Sep
10
¡Qué cosas! ¿Sabremos alguna vez?
por Emilio Silvera ~
Clasificado en Cosas curiosas ~
Comments (0)
Sí, el rastro, las huellas del pasado están presentes en todo lo que podamos observar en el Universo. La chica examina esa gran Nebulosa que llamamos Orión, y, ella sabe de su procedencia y origen, dado que se formó en una gran explosión Supernova que regó el Espacio Interestelar de materia para que, a partir de ella, surgieran nuevas estrellas y nuevos mundos y… ¿nuevas formas de vida?
Lo que pasó siempre deja rastros que nos cuentan la historia.

Bueno, en cierta manera sí. El Universo tiene y conserva (como ocurre en la Tierra), las reliquias de su pasado. A lo largo y a la ancho del Cosmos podemos encontrar muestras de objetos que nos cuentan lo que antes pasó en el Universo. Una supernova es el momento de la explosión de una estrella masiva, debido a que la presión para mantener todos los átomos nucleares es insostenible. “La simetría es la armonía de posición de las partes o puntos similares unos respecto de otros, y con referencia a un punto, línea o plano determinado. Una estrella tiene forma esférica, por lo tanto se espera que si la explosión es en todas las direcciones, su remanente también presente la misma apariencia simétrica. Sin embargo los remanentes de las supernovas no son simétricos. Una posible causa de asimetría en remanentes de supernovas consiste en la variación de masas de los elementos de la estrella.
Dentro del remanente del Cangrejo, cuando profundizamos un poco, podemos decubrir con asombro, como un objeto de inmensa energía magnética, gira y gira de manera frenética. De hecho, en la Nebulosa del Cangrejo (también conocida como M1, NGC 1952, Taurus A … En su centro vive un púlsar, denominado PSR0531+121, que gira sobre sí …. entre 28 y 30 kilómetros; emite pulsos de radiación cada 33 milisegundos. … Se trata de uno de los escasos remanentes de supernova que pueden …
Púlsar de la Nebulosa del Cangrejo. Esta imagen combina imágenes del telescopio espacio Hubble (rojo), e imágenes en rayos X obtenidas por el Telescopio Chandra (azul). Puede parecer mentira que podamos alcanzar las técnicas necesarias para descubrir, dentro de un remanente de Supernova, objetos como éste.
Los restos de una estrella que explotó hace casi mil años forman la nebulosa del Cangrejo, una de los objetos más bellos del cielo y cuyos filamentos de plasma son estudiados por los Astrónomos que, de esta manera, llegan a comprender la evolución de la materia a partir de los sucesos más energéticos del Universo.

Si observamos el Universo como un todo, podemos localizar que en él se manifiestan correlaciones bien afinadas que desafían todo lo que nos dicta nuestro sentido común. Unas de esas correlaciones pueden estar situadas en el nivel cuántico, donde, cada partícula que haya ocupado alguna vez el mismo nivel cuántico de otra partícula permanece relacionada con ella, de una misteriosa manera no energética.
Sabemos que, la teoría de la evolución post-darwiniana y la biología cuántica descubren enigmáticas correlaciones similares en el organismo y entre el organismo y su entorno. Todas las correlaciones que salen a la luz en las investigaciones más avanzadas sobre la conciencia vienen a resultar igual de extrañas: tienen la forma de conexiones temporales entre la conciencia de una persona y el cuerpo de otra. Al parecer, las redes de conexiones que constituyen un Cosmos Evolutivo Coherente, para el enmarañamiento cuántico, para la conexión instantánea entre organismos y entornos y entre las conciencias entre distintos e incluso distantes seres humanos, tienen una única explicación, que es la misma en todos los casos.

La mayor parte de las neuronas posee una estructura arbórea formada en su mayor parte por dendritas que, conectadas a otras neuronas, se encargan de recibir y enviar información mediante conexiones sin fin. Esta obra de la Naturaleza, no siempre tiene explicación para nosotros, los humanos, tan ignorantes aún. Muchas veces hemos dicho aquí que a partir de la “materia inerte” llegamos a los pensamientos.

