Abr
14
Esa Teoría tan esperada
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
La física será incompleta y conceptualmente insatisfactoria en tanto no se disponga de una teoría adecuada de la gravedad cuántica.

Durante el siglo XX, la física se fundamentó, en general, sobre dos grandes pilares: la mecánica cuántica y la teoría de relatividad. Sin embargo, a pesar de los enormes éxitos logrados por cada una de ellas, las dos aparecen ser incompatibles. Esta embarazosa contradicción, en el corazón mismo de física teórica, se ha transformado en uno de los grandes desafíos permanentes en la ciencia.
La teoría de la relatividad general da cuenta a la perfección de la gravitación. Por su parte, la aplicación a la gravedad de la mecánica cuántica requiere de un modelo específico de gravedad cuántica. A primera vista, parecería que la construcción de una teoría de gravedad cuántica no sería más problemático que lo que resultó la teoría de la electrodinámica cuántica (EDC), que ya lleva más de medio siglo con aplicaciones más que satisfactorias.
En lo medular, la EDC describe la fuerza electromagnética en términos de los cambios que experimentan las llamadas partículas virtuales, que son emitidas y rápidamente absorbidas de nuevo; el principio de incertidumbre de Heisenberg nos dice que ellas no tienen que conservar la energía y el movimiento. Así la repulsión electrostática entre dos electrones puede ser considerada como la emisión, por parte de un electrón, de fotones virtuales y que luego son absorbidos por el otro.
Abr
9
Hoy aún no pero, mañana, seguramente sí
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
“El proceso de la ciencia es el descubrimiento a cada paso de un nuevo orden que dé unidad a lo que desde hacía tiempo parecía desunirlo.
Es lo que hizo Faraday cuando cerró el vínculo que unió la electricidad y el magnetismo.
Es lo que hizo Clerk Maxwell cuando unió aquélla y éste con la luz.
Einstein unió el tiempo y el espacio, la masa a la energía y relacionó las grandes masas cosmológicas con la curvatura y la distorsión del tiempo y el espacio para traernos la gravedad en un teoría moderna; y dedicó los últimos años de su vida al intento de añadir a estas similitudes otra manera nueva y más avanzada, que instaurara un orden nuevo e imaginativo entre las ecuaciones de Maxwell y su propia geometría de la gravitación.
Cuando Coleridge intentaba definir la belleza, volvía siempre a un pensamiento profundo: la belleza, decía, es la “unidad de la variedad”.
La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.”
Hay muchas cosas que no podemos controlar, sin embargo, algo dentro de nosotros, nos envía mensajes sobre lo que podría ser importante para que nos fijemos mejor y continuemos profundizando.
Abr
9
La velocidad de la Luz y, otras cuestiopnes de Física.
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
La velocidad de la luz
Está claro que la luz se desplaza a enormes velocidades. Si pulsamos el interruptor apagado de la lámpara de nuestro salón, todo queda a oscuras de manera instantánea. La velocidad del sonido es más lenta; por ejemplo, si vemos a un leñador que está cortando leña en un lugar alejado de nosotros, sólo oiremos los golpes momentos después de que caiga el hacha. Así pues, el sonido tarda cierto tiempo en llegar a nuestros oídos. En realidad es fácil medir la velocidad de su desplazamiento: unos 1.206 Km/h en el aire y a nivel del mar.
Galileo fue el primero en intentar medir la velocidad de la luz. Se colocó en lo alto de una colina, mientras que su ayudante se situaba en otro lugar alto de la colina vecina; luego sacó una linterna encendida. Tan pronto como su ayudante vio la luz, hizo una señal con otra linterna. Galileo repitió el experimento a distancias cada vez mayores, suponiendo que el tiempo requerido por su ayudante para responder mantendría una uniformidad constante, por lo cual, el intervalo entre la señal de su propia linterna y la de su ayudante representaría el tiempo empleado por la luz para recorrer cada distancia. Aunque la idea era lógica, la luz viajaba demasiado aprisa como que Galileo pudiera percibir las sutiles diferencias con un método tan rudimentario.
Mar
31
Algo de Física
por Emilio Silvera ~
Clasificado en Física Cuántica, Rumores del Saber ~
Comments (1)
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.
Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!
¿Quién puede ir a la longitud de Planck para verlas?
La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.
Mar
18
¡La teoría de cuerdas! La gran deseada.
por Emilio Silvera ~
Clasificado en Física Cuántica ~
Comments (0)
La segunda revolución y la Teoría M
Las cosas continuaron de esta forma hasta que ya en la década de los noventa se produjo la llamada segunda revolución de las cuerdas (la primera fue la de los ochenta). Este nuevo impulso de la teoría vino caracterizado por una serie de avances que cambiaron radicalmente nuestra imagen de la misma.
El primero de estos avances fue el descubrimiento de las llamadas dualidades entre diferentes teorías de cuerdas. La más simple de ellas es la llamada dualidad T. En una teoría de cuerdas en la que una de las dimensiones está compactificada en un círculo de radio R, aparte de los modos Kaluza-Klein, tenemos también los estados correspondientes a que la cuerda esté enrollada n veces en torno a este círculo (modos de enrollamiento). Entonces es muy fácil comprobar que existe otro radio de compactificación R’ tal que el espectro de la cuerda es exactamente el mismo que el original, a condición de intercambiar los papeles de los modos Kaluza-Klein y los modos de enrollamiento. Además se puede probar que esta equivalencia se satisface a todos los órdenes de la teoría de perturbaciones.
Otra dualidad, la llamada dualidad S, permite relacionar el régimen de interacción débil (perturbativo) de una cierta teoría de cuerdas con régimen de interacción fuerte (no perturbativo) de otra. Esta dualidad abre por tanto la puerta al estudio de la dinámica de las cuerdas más allá de la teoría de perturbaciones.
















Totales: 83.755.103
Conectados: 50






















