miércoles, 05 de noviembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Espacio-tiempo curvo y los secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

 

La densidad de energía-momento en la teoría de la relatividad se representa por cuadritensor energía-impulso. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein. Esa aparente sencilla ecuación nos habla de la geometría del espacio y, si tenemos que hacer justicia al gran pensador, habrá que reconocer que con su teoría de la relatividad general nació la moderna cosmología. Sus ecuaciones no sólo nos habló de agujeros negros, también nos dice cómo funciona la Naturaleza, como es el Universo, las implicaciones que surgen de la presencia de materia en el espacio…

 

 

 

 

Los vientos estelares emitidos por las estrellas jóvenes, distorsionan el material presente en las Nebulosas, y, de la misma manera, en presencia de masa se distosiona el espacio-tiempo. Estamos en un Universo dinámico en el que nada está quieto, todo se mueve, todo es energía. Las cosas se transforman y todo cambia. Lo que ayer fue un objeto brillante y luminoso, mañana pudiera ser un objeto oscuro y denso con una fuerza de atracción irresistible.

 

Resultado de imagen de La teoría cuántica de campos en espacio-tiempo curvoResultado de imagen de La teoría cuántica de campos en espacio-tiempo curvo

 

 

La teoría cuántica de campos en espacio-tiempo curvo es una extensión de la teoría cuántica de campos estándar en la que se contempla la posibilidad de que el espacio-tiempo por el cual se propaga el campo no sea necesariamente plano (descrito por la métrica de Minkouski).  Una predicción genérica de esta teoría es que pueden generarse partículas debido a campos gravitacionales dependientes del tiempo, o a la presencia de horizontes.

La teoría cuántica de campos en espacio-tiempo curvo puede considerarse como una primera aproximación de gravedad cuántica. El paso siguiente consiste en una gravedad semiclásica, en la que se tendrían en cuenta las correcciones cuánticas, debidas a la presencia de materia, sobre el espacio-tiempo.

File:3D coordinate system.svg

En un espacio euclideo convencional un objeto físico finito está contenido dentro de un ortoedro mínimo, cuyas dimensiones se llaman ancho, largo y profundida o altura. El espacio físico a nuestro alrededor es tridimensional a simple vista. Sin embargo, cuando se consideran fenómenos físicos la gravedad, la teoría de la relatividad  nos lleva a que el universo es un ente tetra-dimensional que incluye tanto dimensiones espaciales como el tiempo como otra dimensión. Diferentes observadores percibirán diferentes “secciones espaciales” de este espacio-tiempo por lo que el espacio físico es algo más complejo que un espacio euclídeo tridimiensional.

En las teorías actuales no existe una razón clara para que el de dimensiones espaciales sean tres. Aunque existen ciertas instuiciónes sobre ello: Ehrenfest (aquel gran físico nunca reconocido) señaló que en cuatro o más dimensiones las órbitas planetarias cerradas, por ejemplo, no serían estables (y por ende, parece difícil que en un universo así existiera vida inteligente preguntándose por la tridimensionalidad espacial del universo).

Es cierto que en nuestro mundo tridimensional y mental existen cosas misteriosas. A veces me pregunto que importancia puede tener un nombre. (“¿Qué hay en un nombre? Lo que llamamos rosa,  con cualquier otro nombre ¿tendría el mismo dulce aroma”? (-Shakespeare, Romeo y Julieta-)  La rosa da sustento a muchos otros tópicos literarios: se marchita como símbolo de la fugacidad del tiempo y lo efímero de la vida humana; y provoca la prisa de la doncella para recogerla mientras pueda. Por otro lado, le advierte de que hay que tener cuidado: no hay rosa sin espinas.

También el mundo de la poesía es un tanto misterioso y dicen, que… “Los poetas hablan consigo mismo en voz baja y el mundo les oye por casualidad.” Tópicos ascéticos, metafísicos o existenciales: Quiénes somos, de dónde venimos, a dónde vamos, las llamadas preguntas trascendentales, propias de la cosmología, la antropología y la metafísica. Los poetas siempre han buscado un mundo irreal y han idealizado el enaltecido mucho más allá de este mundo.

Como siempre me pasa, me desvío del tema que en este trabajo nos ocupa: El espacio-tiempo.

Estamos inmersos en el espacio-tiempo curvo y tetradimensional de nuestro Universo. Hay que entender que el espacio–tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividadespecial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio–tiempo. La trayectoria de un objeto en el espacio–tiempo se denomina por el de línea de universo. La relatividadgeneral nos explica lo que es un espacio–tiempo curvo con las posiciones y movimientos de las partículas de materia.

La introducción por parte de Minkouski de la idea espaciotemporal resultó tan importante es porque permitió a Einstein utilizar la idea de geometría espaciotemporal para formular su teoría de la relatividadgeneral que describe la Gravedad que se genera en presencia de grandes masas y cómo ésta curva el espacio y distorsiona el tiempo. En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacionaldisminuye con el cuadrado. Hemos llegado a comprender que es la materia, la que determina la geometría del espacio-tiempo.

En la imagen, dos partículas en reposo relativo, en un espacio-tiempo llano y Se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

El máximo exponente conocido del espacio-tiempo curvo, se podría decir que se da en la formación de los agujeros negros, donde la masa queda comprimida a tal densidad que se conforma en una singularidad, ese objeto de energía y densidad “infinitsas” en el que, el espacio y el tiempo desaparecen de nuestra vista y parece que entran en “otro mund” para nosotros desconocidos.

http://1.bp.blogspot.com/-TWYy8GMEeBI/TiKZMOfnoQI/AAAAAAAAOgo/HeVDOup_eC0/s1600/deformacion-espacio-tiempo.jpg

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.

Resultado de imagen de Constante de Planck

Desde siempre hemos tenido la tendencia de querer representar las cosas y a medida que pudimos descubrir conocimientos nuevos, también le dimos a esos nuevos saberes sus símbolos y ecuaciones matemáticas que representaban lo que creíamos saber. Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada…

Wheeler decía allá por el año 1957, que el punto final de la compresión de la materia -la propia singularidad– debía estar gobernada por la unión, o matrimonio, de las leyes de la mecánica cuántica y las de la distorsión espaciotemporal. Esto debe ser así, puesto que la distorsión espaguetiza el espacio a escalas tan extraordinariamente microscópicas que están profundamente influenciadas por el principio de incertidumbre.

Resultado de imagen de leyes de la Gravedad cuántica

Las leyes unificadas de la distorsión espaciotemporal y la mecánica cuántica se denominan “leyes de la gravedad cuántica”, y han sido un “santo grial” para todos los físicos desde los años cincuenta. A principios de los sesenta los que estudiaban física con Wheeler, pensaban que esas leyes de la gravedad cuántica eran tan difíciles de comprender  que nunca las podrían descubrir durante sus vidas. Sin embargo, el tiempo inexorable no deja de transcurrir, mientras que, el Universo y nuestras mentes también, se expanden. De tal manera evolucionan nuestros conocimientos que, poco a poco, vamos pudiendo conquistar saberes que eran profundos secretos escondidos de la Naturaleza y, con la Teoría de cuerdas (aún en desarrollo), parece que por fín, podremos tener una teoría cuántica de la gravedad.

Una cosa sí sabemos: Las singularidades dentro de los agujeros negros no son de mucha utilidad puesto que no podemos contemplarla desde fuera, alejados del horizonte de sucesos que marca la línea infranqueable del irás y no volverás. Si alguna vez alguien pudiera llegar a ver la singularidad, no podría regresar para contarlo. Parece que la única singularidad que podríamos “contemplar” sin llegar a morir sería aquella del Big Bang, es decir, el lugar a partir del cual pudo surgir el universo y, cuando nuestros ingenios tecnológicos lo permitan, serán las ondas gravitacionales las que nos “enseñarán” esa singularidad.

 

 Esta pretende ser la imagen de un extraño objeto masivo, un quásar  que sería una evidencia vital del Universo primordial. Es un objeto muy raro que nos ayudará a entender cómo crecieron los agujeros negros súpermasivos unos pocos cientos de millones de años después del Big Bang (ESO).

