder sobrevivir en él.
–
. El número de dimensiones espaciales es, como todos sabemos, de 3. Con más o menos dimensiones la vida no podría existir; entre otros argumentos, las órbitas de los planetas, por ejemplo, solo son estables en 3 dimensiones, de lo contrario los planetas acabarían colapsando sobre las estrellas. (Esto no excluye las dimensiones microscópicas que postulan algunas teorías como la teoría de cuerdas).
Este maravilloso ajuste del universo es un problema bastante complejo de resolver. Por un lado, uno puede apelar a la presencia de un Ser Superior que ha favorecido la vida. Desde una perspectiva más secular, algunos apelan al multiverso, esto es, una infinidad de universos de entre los cuales la vida solo es capaz de prosperar en unos pocos. En esta línea va el pensamiento que se conoce como Principio Antrópico, que viene a decir algo así como que el universo es como es porque si fuera de otra manera no tendría observadores para preguntarse por qué es como es. Este razonamiento circular, tautológico, no gusta a casi nadie, y con razón. Algunos científicos, como David Deutsch, creen que existe una explicación, aunque nosotros no podemos ni imaginarla ahora mismo. Otros son algo más escépticos.”
La doble hélice, es una especie de cuerda de dos hilos enredados uno alrededor del otro, ambos constituidos por 4 moléculas llamadas: adenina (A), timina (T), guanina (G) y citosina (C). Sin el ajuste fino no podría ser posible.
¿Implica el ajuste fino un diseño con propósito? Hay tantos parámetros que deben tener un ajuste fino y el grado de ajuste fino es tan alto, que no parece posible ninguna otra conclusión.
Bueno, quizá en la imagen y el comentario que lleva abajo, me he podido pasar un poco. Lo que antes decía: “El hecho de que todas las partículas tengan masa que corresponden a energías mucho menores repentinamente llega a ser bastante poco natural”, es lo que se llama el “problema del ajuste fino”. Vistas a través del microscopio, las constantes de la Naturaleza parecen estar cuidadosamente ajustadas sin ninguna otra razón aparente que hacer que las partículas parezcan lo que son. Hay algo muy erróneo aquí. Desde un punto de vista matemático, no hay nada que objetar, pero la credibilidad del Modelo estándar se desploma cuando se mira a escalas de tiempo y longitud extremadamente pequeñas o, lo que es lo mismo, si calculamos lo que pasaría cuando las partículas colisionan con energías extremadamente altas.
¿Y por qué debería ser el modelo válido hasta ahí? Podrían existir muchas clases de partículas súper pesadas que no han nacido porque se necesitan energías aún inalcanzables, e ellas podrían modificar completamente el mundo que Gulliver planeaba visitar. Si deseamos evitar la necesidad de un delicado ajuste fino de las constantes de la Naturaleza, creamos un nuevo problema:
Tres tipo de Ajuste Fino para la vida
La evidencia para el ajuste fino del universo es de tres tipos:
- El ajuste fino de las leyes de la naturaleza.
- El ajuste fino de las constantes físicas.
- El ajuste fino de la distribución inicial de la masa-energía del universo en el momento del Big Bang.
El Ajuste Fino de las Leyes de la Naturaleza
Cuando hablamos sobre el ajuste fino de las leyes de la naturaleza queremos decir que el universo debe tener precisamente el conjunto adecuado de leyes con el fin de que exista vida altamente compleja.
Ejemplos:
- Existencia de la Gravedad.
- Existencia de la Fuerza Electromagnética.
- Existencia de la Fuerza Nuclear Fuerte.
- Existencia del Principio de Cuantificación.
- Existencia del Principio de Exclusión de Pauli.
El Ajuste Fino de las constantes físicas
Por las constantes físicas, nos referimos a los números fundamentales que se producen en las leyes de la física, los cuales muchos de éstos deben estar ajustados con precisión en un grado extraordinario para que la vida se produzca.
Por ejemplo, tomemos la Constante Gravitacional —designado por G— la cual determina la fuerza de la gravedad a través de la Ley de la Gravedad de Newton:
Donde F es la fuerza entre dos masas, m1 y m2, que están a una distancia r de diferencia. Si aumentas o disminuyes G entonces la fuerza de la gravedad correspondientemente aumentará o disminuirá. (El valor real de G es 6,67 x 10-11 Nm2 / kg2.)
Ahora, para darnos una idea de qué tan finamente ajustada es la fuerza de la gravedad indicada por G debemos primero mirar el rango de las fuerzas fundamentales en la naturaleza:
Observa que la Fuerza Nuclear Fuerte es de 10 000 sextillones[1] de veces la Fuerza de la Gravedad. ¿Demasiado complicado? Bien, hagamos esto más digerible. Imagina que tienes una regla lo suficientemente grande para extenderla a través de todo el universo, ahora colocaremos los puntos en donde se localizarían la Fuerza de Gravedad y la Fuerza Nuclear Fuerte. Tendríamos algo así:
Retomemos el hilo que veo pasar una mosca y la sigo, la sigo, la sigo hasta no saber donde estoy.