¿Será posible que, además de materia y energía, en el Universo pueda existir algún otro elemento muy sutil, aunque no por eso menos real: información en forma de “in-formación” activa y efectiva que puede conectar todas las cosas presentes en el espacio-tiempo, de manera tal que, exista una especie de memoria en el Universo que, cuando ahondamos en la observación y el estudio, allí se nos aparece y la podemos “ver” tan real como podemos ver a las estrellas.
Algunos dicen que; “Las interacciones en los dominios de la Naturaleza, así como en los de la Mente, están medidas por un campo fundamental de información en el corazón del Universo”. Así, todo el Universo es un contenedor de información dinámico que evoluciona y acumula más información a medida que el tiempo transcurre y su dinámica “viva” no deja de crear para que nada permanezca y todo se transforme.

La Nebulosa de Orión (cuyo material una vez, formó parte de una estrella masiva) y, se trata de una enorme nube de turbulencia del gas, con una formación de hidrógeno, que es iluminada por brillantes estrellas jóvenes y calientes, incluyendo una estrella llamada Trapezium, que están en vías de desarrollo dentro de la nebulosa. Esa es la dinámica a que antes me refería y que, en el Universo está presente de mil formas distintas.
Pero claro, el Universo es grande y complejo, muchas son las cosas que de él desconocemos, y, si nos preguntamos, por ejemplo, ¿qué es el vacío cuántico? podemos responder conforme a la información que actualmente tenemos pero, ¿es la respuesta la adecuada?

El concepto de espacio-tiempo como medio físico lleno de energía virtual fue emergiendo gradualmente a lo largo del siglo XX. Al comienzo del siglo se pensaba que el espacio estaba ocupado por un campo energético invisible que producía rozamiento cuando los cuerpos se movían a través de él y ralentizaba su movimiento. Todos conocemos eso como la Teoría del Éter Lumínico o Luminífero. Cuando ese rozamiento no se pudo detectar con el experimento de Michelson-Morley, el éter quedó rechazado de la imagen del mundo físico. Sin embargo, se cree que algo permea todo el espacio.

Sus genios quedaron atrás, ahora el mundo necesita nuevos caminos, nuevos conceptos, nuevas energías. ¿Podrán, algún día, las energías llamadas de Punto Cero, suplir a estas otras de origen fósil que se agotaran en unas pocas décadas? Claro que las cosas no siempre son lo que parecen y, lo único que necesitamos es la capacidad intelectual para saber “ver” lo que hay. Siempre ha pasado igual, hemos creado teorías que más tarde, cuando se adquirieron nuevos conocimientos, tuvieron que ser desechadas y tomar las nuevas que nos decían otra realidad de cómo funcionaba la Naturaleza.
Siendo todo eso cierto, no debemos olvidar que sin el apoyo de las “viejas” ideas de aquellos genios que fueron, no habríamos podido llegar al nivel científico del que hoy podemos gozar, y, según creo, sólo estamos en el comienzo de algo mucho mayor.

El vacío perfecto no existe… ¡Siempre hay!
Hace tiempo que se llegó a demostrar que, el vacío cósmico estaba lejos de ser espacio vacío. En las Teorías de Gran Unificación (GUT) que fueron desarrolladas durante la segunda mitad de ese siglo XX, el concepto de vacío se transformó a partir del espacio vacío en el medio que transporta el campo de energías de punto cero que, son energías de campo que han demostrado estar presentes incluso cuando todaqs las formas clásicas de energía desaparecen: en el cero absoluto de temperatura. En las teorías unificadas subsiguientes, las raíces de todos los campos y las fuerzas quedan adscritas a ese mar de energía misterioso denominado “vacío unificado”.
Allá por los años sesenta, Paul Dirac demostró que las fluctuaciones en los campos fermiónicos producían una polarización de vacío, mediante la cual, el vacío afectaba a la masa de las partículas, a su carga, al spin o al momento angular. Esta es una idea revolucionaria, ya que, en este concepto el vacío es más que el continuo tetradimensional de la Teoría de la Relatividad: no es sólo la geometría del espacio-tiempo, sino un campo físico real que produce efectos físicos reales.

La interpretación física del vacío en términos del campo de punto cero fue reforzada en los años 70 , cuando Paul Davis y William Unruth propusieron la tesis que diferenciaba entre el movimiento uniforme y el acelerado en los campos de energía de punto cero. El movimiento uniforme no perturbaría el ZPF, dejándolo isotrópico (igual en todas las direcciones), mientras que el movimiento acelerado produciría una radiación térmica que rompería la simetría en todas las direcciones del campo. Así quedó demostrado durante la década de los 90 mediante numerosas investigaciones que fueron mucho más allá de la “clásica” fuerza Casimir y del Desplazamiento de Lamb, que han sido investigados y reconocidos muy rigurosamente.