Representación artística del aspecto que debió tener 770 millones después del Big bang el quásar más distante descubierto hasta la fecha (Imagen ESO). Estas observaciones del quásar brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados en la nube gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Basándose en numerosos modelos teóricos, la mayoría de los científicos está de acuerdo sobre la secuencia de sucesos que debió acontecer durante el desarrollo inicial del universo: Hace cerca de 14.000 millones de años, una explosión colosal, ahora conocida como el Big Bang, produjo cantidades inmensas de materia y energía, creando un universo que se expandía con suma rapidez. En los primeros minutos después de la explosión, protones y neutrones colisionaron en reacciones de fusión nuclear, formando así hidrógeno y helio.

Finalmente, el universo se enfrió hasta un punto en que la fusión dejó de generar estos elementos básicos, dejando al hidrógeno como el elemento predominante en el Cosmos. En líneas generales, los elementos más pesados que el hidrógeno y el helio, como por ejemplo el carbono y el oxígeno, no se formaron hasta que aparecieron las primeras estrellas. Los astrónomos han intentado identificar el momento en el que nacieron las primeras estrellas, analizando a tal fin la luz de cuerpos muy distantes. (Cuanto más lejos está un objeto en el espacio, más antigua es la imagen que de él recibimos, en luz visible y otras longitudes de onda del espectro electromagnético.) Hasta ahora, los científicos sólo habían podido observar objetos que tienen menos de unos 11.000 millones de años. Todos estos objetos presentan elementos pesados, lo cual sugiere que las estrellas ya eran abundantes, o por lo menos estaban bien establecidas, en ese momento de la historia del universo.

                          Supernova 1987 A

El Big Bang produjo tres tipos de radiación: electromagnética (fotones), radiación de neutrinos y ondas gravitatorias. Se estima que durante sus primeros 100.000 años de vida, el universo estaba tan caliente y denso que los fotones no podían propagarse; eran creados, dispersados y absorbidos antes de que apenas pudieran recorrer ínfimas distancias. Finalmente, a los cien mil años de edad, el universo se había expandido y enfriado lo suficiente para que los fotones sobrevivieran, y ellos comenzaron su viaje hacia la Tierra que aún no existía. Hoy los podemos ver como un “fondo cósmico de microondas”, que llega de todas las direcciones y llevan gravada en ellos una imagen del universo cuando sólo tenía esa edad de cien mil años.

Se dice que al principio sólo había una sola fuerza, la Gravedad que contenía a las otras tres que más tarde se desgajaron de ella y “caminaron” por sí mismas para hacer de nuestro universo el que ahora conocemos. En Cosmología, la fuerza de gravedad es muy importante, es ella la que mantiene unidos los sistemas planetarios, las estrellas en las galaxias y a las galaxias en los cúmulos. La Gravedad existe a partir de la materia que la genera para curvar el espaciotiempo y dibujar la geometría del universo.

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- Imagen tomada por la NASA

Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. es la esencia del agujero negro.

Lo cierto es que los físicos relativistas se han sentido muy frustrados desde que Einstein publicó su Teoría de la relatividad general y se desprendieron de ellas mensajes asombroso como el de la existencia de agujeros negros que predecían sus ecuaciones de campo. Así que, se dirigieron a los astrónomos para que ellos confirmaran o refutaran su existencia mediante la observación del universo profundo. Sin embargo y, a pesar de su enorme esfuerzo, los astrónomos npo han podido obtener medidas cuantitativas de ninguna distorsión espaciotemporal de agujeros negros. Sus grandes triunfos han consistido en varios descubrimientos casi incontrovertibles de la existencia de agujeros negros en el universo, pero han sido incapaces de cartografiar, ni siquiera de forma ruda, esa distorsión espaciotemporal alrededor de los agujeros negros descubiertos. No tenemos la técnica para ello y somos conscientes de lo mucho que nos queda por aprender y descubrir.

Las matemáticas siempre van por delante de esa realidad que incansables buscamos. Ellas nos dicen que en un agujero negro, además de la curvatura y el frenado y ralentización del tiempo, hay un tercewr aspecto en la distorsi´pon espaciotemporal de un agujero negro: un torbellino similar a un enorme tornado de espacio y tiempo que da vueltas y vueltas alrtededor del horizonte del agujero. Así como el torbellino es muy lento lejos del corazón del tornado, también el torbellino. Más cerca del núcleo o del horizonte el torbellino es más rápido y, cuando nos acercamos hacia el centro ese torbellino espaciotemporal es tan rápido e intenso que arrastra a todos los objetos (materia) que ahí se aventuren a estar presentes y, por muy potentes que pudieran ser los motores de una nave espacial… ¡nunca podrían hacerla salir de esa inmensa fuerza que la atraería hacia sí! Su destino sería la singularidad del agujero negro donde la materia comprimida hasta límites inimaginables, no sabemos en qué se habrá podido convertir.

Resultado de imagen de leyes de la Gravedad cuántica

Todos conocemos la teoría de Einstein y lo que nos dice que ocurre cuando grandes masas, como planetas, están presentes: Curvan el espacio que lo circundan en función de la masa. El exponente máximo de dicha curvatura y distorsión temporal es el agujero negro que, comprime la masa hasta hacerla “desaparecer” y el tiempo, en la singularidad formada, deja de existir. En ese punto, la relatividad general deja de ser válida y tenemos que acudir a la mecánica cuántica para seguir comprendiendo lo que allí está pasando.

Einstein no se preocupaba por la existencia de este extraño universo dentro del agujero negro porque la comunicación con él era imposible. Cualquier aparato o sonda enviada al centro de un agujero negroencontraría una curvatura infinita; es decir, el campo gravitatorio sería infinito y, como ya se explica anteriormente, nada puede salir de un agujero negro, con lo cual, el mensaje nunca llegará al exterior. Allí dentro, cualquier objeto material sería literalmente pulverizado, los electrones serían separados de los átomos, e incluso los protones y los neutrones dentro de los propios núcleos serían desgajados. De todas las maneras tenemos que reconocer que este universo especular es matemáticamente necesario para poder ir comprendiendo cómo es, en realidad, nuestro universo.

Con todo esto, nunca hemos dejado de fantasear. Ahí tenemos el famoso puente de Einstein-Rosen que conecta dos universos y que fue considerado un artificio matemático. De todo esto se ha escrito hasta  la extenuación:

“Pero la factibilidad de poder trasladarse de un punto a otro del Universo recurriendo a la ayuda de un agujero de gusano es tan sólo el principio de las posibilidades. Otra posibilidad sería la de poder viajar al pasado o de poder viajar al futuro. Con un túnel conectando dos regiones diferentes del espacio-tiempo, conectando el “pasado” con el “futuro”, un habitante del “futuro” podría trasladarse sin problema alguno hacia el “pasado”  Einstein—Rosen—Podolsky), para poder estar físicamente presente en dicho pasado con la capacidad de alterar lo que está ocurriendo en el “ahora”. Y un habitante del “pasado” podría trasladarse hacia el “futuro” para conocer a su descendencia mil generaciones después, si la hubo.

 

El puente de Einstein-Rosen conecta universos diferentes. Einstein creía que cualquier cohete que entrara en el puente sería aplastado, haciendo así imposible la comunicación Posteriormente, los puentes de Einstein-Rosen se encontraron pronto en otras soluciones de las ecuaciones gravitatorias, tales como la solución de Reisner-Nordstrom que describe un agujero eléctricamente cargado. Sin embargo, el puente de Einstein-Rosen siguió siendo una nota a pie de página curiosa pero olvidada en el saber de la relatividad.

File:Cassini-science-br.jpg

Lo cierto es que algunas veces, tengo la sensación de que aún no hemos llegado a comprender esa fuerza misteriosa que es la Gravedad, la que no se quiere juntar con las otras tres fuerzas de la Naturaleza. Ella campa solitaria y aunque es la más débil de las cuatro, esa debidad resulta engañosa poreque llega a todas partes y, además, como algunos de los antiguos filósofos naturales, algunos piensan que es la única fuerza del universo y, de ella, se desgajaron las otras tres cuando el Universo comenzó a enfriarse.