¿Cómo podemos modificar el Modelo Estándar de tal manera que el ajuste-fino no sea necesario? Está claro que las modificaciones son necesarias , lo que implica que muy probablemente hay un límite más allá del cual el modelo deja de ser válido. El Modelo Estándar no será más que una aproximación matemática que hemos sido capaces de crear, tal que todos los fenómenos observados hasta el presente están de acuerdo con él, pero cada vez que ponemos en marcha un aparato más poderoso, debemos esperar que sean necesarias nuevas modificaciones para ir ajustando el modelo, a la realidad que descubrimos.
El hallazgo de una partícula que crearía nueva Física
¿Cómo hemos podido pensar de otra manera? ¿Cómo hemos tenido la “arrogancia” de pensar que podemos tener la teoría “definitiva”? Mirando las cosas de esta manera, nuestro problema ahora puede muy bien ser el opuesto al que plantea la pregunta de dónde acaba el modelo estándar: ¿Cómo puede ser que el modelo estándar funcione tan extraordinariamente bien? y ¿por qué aún no hemos sido capaces de percibir nada parecido a otra generación de partículas y fuerzas que no encajen en el modelo estándar?
Asistentes escuchan la presentación de los resultados del experimento ATLAS, durante el seminario del Centro Europeo de Física de Partículas (CERN) para presentar los resultados de los dos experimentos paralelos que buscan la prueba de la existencia de la “partícula de Higgs”, base del modelo estándar de física, hoy miércoles 4 de julio en Meyrin, Suiza.
La pregunta “¿Qué hay más allá del Modelo estándar”? ha estado fascinando a los físicos durante años. Y, desde luego, todos sueñan con llegar a saber, qué es lo que realmente es lo que conforma el “mundo” de la materia, qué partículas, cuerdas o briznas vibrantes. En realidad, lo cierto es que, la Física que conocemos no tiene que ser, necesariamente, la verdadera física que conforma el mundo y, sí, la física que conforma “nuestro mundo”, es decir, el mundo al que hemos podido tener acceso hasta el momento y que, no necesariamente tiene que tratarse del mundo real.
O, como decía aquél: ¡Que mundo más hermoso, parece de verdad!
No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que, puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora, no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir, nuevas máquinas y tecnologías nuevas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como ocurre siempre, necesitamos energías de las que no disponemos.
Hay dos direcciones a lo largo de las cuales se podría extender el Modelo estándar, tal como lo conocemos actualmente, que básicamente se caracterizan así:
– Nuevas partículas raras y nuevas fuerzas extremadamente débiles, y
– nuevas partículas pesadas y nuevas estructuras a muy altas energías.
Podrían existir partículas muy difíciles de producir y de detectar y que, por esa razón, hayan pasado desapercibidas hasta ahora. La primera partícula adicional en la que podríamos pensares un neutrino rotando a derecha. Recordaremos que si se toma el eje de rotación paralelo a la dirección del movimiento los neutrinos sólo rotan a izquierdas pero, esa sería otra historia.
En un artículo editado en Ciencia Kanija, pude leer:
“Los interferómetros atómicos tienen ahora la sensibilidad para observar nuevas fuerzas más allá del modelo estándar de la física de partículas. “Las nuevas fuerzas a corta distancia son una predicción frecuente de las teorías más allá del Modelo Estándar y la búsqueda de estas nuevas fuerzas es un canal prometedor para descubrir una nueva física”, dice Jay Wackerdel Laboratorio del Acelerador Nacional SLAC en California. La pregunta es cómo encontrarlas”
Los neutrinos siempre me han fascinado. Siempre se han manifestado como si tuvieran masa estrictamente nula. Parece como si se movieran exactamente con la velocidad de la luz. Pero hay un límite para la precisión de nuestras medidas. Si los neutrinos fueran muy ligeros, por ejemplo, una cienmillonésima parte de la masa del electrón, seríamos incapaces de detectar en el laboratorio la diferencia entre éstos y los neutrinos de masa estrictamente nula. Pero, para ello, el neutrino tendría que tener una componente de derechas.
En este punto, los astrónomos se unen a la discusión. No es la primera vez, ni será la última, que la astronomía nos proporciona información esencial en relación a las partículas elementales. Por ejemplo, debido a las interacciones de corriente neutra (las interacciones débiles originadas por un intercambio Zº), los neutrinos son un facto crucial en la explosión supernova de una estrella. Ahora sabemos que debido a las interacciones por corriente neutra, pueden colisionar con las capas exteriores de la estrella y volarlas con una fuerza tremenda.
En realidad, los neutrinos nos tienen mucho que decir, todavía y, no lo sabemos todo acerca de ellos, sino que, al contrario, son muchos los datos y fenómenos que están y subyacen en ellos de los que no tenemos ni la menor idea que existan o se puedan producir. Nuestra ignorancia es grande, y, sin embargo, no nos arredra hablar y hablar de cuestiones que, la mayoría de las veces…ni comprendemos.
Aquí lo dejaré por hoy, el tema es largo y de una fascinación que te puede llevar a lugares en los que no habías pensado al comenzar a escribir, lugares maravillosos donde reinan objetos exóticos y de fascinante porte que, por su pequeñez, pueden vivir en “mundos” muy diferentes al nuestro en los que, ocurren cosas que, nos llevan hacia el asombro y también, a ese mundo mágico de lo fascinante y maravilloso.
¡Cuanta complejidad para que nuestra limitada capacidad intelectual la pueda desmenuzar! Pero, se hace lo que se puede.
Emilio Silvera Vázquez