Una Fuerza del Espacio Vacío: El Efecto Casimir
De las Placas Casimir ¿que podemos decir? es bien conocido por todos que dos placas de metal colocadas muy cerca, se excluyen algunas longitudes de onda de las energías del vacío. Este fenómeno, que parece cosa de magia, es conocido como la fuerza de Casimir. Ésta ha sido bien documentada por medio de experimentos. Su causa está en el corazón de la física cuántica: el espacio aparentemente vacío no lo está en realidad, sino que contiene partículas virtuales asociadas con las fluctuaciones de campos electromagnéticos. Estas partículas empujan las placas desde el exterior hacia el interior, y también desde el interior hacia el exterior. Sin embargo, sólo las partículas virtuales de las longitudes de onda más cortas pueden encajar en el espacio entre las placas, de manera que la presión hacia el exterior es ligeramente menor que la presión hacia el interior. El resultado es que las placas son forzadas a unirse.
También aparecen otros efectos, algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF. Es todo tan misterioso.
Debido a que el Universo es finito, en los puntos críticos dimensionales, las ondas se superponen y crean ondas estacionarias duraderas. Las ondas determinan interacciones físicas fijando el valor de la fuerza Gravitatoria, la Electromagnética, y las fuerzas nucleares Débil y Fuerte. Estas son las responsables de la distribución de la materia a través del Cosmos pero, a quién o a qué responsabilizamos de esa otra clase (hipotética) de materia que, al parecer está por ahí oculta. ¿Tendrá, finalmente el vacío algo que ver con ella?

El Observatorio de rayos X Chandra, el tercero de los grandes observatorios de la NASA, ha descubierto un excepcional objeto según la página web de la propia NASA, y, de la misma manera, hay descubrimientos recientes que confirman la presencia de ondas de presión en el vacío.

Utilizando el Observatorio de rayos X Chandra, los Astrónomos han encontrado una onda generada por el agujero negro supermasivo en Perseus, a 250 millones de años luz de la Tierra. Esta onda de presión se traduce en la onda musical Si menor. Se trata de una nota real, que ha estado viajando por el espacio durante los últimos 2.500 millones de años. Nuestro oído no puede percibirla, porque su frecuencia es 57 octavas más baja que el Do medio, más de un millón de veces más grande de lo que la audición del hombre puede percibir.
Los siete colores del Arco Iris: Rojo, Naranja, Amarillo, Verde, Azul, Añil y Violeta. El arco iris es un fenómeno óptico y meteorológico que produce la aparición de un espectro de frecuencias de luz continuo en el cielo cuando los rayos del sol atraviesan pequeñas gotas de agua contenidas en la atmósfera terrestre.

Recuerdos de la niñez y los Siete pecados capitales: Lujuria, Gula, Avaricia, Pereza, Ira, Envidia, Soberbia. Los siete pecados capitales son una clasificación de los vicios mencionados en las primeras enseñanzas del cristianismo para educar a sus seguidores acerca de la moral cristiana. En los colegios de entonces, nos predicaban estas cosas que, como suele ocurrir, cuando de niño te machacan una y otra vez con estos cánticos… ¡Set te quedan grabados!

Las Siete notas musicales: Do, Re, Mi, Fa, Sol, La y Si Los nombres de las notas musicales se derivan del poema Ut queant laxis del monje benedictino friulano Pablo el Diácono, específicamente de las sílabas iniciales del Himno a San Juan Bautista. Las frases de este himno, en latín, son así: Ut queant laxis/Resonare…

Se dijo que Dios creó el mundo en siete días: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado y Domingo. Los siete cuerpos celestes que dieron lugar a estos nombres fueron la Luna, Marte, Mercurio, Júpiter, Venus, Saturno y el Sol. En español, sábado procede de la fiesta hebrea “Sabbat” y domingo de la palabra latina “Dominus”, el señor… Como pòdéis ver, el pasado siempre estará con nosotros. Incluso el nombre de algunas constelaciones provienen del pasado, de otras civilizaciones que dejaron señalado el camino. Siempre ha sido así y lo seguirá siendo.