¡El Universo! Es todo lo que existe y es mucho para que nosotros, unos recien llegados, podamos llegar a comprenderlo en toda su inmensidad. Muchos son los secretos que esconde y, como siempre digo, son muchas más las preguntas que las respuestas. Sin embargo, estamos en el camino y… Como dijo el sabio: ¡Todos los grandes viajes comenzaron con un primer paso!

emilio silvera

El Universo Asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « fotones

 »

Resultado de imagen de Múltiples formas de vida en nuestro universoImagen relacionada

                                                              También esto forma parte del Universo

Y pensar que nuestra Galaxia, la Vía Láctea con todo el Grupo Local de galaxias, se mueve a 600 Km/s en relación a la radiación del fondo de microondas… ¡Es increíble! Ningún científico hasta el momento, podía tener en mente tal estimación dada por el último estudio realizado. Estamos viviendo en una nave espacial que se mueve a una buena velocidad. El Sol se mueve dentro de la Galaxia a una velocidad media de 220 km/s y la Tierra le acompaña en el recorrido al iguakl que todo el Sistema Solar. El Sol tarda 250 millones de años en dar una vuelta alrededor de la Galaxia. Así que desde que “nació” ha realizado el recorrido unas 20 veces.

 

“La astronomía en rayos gamma estudia los objetos más energéticos del universo y, desde sus comienzos hace apenas medio siglo, ha lidiado con un problema grave, que consiste en determinar de precisa y fidedigna la región de donde procede la radiación que llega a los detectores de rayos gamma, lo que permite a su vez averiguar el mecanismo a través del que se produce. Ahora, un grupo internacional liderado por astrónomos del Instituto de Astrofísica de Andalucía (IAA-CSIC) ha localizado, por primera vez sin la aplicación de modelos y con un grado de confianza superior al 99,7%, la región de la que surgió un destello en rayos gamma en el blázar AO 0235+164 y que permite conocer cómo se produjo.”

 

 

                      La sinfonía de los agujeros negros binarios  ¿La oirémos algún día?


Puesto que la curvatura-espaciotemporal es lo mismo que la gravedad, estas ondulaciones de curvatura son realmente ondas de gravedad, u ondas gravitatorias. La Teoría de la Relatividad General de Einstein predice, de forma inequívoca, que tales ondas gravitatorias deben producirse siempre que dos agujeros negros orbiten uno en torno al otro.

         Posible sistema binario de Agujeros Negros

Cuando se forma un par de agujeros negros binarios semejantes, cada agujero crea un pozo profundo (intensa curvatura espacio-temporal) en la superficie insertada y, a medida que los agujeros giran uno en torno al otro, los pozos en órbita producen ondulaciones de curvatura que se propagan hacia afuera a la velocidad de la luz. Las ondulaciones forman una espiral en el tejido del espacio-tiempo en torno al sistema binario, muy semejante a la estructura espiral del agua que procede de un aspersor de cesped que gira rápidamente. Los fragmentos de curvatura forman un conjunto de crestas y valles en espiral en el tejido espacio-temporal.

Sin temor a equivocarnos, podemos decir que, al día de la fecha, los agujeros negros siguen teniendo muchos secretos para la ciencia.

En las imágenes podemos contemplar galaxias que se fusionarán y, sus agujeros negros  centrales se harán gigantes

¿Cómo un agujero negro y su disco dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:

El Agujero es atravesado por la línea de campo magnético. el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.

Ahí estamos, como observadores del Espacio exterior y haciendo pruebas para vivir en el medio

                  Seguimos esperando ese mensaje que… ¡nunca llega!

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Mientras que con nuestros ingenios telescópicos cada vez mayores y con mejor tecnología, capturamos las imágenes de galaxias muy lejanas.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

                                                                        Venus desde la Tierra

See Explanation.  Clicking on the picture will download
the highest resolution version available. 

Nebulosa IC 4628 en la que el gas y el povo interestelar hacen posible el nacimiento de nuevas estrellas, nuevos mundos y… ¿Quién sabe? Si Vida también en alguna de sus formas conocidas en nuestro planeta, o, conformada en diferentes formas en función de la gravedad y las condiciones de los planetas que pudieran estar orbitándo aquellas estrellas.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Lo cierto es que nuestra vecindad es tranquila y ninguna estrella vecina nos amenaza con una explosión supernova ni tiene dimensiones y masa que nos puedan preocupar si llegara el final de sus días. Bien resguadaditos en el interior del Brazo de Orión, en un Sistema solar relativamente apacible, el tercer planeta a partir del Sol, la Tierra,  reluce en la secuencia principal enviando la luz y el calor necesarios para la vida a nuestro planeta que, situado en la zona habitable de la estrella, goza de una atmósfera ideal, de continentes de inmensa belleza y de mares y océanos que hace de nuestro mundo, la maravilla que es.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Todo eso que antes comento, ocurre en una Galaxia espiral situada en un pequeño grupo de poco más de una treintena de galaxias en la que, ella, junto a su compañera Andrómeda, comanda a toda la familia de las que son las hermanas mayores. Nuestro mundo, la Tierra, está situado a 30.000 años-luz del centro de la galaxia que, como hemos podido comprobar, es un lugar peligroso en el que habitan agujeros negrosgigantes que emiten radiación y absorben materia, es decir, que no serían nada buenos como vecinos.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Aquí la tenemos, es nuestra casa ¡La Tierra! que, en el Sistema solar es un planeta más pero, con la suerte de haber caído en la zona habitable de la estrella que llamamos el Sol, en relación a la Galaxia Vía Láctea es un simple planeta como hay tantos, y, si la situamos en el contexto del Universo, es menos que un grano de arena de la playa de Punta Umbría en Huelva, ese lugar del que salió Colón para (re) descubrir América.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Lo cierto es que nos encontramos en un Universo inmenso y precioso. Esta composición cósmica equilibra muy bien la Nebulosa de la burbuja en la parte inferior izquierda con el cúmulo estelar abierto M52 por encima de ella y hacia la derecha. La pareja estaría desequilibrada en otras escalas, sin embargo. Incrustado en un complejo de polvo interestelar y gas y soplado por los vientos de una sola, gran estrella de tipo O, la Nebulosa de la Burbuja, también conocida como NGC 7635, se encuentra a sólo 10 años luz de ancho. Por otro lado, M52 es un cúmulo abierto rico de alrededor de mil estrellas. El cúmulo se encuentra a unos 25 años luz de diámetro. Visto hacia el límite norte de Casiopea, las estimaciones de distancia de la Nebulosa de la burbuja y el complejo de nubes asociadas son alrededor de 11.000 años luz, mientras que el cúmulo estelar M52 se encuentra cerca de 5.000 años luz de distancia.

See Explanation.  Clicking on the picture will download
the highest resolution version available.

Sí, desde la noche de los tiempos hemos mirado al cielo, buscando sus maravillas que siempre nos asombraron, primero al no poder entender cómo eran posible aquellos extrsaños fenómenos e increíbles objetos, y, más tarde, cuando pudimos comprender, al conocer las maravillas que podía realizar la Naturaleza valiéndose de fuerzas que, ni podemos imaginar.

Y, después de mucho pensar, llego a la conclusión de que, lo más asombroso del Universo es… ¡Que nosotros estemos aquí… Para poder describirlo!

emilio silvera

La persistencia de los enigmas

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando miramos atrás contemplamos mundos de fascinante y exótica belleza que nos hablan de lo que fue. Pero también,  hace ya muchos siglos que existieron ciudades modernas donde floreció la cultura, las artes, las letras, la medicina, las matemáticas y la astronomía. Hombres del pasado, pensadores de ingenio y visión futurista, pusieron los cimientos de lo que hoy llamamos el saber, el conocimiento de las cuestiones del mundo, de los secretos de la Naturaleza y del Universo mismo.

 

 

 

 

         Cada vez construimos aparatos más sofisticados para poder captar las ondas gravitacionales

Un equipo de científicos ha diseñado un test para descubrir si el universo primitivo poseía una sola dimensión espacial. Este concepto alucinante es el núcleo de una teoría que el físico de la Universidad de Buffalo, Dejan Stojkovic y sus colegas proponen y que sugiere que el Universo primitivo tuvo solo una dimensión antes de expandirse e incluir el resto de dimensiones que vemos en el mundo actualmente. De ser válida, la teoría abordaría los problemas importantes de la física de partículas. Han descrito una prueba que puede probar o refutar la hipótesis de la “fuga de dimensiones”.

¿Cómo sería el universo primitivo? En cosmología es aquel que se estudia en un tiempo muy poco después del big bang. En realidad, las teorías del Universo primitivo han dado lugar a interacciones muy beneficiosas entre la cosmología y la teoría de partículas elementales, especialmente las teorías de gran unificación.

Debido a que en el universo primitivo había temperaturas muy altas, muchas de las simetrías rotas en las teorías gauge se vuelven simetrías no rotas a esas temperaturas. A medida que el universo se enfrió después del big bang se piensa que hubo una secuencia de transiciones a estado de simetrías rotas.

Combinando la cosmología con las teorías de gran unificación se ayuda a explicar por qué el universo observado parece consistir de materia y no de antimateria. Esto significa que uno tiene un número bariónico no nulo para el universo. La solución se encuentra en el hecho de que hubo condiciones de no equilibrio en este universo primitivo debido a su rápida expansión después del big bang.

Una idea importante en la teoría del universo primitivo es la de inflación: la idea de que la naturaleza del estado de vacío dio lugar, después del big bang, a una expansión exponencial del universo. La hipótesis del universo inflacionario soluciona varios problemas muy antiguos de la cosmología, como la planitud y la homogeneidad del universo.

Nosotros, los habitantes de este mundo, hemos logrado armar un cuadro plausible de un universo (mucho) mayor. Hemos logrado entrar en lo que podríamos llamar la “edad adulta”, con lo que quiero significar que, a través de siglos de esporádicos esfuerzos, finalmente hemos empezado a comprender algunos de los hechos fundamentales del Universo, conocimiento que, presumiblemente, es un requisito de la más moderna pretensión de madurez cosmológica.

La Nebulosa del Capullo desde CFHT

La Nebulosa del Capullo,  catalogada como IC 5146, es una nebulosa particularmente hermosa situada a unos 4.000 años-luz de distancia hacia la constelación del Cisne (Cygnus). Un hermoso complejo de Luz y nebulosidad oscura que rodea a un cúmulo muy disperso que, a su derecha, está custodiado por estrellas masivas de intensa radiación UV.

Sabemos, por ejemplo, dónde estamos, que vivímos en un planeta que gira alrededor de una estrella situada en la parte interior de uno de los brazos de la Galaxia (el Brazo de Ortión). La Vía Láctea, una galaxia espiral, está a su vez situada cerca de las afueras de un supercúmulos de galaxias, cuya posición ha sido determinada con respecto a varios supercúmulos vecinos que, en conjunto albergan a unas cuarenta mil galaxias extendidas a través de un billón de de años-luz cúbicos de espacio.

Resultado de imagen de El sistema solar a 27.000 a.l. del centro galácticoResultado de imagen de El sistema solar a 27.000 a.l. del centro galáctico

             Vivímos en la periferia de la Galaxia, a 30.000 años-luz del centro galáctico

En la parte interios del Brazo de Orión (señalada con la línea) está el Sistema Solar, a 30.000 años-luz del Centro Galáctico en una región bastante tranquila que nos permite contemplar (con nuestros ingenios) lo que que ocurre en otras regiones lejanas y las fuerzas desatadas que azotan aquellos lugares.

También sabemos (más o menos), cuando hemos entrado en escena, hace cinco mil millones de años que se formaron el Sol y sus planetas, en un universo en expansión que probablemente tiene una edad entre dos y cuatro veces mayor. Hemos determionado los mecanismos básicos de la evolución en la Tierra, hallado pruebas también de la evolución química a escala cósmica y aprendido suficiente física como para investigar la Naturaleza en una amplia gama de escalas, desde los saltarines quarks hasta el vals de las galaxias.

Hay realizaciones de las que la Humanidad puede, con justicia, sentirse orgullosa. Desde que los antiguos griegos pusieron el mundo occidental en el camino de la Ciencia, nuestra medición del pasado se ha profundizado desde unos pocos miles de años a más de diez mil milloners de años, y la del espacio se ha extendido desde un cielo de techo bajo no mucho mayor que la distancia real de la Luna hasta el radio de más de doce mil millones de años-luz del universo observable. Tenemos razones para esperar que nuestra época sea recordada (si finalmente queda alguien para recordarlo) por sus contribuciones al supremo tesoro intelectual de toda la sociedad, su concepto del Universo en su conjunto.

Resultado de imagen de La Polis griega que trajo la Democracia

                                   La Polis griega que trajo la Democracia

Sin embargo, cuando más sabemos sobre el universo, tanto más claramente nos damos cuenta de cuan poco sabemos. Cuando se concebía  el Cosmos como un pulcro jardín, con el cielo como techo y la Tierra como suelo y su historia coextensa con la del árbol genealógico humano, aún era posible imaginar que podíamos llegar algún día a comprenderlo en su estructura y sus detalles. Ya no puede abrigarse esa ilusión. Con el tiempo, podemos lograr una comprensión de la estructura cósmica, pero nunca comprenderemos el universo en detalle; resulta demasiado grande y variado para eso. Y, tal inmensidad, siempre tendrá secretos por desvelar.

                              Una de las salas de la Biblioteca de Harvard

Si poseyésemos un atlas de nuestra galaxia que dedicase una sola página a cada sistema estelar de la Vía Láctea (de modo que el Sol y sus planetas estuviesen comprimidos en una página), tal atlas tendría más de diez mil millones de volúmenes de diez mil páginas cada uno. Se necesitaría una biblioteca del tamaño de la de Harvard para alojar el atlas, y solamente ojearlo al ritmo de una página por segundo requieriría más de diez mil años. Añádanse los detalles de la cartografía planetaria, la potencial biología extraterrestre, las sutilezas de los principios científicos involucrados y las dimensiones históricas del cambio, y se nos hará claro que nunca aprenderemos más que una diminuta fracción de la historia de nuestra galaxia solamente, y hay cien mil millones de galaxias más.

 Bellos y extraños objetos que están presentes en el universo y tratamos de comprender

Ya nos lo dijo el físico Lewis Thomas: “El mayor de todos los logros de la ciencia del siglo XX ha sido el descubrimiento de la ignorancia humana”. Nuestra ignorancia, por supuesto, siempre ha estado con nosotros, y siempre seguirá estando. Lo nuevo es nuestra conciencia de ella, nuestro despertar a sus abismales dimensiones, y es esto, más que cualquier otra cosa, lo que señala la madurez de nuestra especie. El espacio puede tener un horizonte y el tiempo un final, pero la ventura del aprendizaje es interminable.

Hay una difundida y errónea suposición de que la ciencia se ocupa de explicarlo todo, y que, por ende, los fenómenos inexplicados preocupan a los científicos al amenazar la hegemonía de su visión del mundo. El técnico en bata del laboratorio, en la película de bajo presupuesto, se da una palmada en la frente cuando se encuentra con algo nuevo, y exclama con voz entrecortada: “¡Pero…no hay explicación para esto!” En realidad, por supuesto, cada científico digno se apresura a abordar lo inexplicado, pues es lo que hace avanzar la ciencia. Son los grandes sistemas místicos de pensamiento, envueltos en terminologías demasiado vagas para ser erróneas, los que explican todo, raramente se equivocan y no crecen.

           Los grandes pensadores como Aristarco de Samos

La ciencia es intrínsecamente abierta y exploratoria, y comete errores todos los días. En verdad, éste será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema de Gödel demuestra que la plena validez de cualquier sistema, inclusive un sistema científico, no puede demostrarse dentro del sistema. En otras palabras, la comprensibilidad de una teoría no puede establecerse a menos que haya algo fuera de su marco con lo cual someterla a prueba, algo más allá del límite definido por una ecuación termodinámica, o por la anulación de la función de onda cuántica o por cualquier otra teoría o ley. Y si hay tal marco de referencia más amplio, entonces la teoría, por definición, no lo explica todo. En resumen, no hay ni habrá nunca una descripción científica completa y comprensiva del universo cuya validez pueda demostrarse.