Las sumas de las caras opuestas de un Dado, siempre es igual a Siete: 1+6; 2+5; 3+4

También decimos que un gato tiene Siete vidas: En el mundo hispano hablante se dice que los gatos tienen siete vidas. La creencia en las siete vidas del gato tiene un origen tanto supersticioso como esotérico. No cabe duda de que la excepcional resistencia del gato, su capacidad de salir indemne ante las situaciones más complicadas.
Muchas más serían las cosas relacionadas con el Número Siete. De todas las maneras, ¡cómo somos los humanos! a todo le tenemos que sacar punta… Lo dicho, nuestra curiosidad que nos lleva en volandas hacia la Casa de la Sabiduría que, ¡está en tantos lugares!
emilio silvera
Jun
24
¿Por qué, si está más lejos, calienta más el Sol en verano?
por Emilio Silvera ~
Clasificado en Cosas curiosas ~
Comments (0)
Algunas erupciones pueden causar grandes daños en la Tierra
Aunque en un principio pueda sonar contradictorio, la Tierra se encuentra más lejos del Sol en verano que en invierno. Hablamos, eso sí, del verano y del invierno en el hemisferio norte. Ahora bien, ¿cómo es esto posible si el Sol es la gran fuente de calor del planeta azul? Pues por una sencilla razón: no importa tanto la distancia entre la gran estrella y nuestro planeta como la inclinación de éste último.
El eje imaginario sobre el cual gira la Tierra está desviado unos 23 grados -si bien es cierto que varía entre los 22 y los 24 en un proceso que dura miles de años. Esa inclinación lateral del planeta cambia radicalmente la forma en que los rayos solares, que son los que irradian calor sobre la Tierra, impactan sobre la atmósfera y la superficie terrestre. De ese modo, se desechan teorías como que en verano hace más calor porque el cielo está más despejado o porque hay más horas de luz, que intentan explicar la diferencia de temperatura. (Ésta última es cierta, si bien es verdad que no bastaría que hubiese un cambio de temperatura tan drástico).
Sí, este verano el Sol nos fastidiará un poco más de cuenta
Cuando en el hemisferio norte es verano, el eje terrestre hace que sea esa mitad superior del globo la que esté más cerca al sol y, por tanto, que los rayos solares incidan sobre la Tierra más perpendicularmente, es decir, de manera menos oblicua. Por eso, en julio o agosto da la sensación de que el Sol llega más arriba en el cielo. Lo que ocurre es que se alinea con el hemisferio norte. La radiación solar, en verano, se concentra en un menor espacio que en inviero, haciendo que la temperatura sea mayor.

Si no tenemos cuidado… Tomar el Sol nos puede causar serios problemas
El momento en que el sol está más lejano a la Tierra -unos 152 millones de kilómetros- se llama afelio. Por su parte, el nombre que recibe el punto de la órbita terrestre más cercano al astro rey es perihelio y mide unos 147 millones de kilómetros. La diferencia entre ambas cantidades puede asustar si se mira en cuano a valor absoluto, pero si tenemos en cuenta que apenas es un tres por ciento de la distancia media, vemos que es un dato insignificante.

Así, la distancia entre Tierra y Sol no es lo que determina las estaciones del año, sino la inclinación del eje de nuestro planeta, razón por la cual cuando en el norte es verano, en el sur es invierno y viceversa. Si el eje fuera perpendicular al ecuador y a los rayos del sol, no existirían las estaciones y los días durarían exactamente lo mismo siempre en todos los lugares del mundo. Por eso, en regiones próximas a la línea que divide nuestro planeta en dos mitades los días son casi siempre iguales y la hora de amanecer y de anochecer apenas varía unos minutos.
emilio silvera
Mar
23
Frases para recordar
por Emilio Silvera ~
Clasificado en Cosas curiosas ~
Comments (0)
En la boca, miel, y tinta en el papel
Se recomienda que en el trato se utilicen las mejores palabras, pero que a la par se tomen todas las garantías de que se nos ha entendido bien.
En esta vida, todo es verdad, y todo es mentira
Así lo afirma en su título, una famosa comedia de Calderón. Y Campoamor, más de dos siglos después, lo recordaba en popularísimo verso:
Y es que en el mundo traidor
Nada hay verdad ni mentira;
Todo es según el color
Del cristal con que se mira.
Que verdad es que,

Si la una estudia y la otra duerme… ¡Sus futuros serán diferentes!
Cada maestrillo tiene su librillo
Indica la diversidad de los modos de pensar y obrar que tienen los hombres, conforme a su particular talante.

Cada cosa para su cosa
Dice que es inexcusable la adecuación de los medios a los fines, y no al revés, como lo hacía aquel Obispo del cuento,que en lugar de abonar sus tierras, las regaba con bendiciones, en contraste con el vecino, un humilde labriego, que estercolaba las suyas con generosidad. Y como el prelado, perplejo ante el dispar aspecto que ofrecían ambos pagos, le preguntase a su vecino qué hacía para que su tierra creciese con tanto vigor, respondió el rústico: “Solo estercolar a comnciencia, ilustrísima. Así que ya lo ve: Más vale cagajón de borrico que bendición de obispo.
Muchos de estos dichos antiguos, aún hoy, nos pueden enseñar algunas cosas.
Mar
22
Las moléculas portadoras de información
por Emilio Silvera ~
Clasificado en Cosas curiosas ~
Comments (0)
¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del estado estacionario, etc.

Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferentes de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.

El Universo se expande, la Mente también I

Jefe Indio Seattle (1786 – 1866)
Antiguo es el mundo, pero parece que por fin empezamos a mirar los detalles y a buscar una forma de vida más ecológica, y al fin y al cabo, mejor para nosotros, ya que uno sin lo otro no sería posible. En este articulo hablamos del Jefe indio Seattle, un jefe indio que tuvo que negociar con el progreso que el hombre blanco implantó en las tierras de América, tierras en las que habían convivido en paz durante tantas generaciones y con el respeto hacia unos medios naturales que más tarde fueron explotados sin consideración, todo lo contrario a lo que indicaban las doctrinas de su pueblo.

Los organismos vivos somos sistemas extremadamente complejos, formados por un elevado número de elementos interrelacionados que deben mantener sus características a lo largo del tiempo, de una generación a otra. Esto supone que debe existir algún mecanismo para que cada elemento de los organismos se elabore de acuerdo a un “plan”, a un modelo de organización establecido, y que ese modelo pueda ser transmitido de una célula a sus descendientes. Esta necesidad de los seres vivos nos acerca a la noción de información genética.
La información, cualquier tipo de información, es un conjunto organizado de que pueden ser utilizados en algún proceso. En el caso de los seres vivos, los datos se refieren, fundamentalmente, a cómo son las moléculas (en particular las proteínas y el ARN) que la célula necesita producir y a cuándo deben ser elaboradas. La información necesita siempre una memoria, es decir, un sistema físico en el que pueda registrarse, almacenarse y que permita su lectura. En los seres vivos, que somos máquinas químicas, el soporte de la información es un tipo de molécula, concretamente un ácido nucleico. La información que almacenan los organismos recibe el nombre de información genética.
Representación esquemática de la molécula de ADN, la molécula portadora de la información genética. Las moléculas se forman por la Asociación de dos o más átomos, que se mantienen juntas por medio de enlaces químicos. Podríamos decir que algunas moléculasd de vida serían:



– Agua.
– Hidratos de carbono.
– Lípidos.
– Proteínas.
– Acidos Nucleicos.



Principios inmediatos o biomoléculas: cada una de las sustancias que componen la materia viva.
– Simples: O2
– inorgánicos: agua…
– Compuestos:
– orgánicos: glúcidos, lípidos,
proteínas, ac. nucleicos
La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. Refiriéndonos al silicio, señalaremos que las “moléculas” que dicho átomo forma con el oxígeno y otros átomos, generalmente metálicos poseyendo gran nivel de información, difieren en varios aspectos de las moléculas orgánicas, es decir, de las que poseen un esqueleto de átomos de carbono.