El Creador (si en verdad existe un “creador”) debe haber sido afecto a la incertidumbre, pues Él nos la ha legado para siempre. La cual, diría yo, es una conclusión saludable y debe de alegrarnos. Mirar esa imposibilidad de saberlo todo, esa incertidumbre cierta que llevamos con nosotros y que nos hace avanzar a la búsqueda incansable de nuevos conocimientos, es, en realidad, la fuente de la energía que nos mueve.

                               Busto de Alejandro Magno

 Podemos recordar aquí lo que cuentan de Alejandro Magno: Él lloró cuando le dijeron que había infinitos mundos (“¡Y nosotros no hemos conquistado ni siquiera uno!”), pero la situación parece más optimista a quienes se inclinan a desatar, no a cortar, el nudo gordiano de la Naturaleza. Ningún hombre o mujer, realmente reflexivos, deberían desear saberlo todo, pues cuando el conocimiento y el análisis son completos, el pensamiento se detiene y llega la decadencia.

René Magritte, en 1926, pintó un cuadro de una pipa y escribió debajo de él sobre la tela, con una cuidadosa letra de escolar, las palabras: “Ceci nést pas une pipe” (Esto no es una pipa). Esta pintura podría convertirse apropiadamente en el emblema de la Cosmología científica. La palabra “universo” no es el universo; ni lo son las ecuaciones de la teoría de la supersimetría, ni la ley de Hubble ni la métrica de Friedman-Walker-Robinson. Generalmente, la ciencia tampoco sirve de mucho para explicar lo que es algo, y mucho menos lo que el Universo entero, realmente “es”. La Ciencia describe y predice sucesos.

http://lamemoriacelular.com/blog/wp-content/uploads/2010/04/celula.png

¿Cuantos secretos se esconden en ese laberinto de conexiones sin fin?

Si la Ciencia tuviera que tener un símbolo, yo escogería éste de arriba que nos señala el lugar donde habita la Mente, dónde se fraguan las ideas. Una configuración de átomos de energía donde residen todos los secretos del Universo, toda vez que, la podríamos considerar la obra suprema del Universo.

Resultado de imagen de Nuestras Mentes en el Universo

¿Por qué, pués, la ciencia tiene éxito? La respuesta es que nadie lo sabe. Es un completo misterio -por qué la mente humana…, puede comprender algo del vasto universo-. Como solía decir Einstein: “Lo más incomprensible del universo es que sea comprensible”. Quizá como nuestro cerebro evolucionó mediante la accion de las leyes naturales, éstas resuenan de algún modo en él. La Naturaleza presenta una serie de repeticiones  -pautas de conducta que reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de la conservación, que se aplican de modo universal- y éstas pueden proporcional el vínculo entre lo que ocurre dentro y fuera del cráneo humano. Pero el misterio, realmente, no es que coincidamos con el universo, sino que en cierta medida estamos en conflicto con él, y sin embargo podemos comprender algo de él. ¿Por qué esto es así?

Resultado de imagen de Explosiones de supernovas

Hemos llegado a comprender los mecanismos del Universo donde estrellas masivas explotan en el fenómeno conocido como Supernovas, crean inmensas Nebulosas, en las Nebulosas surgen estrellas y mundos, y, en los mundos la vida. Todo ello está repetido una y miles de veces en las galaxias,

Ahora nos falta encontrar la manera de poder llegar a las estrellas y sus mundos, tanto en nuestra Galaxia como en otras lejanas inalcanzables para nosotros… Por el momento.

Habrá que seguir buscando respuestas. Desde tiempos inmemoriales, el hombre pregunta a las estrellas si el Universo es eterno e infinito y el cielo le responde cada noche. Pero, ¿sabemos oir la respuesta?

¡Es todo tan complejo! ¡Es todo tan hermoso!

emilio silvera

¡Imaginación! ¡Sueños!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Resultado de imagen de Un Telescopio en el fondo del mar para observar el universo más recóndito.Resultado de imagen de Un Telescopio en el fondo del mar para observar el universo más recóndito.Resultado de imagen de Un Telescopio en el fondo del mar para observar el universo más recóndito.
Un Telescopio en el fondo del mar para observar el universo más recóndito. Un proyecto europeo impulsa la el mayor detector de neutrinos del mundo. Se sumergirá a 2.500 metros de profundidad en el Meditarráneo.  Lo importante es descubrir el Universo… ¡Sin importar cómo! (Repasando noticias viejas también puede valer).

En otras ocasiones hemos presentado aquí trabajos y, entre los temas que fueron tratados, entraba el Universo Estacionario y también la posibilidad de un final con la presencia del Big Crunch, lo cual, según todos los datos de la cosmología moderna, no será posible dado que, el Universo euclideo y la Densidad Crítica que se observa no sería suficiente para producir tal final. Por el contrario, la dinámica observada de expansión es cada vez más acelerada y, aunque algunos hablan de la “materia oscura”, en realidad no sabemos a qué se puede deber tal expansión pero, lo cierto es que no habrá colapso final y sí, en cambio, una expansión ilimitada que nos llevará hacia un “enfriamiento térmico” que llegará a alcanzar un máximo de entropía dS = dQ/T, así habrá una gran parte de la energía del Universo que no podrá producir trabajo. Sin embargo, es curioso que siendo eso lo que se deduce de los datos que tenemos, cuando miramos lo que predicen las nuevas teorías basadas en las cuerdas y la mecánica cuántica nos indica que tal escenario es poco creíble.

  

 

 

 

 

 

 

Todos los días podemos sorprendernos de los hallazgos y logros de nuestros ingenios que, tanto aquí como en el espacio, están continuamente trabajando para que nosotros conozcamos el Universo y los objetos que lo pueblan. De momento (somos aún muy jóvenes), estamos algo limitados en Ciencia y Tecnología para que, seámos nosotros mismos los que vayamos a buscar esas emocionantes sensaciones in situ. Así que, enviamos a nuestras sondas robóticas para que lo hagan por nosotros que, en la distancia, nos sorprendemos y maravillamos de lo que vamos descubriendo por ahí fuera.

 

 

 

Resultado de imagen de el universo infinito

 

 

 

El Universo es inmenso, para nosotros… ¡casi infinito! Está lleno de galaxias, estrellas y mundos de los que, unos tendrán presente la vida y otros no pero, el que la tenga, creo que, como en la Tierra, estará basada en el Carbono que es, el elemento más idóneo para hacerla posible y, aunque no podamos negar cualquier otra posibilidad, esa es, amigos míos, la que lleva la mayor ventaja.

Uno de los supuestos implícitos en pro de la inevitabilidad de un Universo grande y frío es que cualquier vida es muy parecida a la nuestra. Los biólogos parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el Carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencia extraterrestre en el Universo se centran en formas de vida similares a nosotros que habiten en planetas y necesiten agua, atmósferas gaseosas y todo lo demás. Merece la pena abrir un poco nuestra imaginación para pensar a qué podría parecerse la vida si radicara en el espacio en lugar de radicar en un planeta. Las formas de vida diferentes a la nuestra y con otros metabolismos están también aquí con nosotros y pertenecen a minúsculos seres que, son necesarios en el ecosistema terrestre para que el conjunto funcione en una simbiosis general y efectiva.

 


                             Charles Lyell (1797-1875)

 

“El libro de Lyell convirtió el viaje de Darwin en un viaje a través del tiempo. Darwin empezó a leerlo casi inmediatamente, en su litera, mientras sufría el primero de los muchos mareos que le atormentarían durante los cinco años siguientes. El Beagle, un bergantín sólido y macizo, de 28 metros de largo por 7,5 de ancho, era en general confortable, pero su casco era redondeado y se balanceaba mucho. Darwin empezó a aplicar lo que él llamaba “la maravillosa superioridad de la manera de Lyell de abordar la geología” tan pronto como la expedición tocó tierra en las islas de Cabo Verde.”

 

        ¿Sabremos algún día, como son las cosas?

Los cosmólogos hablan y hablan y no pocas veces utilizan conceptos y parámetros que, sin haber sido comprobados, están ahí unamovibles como si de verdades como montañas se tratara. La Energía y la Materia Oscura son una buena muestra. Las colocan por todas partes y, aunque nadie sabe lo que es (ellos los primeros), es uno de los platos que más suelen degustar cuando hablan de la expansión acelerada del universo.

Lo que sucede primero, no es necesariamente el principio. Antes del “principio”, de ese principio que nosotros llamamos Big Bang, tuvieron que suceder muchas cosas que, de momento, no hemos podido llegar a conocer, nos topamos con la oscuridad del Tiempo de Planck, esa infinitesimal fracción en la que, según parece, debieron suceder muchas cosas que desconocemos y que pudieran ser, el verdadero principio de todo. Además, hasta es posible que ni hubiera principio y, nuestro Universo, surgiera a parti4r de una fluctuación de vacío  en otro universo que rasgando el espacio-tiempo, lo hizo “nacer” como otro más de los muchos que conforman un Metaverso infinito.

  

 

 

Resultado de imagen de Ondas gravitatorias

 

 

También hay simetría en las ondas gravitatorias

 

Siguiendo con el tema que nos ocupa, lo cierto es que, es verdad que el mundo es casi simétrico respecto a CP actuando solos y a actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?

 

Resultado de imagen de Copérnico
                                                           Copérnico el Astrónomo

El “Principio Copernicano”, invocado frecuentemente en la Cosmología moderna, insiste en la homogeneidad del Universo, negando cualquier primacía de posición o propiedades asociadas con la existencia humana. Si miramos por ahí, en cualquier sitio podremos leer:

 

“En cosmología física, el principio de Copérnico, llamado así en honor a Nicolás Copérnico, es un principio que postula que nuestro planeta -la Tierra- no ocupa ninguna posición central favorecida. Recientemente, el principio fue generalizado hacia el concepto relativista que enuncia: «los humanos no somos observadores privilegiados del universo»; en este , es equivalente al principio de mediocridad,  con importantes implicaciones en la filosofía de las ciencias.”

 

 

 

 


 

 

Lo cierto es que, miremos hacia donde miremos y por muy lejos que esté el lugar que podamos observar, por lo general y exceptuando regiones locales en las que puedan hallarse objetos singulares, en todas partes existen las mismas cosas, funcionan las mismas leyes, podemos medir las mismas constantes y, Nebulosas, mundos, estrellas y galaxias con inmensos espacios vacíos entre ellas, es la tónica de un Universo en expansión que tratamos de conocer.

El princioio toma su nombre de la propuesta de Copérnico (ya anteriormente formulada por Aristarco) de desplazar a la Tierra de la posición central ocupada en el sistema  de Tolomeo, aunque tal centralidad se debiese a la falta de paralaje estelar y no a una sobrevaloración de nuestra existencia en el planeta Tierra.

 

 

 

 

El paso siguiente lo dio Shapley hace un siglo, al mostrar que tampoco el Sol ocupa el centro de la Via Láctea. Finalmente, el Universo “finito pero ilimitado” de Einstein niega la posibilidad de encontrar un centro en su volumen tridimensional, y afirma la equivalencia de posición de todos los puntos del espacio. No tiene sentido preguntar dónde estamos en el continuo expandirse de un Universo que contiene probablemente más de 100.000 millones de galaxias, y que vuelve a la insignificancia aun la majestuosa estructura de la Vía Láctea, nuestra ciudad cósmica.

Sin embargo, a partir de la década de los años 30, se da una reacción interesante, que afirma, cada vez con argumentos más fuertes y detallados, que el Hombre está en un tiempo y un lugar atípicos y privilegiados en muchos respectos, que obligan a preguntarnos si nuestra existencia está ligada en un modo especial a características muy poco comunes en el Universo. Esta pregunta adquiere un significado especial al considerar las consecuencias previsibles (según las leyes físicas) de cualquier alteración en las condiciones iniciales del Universo. Con un eco de las palabras de Einstein¿tuvo Dios alguna alternativa al crear?. No solamente debemos dar razón de que el Universo exista, sino de que exista de tal manera y con tales propiedades que la vida inteligente puede desarrollarse en él. Tal es la razón de que se formule el Principio Antrópico, en que el Hombre (entendido en el sentido filosófico de “animal racional”, independientemente de su hábitat y su morfología corporal) aparece como condición determinante de que el Universo sea como es.

 

 

 

 

Las primeras sugerencias de una conexión entre vida inteligente y las propiedades del Universo en su momento actual aparecen en las relaciones adimensionales hechas notar por Eddington: la razón de intensidad entre fuerza electromagnética y fuerza gravitatoria entre dos electrones, entre la edad del Universo y el tiempo en que la luz cruza el diámetro clásico de un electrón, entre el radio del Universo observable y el tamaño de una partícula subatómica, nos da cifras del orden de 10 elevado a la potencia 40. El número de partículas nucleares en todo el cosmos se estima como el cuadrado de ese mismo número. ¿Son éstas coincidencias pueriles o esconden un significado profundo?. La hipótesis de los grandes números sugiere que el Hombre solamente puede existir en un lugar y momento determinado, cuando tales coincidencias se dan, aunque no se avanza una explicación de estas relaciones.”

 

 

 

 

Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida. La implicación de que el universo fue de alguna manera diseñado para hacer posible de la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida.

Es decir, problema del ajuste fino significa que las las constantes fundamentales de un modelo físico para el universo deben ser ajustados de forma precisa para permitir la existencia de vida. Sobre estas constantes fundamentales no hay nada en la teoría que nos indique que deban tomar esos valores que toman. Podemos fijarlas de acuerdo con las observaciones, pero esto supone fijarlas de entre un rango de valores colosal. Esto da la impresión de cierta arbitrariedad y sugiere que el universo podría ser una realización improbable entre tal rango de valores. He ahí el problema.

El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la naturaleza y entraremos en el juego virtual de ¿qué hubiera pasado si…?

Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal o cual manera para ocurrir de esta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para nosotros y nos quitó de encima a unos terribles rivales?

Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual; sólo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto. Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza. ¿Quién sabe lo que pasará mañana?

 

 

 

Lo cierto es que estamos confinado en este pequeño mundo

 

Siempre estamos imaginando el futuro que vendrá. Los hombres tratan de diseñarlo pero, finalmente, será el Universo el que tome la última palabra de lo que deba ser. Por mucho que nosotros nos empeñemos, las estructuras del Universo nunca podrán ser cinceladas por nuestras manos ni por nuestros ingenios, sólo las inmensas fuerzas de la Naturaleza puede transformar las estrellas, las galaxias o los mundos… lo demás, por muy bello que pudiera ser, siempre será lo artificial.

Lo que ocurra en la naturaleza del universo está en el destino de la propia naturaleza del cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismo sometidos a principios y energías que, en la mayoría de los casos se pueden escapar a nuestro actual conocimiento.

Lo que le pueda ocurrir a nuestra civilización, además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema  solar y la Galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual de libre albedrío otorgado en ese plano político a quien no siempre lo merece. Todos sabemos de la imperfección humana y tambieón, de sus ambiciones.

Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser si…, lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.

 

 

Resultado de imagen de Andrómeda y la Vía Láctea se fusionan

 

 

 

En unos tres mil años, si estuviéramos aquí, podríamos contemplar una escena similar entre Andrómeda y la Vía Láctea. Todos los estudios realizados al respecto, confirman que el final de ambas galaxias, será unirse de manera irremisible para formar una galaxia mucho mayor y distintas de lo que ahora son. ¿Si para entonces, la vida sigue por aquí, cómo se verá afectada?

 

 

                                                                      Evolución del sol a gigante roja.

Llegará un momento en el que se agote el hidrógeno interior del Sol, y se estima que dentro de entre unos 5 a 6 mil millones de años, el Sol, tras fusionar todo el hidrógeno de su núcleo, se transformará en una gigante roja, proceso que llevará aproximadamente 600 millones de años y , en cuyo curso, devorará a Mercurio, y posiblemente también a Venus y a la Tierra poco antes de alcanzar su tamaño y luminosidad máximas, que se estima será casi 260 veces mayor y 2 700 veces más luminoso de lo que es hoy.

inalmente, cuando también el hidrógeno de las capas más externas del Sol se agote, se producirá un colapso gravitatorio que dejará como resultado una enana blanca, una estrella fría estable, mantenida por la repulsión debida al principio de exclusión entre electrones.

Cuando eso llegue estará acercándose el final de la Tierra como planeta que albergó la vida. Los cambios serán irreversibles, los océanos se evaporarán y sus aguas hirvientes comenzarán a llenar la atmósfera de gases. La Gigante roja engullirá a los planetas Mercurio, Venus y probablemente se quedará muy cerca  de la Tierra calcinada y sin vida, o, también sufrirá el mismo final que sus hermanos los planetas menores.

Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de hidrógeno, helio, carbono, etc, para que sus capas exteriores de materia exploten y salgan disparadas al espacio interestelar, mientras que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la gravedad, convirtiéndose en una Nebulosa planetaria que en su centro tendrá lo que queda de aquel Sol esplendoroso: ¡una estrella enana blanca! de enorme densidad y de reducido diámetro. Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

Siempre hemos soñado con escapar de la Tierra. De alguna manera, siempre hemos sabido que esto no durará eternamente. La Eternidad, lo mismo que la nada o el vacío… ¡No existen!

Pero el problema no es tan fácil y se extiende a la totalidad del universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un universo abierto y eterno, o el más horroroso de los infiernos, si estamos en un universo cerrado y finito en el que, un día, la fuerza de gravedad, detendrá la expansión de las galaxias que comenzarán a moverse de nuevo en sentido contrario, acercándose las unas a las otras de manera tal que el universo comenzará, con el paso del tiempo, a calentarse, hasta que finalmente, se junte toda la materia-energía del universo en una enorme bola de fuego de millones de grados de temperatura, el Big Crunch.

       Un universo replegándose sobre sí mismo no parece probable


El irreversible final está entre los dos modelos que, de todas las formas  que lo miremos, es negativo para la Humanidad (si es que para entonces aún existe). En tal situación, algunos ya están buscando la manera de escapar.

Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiuniverso, esto es, que existen infinidad de universos conectados los unos a los otros. Unos tienen constantes de la naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.

Este sistema de inflación autorreproductora nos viene a decir que cuando el universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible. Cada burbuja será un nuevo universo, o mini-universo en  los que reinarán escenarios diferentes o diferentes constantes y fuerzas.

“Kashlinsky y su equipo afirman que sus observaciones representan la primera pista de lo que hay más allá del horizonte cósmico. Al averiguarlo, podremos saber cómo se veía el universo inmediatamente después del Big Bang, o si nuestro universo es uno de muchos. Otros no están tan seguros. Una interpretación diferente dice que no tiene nada que ver con universos extraños sino el resultado de un defecto en una de las piedras angulares de la cosmología, la idea de que el universo debe verse igual en todas direcciones. O sea, si las observaciones resisten un escrutinio preciso.”

“Las estructuras más allá del “borde” del Universo observable, el cual están esencialmente confinados a una región con un radio de 14 mil millones de años luz, dado que sólo la luz dentro de esta distancia ha tenido tiempo de llegar hasta nosotros desde el Big Bang.

Algunos modelos han sido explorados y el resultado hallado es que en cada uno de esos mini-universos, puede haber muchas cosas diferentes; pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la naturaleza, pudiendo unos albergar la vida y otros no.

El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferenta mini-universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los mini-universos como el nuestro? Existen, como para todos los problemas planteados, diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista. Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la gravedad-cosmos) y la mecánica cuántica de Planck (el cuanto-átomo), no será posible contestar a ciertas preguntas.

Cuando nos introducimos en el “universo” de la teoría de cuerdas, parece como si estuviéramos entrando en otro mundo fuera de este nuestro, allí, se pueden  ver cosas asombrosas que no podemos observar en nuestro mundo y nuestra capacidad de apreciación se deja escapar esas once dimensiones en las que, apaciblemente pueden convivir sin estridencias, la mecánica cuántica con la relatividad general.

Aunque no todos la entiendan la teoría de cuerdas tiene un gancho tremendo. Te transporta a un mundo de 11 dimensiones, universos paralelos, y partículas formadas por cuerdecitas casi invisibles vibrando a diferentes frecuencias. Además, te dice que no se trata de analogías sino de la estructura más profunda de la realidad, y que ésta podría ser la teoría final que unificara por fin a toda la física. ¿No estaremos hablando de Filosofía?

                ¿Estará hecho el Universo de cuerdas vibrantes?

Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, sólo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10, 11 ó 26 dimensiones. Allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio  más que suficiente para dar cabida a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del universo y de las fuerzas que en él actúan.

Científicamente, la teoría del hiperespacio lleva los nombres de Teoría de Kaluza-Klein y supergravedad. Pero en su formulación más avanzada se denomina Teoría de Supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo: diez dimensiones. Así pues, trabajando en dimensiones más altas, esta teoría del hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la , la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.

                              Un Universo de “cuerdas” y de “Agujeros de Gusano”

Es cierto, los mejores siempre han buscado el Santo Grial de la Física. Una Teoría que lo pueda explicar todo, la más completa que, mediante una sencilla ecuación, responda a los misterios del Universo. Claro que tal hazaña, no depende siquiera de la inteligencia del explorador que la busca,  es más bien un problema de que las herramientas necesarias (matemáticas) para hallarla, aún no han sido inventadas.

Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al cosmos: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del hiperespacio permite la posibilidad de explicar todas las fuerzas de la naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante.  En esta teoría del hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del hiperespacio.

Antes mencionábamos los universos burbujas nacidos de la inflación y, normalmente, el contacto entre estos universos burbujas es imposible, pero analizando las ecuaciones de Einstein, los cosmólogos han demostrado que podría existir una madeja de agujeros de gusano, o tubos, que conectan estos universos paralelos.

Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el hiperespacio puede proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos, de la muerte de este universo cuando al final llegue el frío o el calor.

Esta nueva teoría de supercuerdas tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas. Podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de gusano que unan partes distantes de nuestro universo. Por desgracia, los resultados son desalentadores. La energía requerida excede con mucho cualquier cosa que pueda existir en nuestro planeta. De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos. Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo  utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Que aún tardará mucho? Sí, pero el tiempo es inexorable, la debacle del frío o del fuego llegaría.

                                                          Línea de Universo

No existen dudas al respecto, la tarea es descomunal, imposible para nuestra civilización de hoy, ¿pero y la de mañana?, ¿no habrá vencido todas las barreras? Creo que el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, sólo necesita tiempo: Tiempo tenemos mucho por delante si las cosas no se tuercen para nuestra especie y la Naturaleza no se ensaña con nosotros de alguna manera. Y, si es así…

¿Sabremos aprovecharlo? Lo cierto es que nuestra osadía no tiene límites. No hemos podido solucionar -todavía- como llegar a esa primera fracción de tiempo que reside más alla del Tiempo de Planck y estamos hablando de universos paralelos y otras cuestiones que estarán después de aquella primera que nos queda por resolver. Siempre ha sido así, sin terminar una cosa nos hemos pasado a otras y, por eso, precisamente, vamos algo embarullados y tenemos ese caos mental que no nos deja ver… ¡lo sencillo!

 

“En Cosmología, las condiciones  “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo Después del Comienzo del Tiempo.”

 

 

Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes. También en el extremo opuesto, estamos buscando para ver si, finalmente, encontramos esos otros universos.

Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que ahora tiene el Universo.

Sin embargo, seguimos sin saber qué fue lo que pasó antes del Tiempo de Planck y, si existen otros universos.

emilio silvera

 

 

La fascinación del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

VY Canis Majoris, Rutherford Observatory, 07 September 2014.jpeg

No en pocas ocasiones nos hemos tenido que asombrar de los descubrimientos que en el Universo vamos realizando con la ayuda de los cada vez más sofisticados ingenios que  nos llevan a viajes alucinantes en los que podemos visitar regiones tan distantes que, sus números nos marean, y, en ellas, descubrimos objetos que nunca pudimos pensar que pudieran existir.

                    El Sol comparado con VY Canis Mayoris es un simple puntito que casi no podemos ver

En la imagen podemos ver como destaca de las demás, esa es una de las estrellas más grandes que existen, hablamos de VY Canis Majoris(VY CMa) es una estrella hipergigante roja, localizada en la constelación de Canis Major. Es una de las estrellas conocidas más grandes y luminosas. En su momento fue la mayor estrella conocida, aunque luego se descubrieron otras estrellas de mayor tamaño. En la actualidad la estrella más grande conocida es UY Scuti (aunque posiblemente lo sea Westerlumd 1-26).

UY Scuti zoomed in, Rutherford Observatory, 07 September 2014.jpeg

Esa que sobresale de todas las demás, es UY Scuti (V* UY Sct, BD-12 5055, IRC -10422, RAFGL 21621​) es una estrella hipergigante roja en la constelación del Escudo. Es la estrella más grande conocida hasta ahora y posee un radio equivalente a 1708 ± 192 radios solares (un radio que correspondería a 1.188.768.000 km,  7,94 unidades astronómicas.). Si esta estrella fuera nuestro Sol englobaría todos los planetas hasta cerca de Saturno UY Scuti tiene un volumen de aproximadamente 5000 millones de veces el del Sol.

Reconstrucción de un cuásar

Hace unos 12.800 millones de años, cuando el universo aún era un “niño” que solo había vivido el 6% de su vida, existió un descomunal faro 420 billones de veces más luminoso que el Sol. Por aquella época el universo estaba saliendo de la edad oscura, un periodo que duró cientos de millones de años y en el que todo era tiniebla. Después aparecieron las primeras estrellas y galaxias y la luz comenzó a invadirlo todo. Poco antes de que esta etapa —conocida como reionización— acabase, se encendió ese faro cuyo origen era un desconomunal agujero negro que acaba de ser descubierto y analizado por un equipo internacional de astrónomos. Los investigadores creen que este monstruo tenía unas 12.000 millones de veces más masa que el Sol, lo que le convierte en el objeto de este tipo más grande y luminoso del universo.

Resultado de imagen de Un púlsar del milisegundo

Desde que se puso en órbita el telescopio espacial de rayos gamma Fermi, el 11 de junio de 2008, ha detectado poblaciones enteras de objetos nunca antes vistos. El último hallazgo de Fermi afecta al púlsar J1823-3021A, avistado en 1994 con el radiotelescopio Lovell, en Inglaterra. Un equipo internacional de expertos se ha dado cuenta de que esta estrella pulsante emite rayos gamma y gracias a Fermi ha podido caracterizar sus inusuales propiedades. Los resultados de su investigación se publican en el último número de Science.

Imagen relacionada

 El dato que más sorprende a los investigadores es su brillo. “Las emisiones de rayos gamma de uno de los cúmulos globulares de la Vía Láctea, llamado NGC 6624, nos hacían pensar que este albergaba 100 púlsares de milisegundo diferentes. Pero ahora hemos descubierto que todo viene de este único púlsar”, desvela a SINC Paulo Freire, investigador del Instituto Max-Planck de Radioastronomía en Alemania y uno de los autores principales del trabajo.

 El brillo tan intenso que desprende revela que su campo magnético es mucho más fuerte de lo que los astrónomos creían posible para un pulsar de este tipo. “Quizá tendremos que cambiar las teorías de formación de púlsares de milisegundo tras este descubrimiento, que ayudará a entender cómo se forman estos objetos en el universo”.

 Además, su periodo de rotación confirmó a los expertos que se trata de un pulsar de milisegundo ya que gira sobre sí mismo más de 183 veces por segundo.

20140109-173221.jpg

La Nebulosa de la Tarántula o NGC 2070 o 30 Doradus es una gigantesca fábrica de estrellas 1000 años luz de ancho. Esta región HII (región de hidrógeno ionizado) es uno de los objetos astronómicos más interesantes de la Gran Nube de Magallanes (LMC) y más importante de la galaxia vecina de la Vía Láctea. Se trata de la nebulosa de emisión más grande conocida, una otra nebulosa, NGC 2060 ocupa su centro. Situada a una distancia de unos 170 000 años luz, se puede observar en la constelación de Dorado en el cielo austral. La Nebulosa de la Tarántula tiene una magnitud aparente de 5, es fácilmente visible a simple vista, ya que pertenece a otra galaxia vecina de la Vía Láctea.

           Actualmente la Gran Nube de Magallanes atraviesas una época de gran formación estelar

la Gran Nube de Magallanes (LMC). La Tarántula es 100 veces más lejos que el famoso escuela estelar, la nebulosa de Orión en nuestra propia vivero. Si la Nebulosa de la Tarántula fue en nuestra galaxia, a la misma distancia que la Nebulosa de Orión (remoto sólo 1 350 años luz), cubriría un área dos veces mayor que la Osa Mayor casi una cuarta parte de cielo y sería visible incluso de día. La Nebulosa de la Tarántula contiene más de medio millón de veces la masa del Sol, esta nube grande y extravagante alberga algunas de las estrellas más masivas conocidas.

Cúmulo globular

Un cúmulo globular es un tipo de cúmulo estelar que consiste en una agrupación de 105 – 106 estrellas viejas (astros de Población II), gravitacionalmente ligadas, con distribución aproximadamente esférica, y que orbita en torno a una galaxia de manera similar a un satélite. Son estas estrellas viejas las que le dan a los cúmulos globulares su típico color dorado, sólo visible por medio de la fotografía en color.
Los cúmulos globulares están generalmente compuestos por cientos de miles de estrellas viejas, de manera parecida al bulbo de una galaxia espiral, pero confinadas en un volumen de sólo unos pocos parsecs cúbicos. Algunos cúmulos globulares (como Omega Centauri en la Vía Láctea y G1 en M31) son extraordinariamente masivos, del orden de varios millones de veces la masa solar. Otros, como M15, tienen núcleos extremadamente masivos, lo que hace sospechar la presencia de agujeros negros en sus centros.

Resultado de imagen de Cúmulos Globulares

Con unas pocas excepciones notables, cada cúmulo globular parece tener una edad definida. Es decir, todas las estrellas de un cúmulo globular están aproximadamente en la misma etapa de su evolución estelar, sugiriendo así haberse formado al mismo tiempo. Fue el reconocimiento de este hecho, estudiando los diagramas Hertzsprung-Russell de cúmulos globulares, lo que dio lugar a una primera teoría de evolución de las estrellas.

Los cúmulos globulares poseen una densidad estelar muy alta, de manera que existen fuertes interacciones entre sus estrellas componentes y suelen ocurrir colisiones con relativa frecuencia. Algunos tipos exóticos de estrellas, como las azules rezagadas (errantes azules), los púlsares milisegundo y las binarias de poca masa emisoras de rayos X son mucho más frecuentes en los cúmulos globulares.

El cúmulo abierto NGC 290: un joyero estelar

Antes vimos los cúmulos cerrados y, ahora tenemos aquí el Cúmulo abierto NGC 290 en el que liucen las estrellas tutilantes como si de un Joyero se tratara. La Belleza que el Universo nos puede ofrecer, es incomparable con cualquier otra cosa que, artificial, podamos nosotros hacer.,

swift-m31

Luego de clasificar las imagenes, vieron que se logro la mejor imagen ultravioleta en HD de una galaxia, hasta el dia de hoy. Lo que ayudara a todo tipo de cientificos a realizar mejores estudios.

Como se puede ver en la imágen, en el centro hay una enorme estrella o cumulo de color morado oscuro, que son las estrellas más antiguas. Alrededor de ellas estan las estrellas nuevas, en el lugar donde se crean nuevos planetas.

Las galaxias que son “universos” en miniatura, o, universos islas como las llamó Kant, contienen en pequeña proporción todo lo que el universo nos pueda ofrecer, son como muestras de universos. Asñi, de su estudio se sacan conclusiones muy valiosas.

Imagen relacionada

Resultado de imagen de El agujero negro más masivo conocido

Un agujero negro supermasivo es un agujero negro con una masa del orden de millones o decenas de miles de millones de masas solares. Estudios científicos sugieren fuertemente que la Vía Láctea tiene un agujero negro supermasivo en el centro galáctico, llamado Sagitario A*.

A todo lo anterior, lo único que tenemos que añadir es la presencia de los seres vivos en nuestro Universo que, a grandes rasgos y sin pararnos a explicaciones más profundas, ha quedado reflejado en todo lo anteriormente expuesto.

emilio silvera