El mundo de los silicatos es de una gran diversidad, existiendo centenares de especies minerológicas. Esas diferencias se refieren fundamentalmente a que el enlace químico en el caso de las moléculas orgánicas es covalente, y cuando se forma la sustancia correspondiente (cuatrillones de moléculas) o es un líquido, como es el caso de los aceites, o bien un sólido que funde fácilmente. Entre las moléculas que lo forman se ejercen unas fuerzas, llamadas de Van der Waals, que pueden considerarse como residuales de las fuerzas electromagnéticas, algo más débiles que éstas. En cambio, en los silicatos sólidos (como en el caso del topacio) el enlace covalente o iónico no se limita a una molécula, sino que se extiende en el espacio ocupado por el sólido, resultando un entramado particularmente fuerte.
Al igual que para los cristales de hielo, en la mayoría de los silicatos la información que soportan es pequeña, aunque conviene matizar este punto. Para un cristal ideal así sería en efecto, pero ocurre que en la realidad el cristal ideal es una abstracción, ya que en el cristal real existen aquí y allá los llamados defectos puntuales que trastocan la periodicidad espacial propia de las redes ideales. Precisamente esos defectos puntuales podían proporcionar una mayor información.
El cristal ideal no existe, en su natural, todos tienen inperfecciones y, sólo el elaborado, se podría decir que son cristales perfectos y, sin embargo, la mano del hombre lo que ha producido con tal intervención es perder una valiosa información inserta en ese cuerpo natural.
Si prescindimos de las orgánicas, el resto de las moléculas que resultan de la combinación entre los diferentes átomos no llega a 100.000, frente a los varios millones de las primeras. Resulta ranozable suponer que toda la enorme variedad de moléculas existentes, principalmente en los planetas rocosos, se haya formado por evolución de los átomos, como corresponde a un proceso evolutivo. La molécula poseería mayor orden que los átomos de donde procede, esto es, menor entropía. En su formación, el ambiente se habría desordenado al ganar entropía en una cierta cantidad tal, que arrojarse un balance total positivo.
No puedo dejar pasar la oportunidad, aunque sea de pasada, de mencionar las sustancias.



Las así llamadas, son cuerpos formados por moléculas idénticas, entre las cuales pueden o no existir enlaces químicos. Veremos varios ejemplos. Las sustancias como el oxígeno, cloro, metano, amoníaco, etc, se presentan en estado gaseoso en figuras ordinarias de presión y temperatura. Para su confinamiento se embotellan, aunque existen casos en que se encuentran mezcladas en el aire (os podéis dar una vueltecita por el polo químico de Huelva en España).
En cualquier caso, un gas como los citados consiste en un enjambre de las moléculas correspondientes. Entre ellas no se ejercen fuerzas, salvo cuando colisionan, lo que hacen con una frecuencia que depende de la concentración, es decir, del número de ellas que están concentradas en la unidad de volumen; número que podemos calcular conociendo la presión y temperatura de la masa de gas confinada en un volumen conocido.

Nubes moleculares en Orión
Decía que no existen fuerzas entre las moléculas de un gas. En realidad es más exacto que el valor de esas fuerzas es insignificante porque las fuerzas residuales de las electromagnéticas, a las que antes me referí, disminuyen más rápidamente con la distancia que las fuerzas de Coulomb; y esta distancia es ordinariamente de varios diámetros moleculares.
Podemos conseguir que la intensidad de esas fuerzas aumente tratando de disminuir la distancia media entre las moléculas. Esto se puede lograr haciendo descender la temperatura, aumentando la presión o ambas cosas. Alcanzada una determinada temperatura, las moléculas comienzan a sentir las fuerzas de Van der Waals y aparece el estado líquido; si se sigue enfriando aparece el sólido. El orden crece del gas al líquido, siendo el sólido el más ordenado. Se trata de una red tridimensional en la que los nudos o vértices del entramado están ocupados por moléculas.
Todas las sustancias conocidas pueden presentarse en cualquiera de los tres estados de la materia (estados ordinarios y cotidianos en nuestras vidas del día a día).

El Plasma de las estrellas y otros cuerpos estelares forman el estado más común de la materia en nuestro Universo -al menos la que podemos observar-. El estado de la materia más común que conocemos es el plasma que es la forma que adopta en aquellos estados de altas energías como los que están presentes en las estrellas de las galaxias, los remanentes de supernovas, estrellas de neutrones y otros objetos celestes que adoptan ese estado material que emite una alta radiación.
Si las temperaturas reinantes, son de miles de millones de grados, el estado de la materia es el plasma, el material más común del universo, el de las estrellas (aparte de la materia oscura, que no sabemos ni lo que es, ni donde está, ni que “estado” es el suyo).
En condiciones ordinarias de presión, la temperatura por debajo de la cual existe el líquido y/o sólido depende del tipo de sustancia. Se denomina temperatura de ebullición o fusión la que corresponde a los sucesivos equilibrios (a presión dada) de fases: vapor ↔ líquido ↔ sólido. Estas temperaturas son muy variadas, por ejemplo, para los gases nobles son muy bajas; también para el oxígeno (O2) e hidrógeno (H2). En cambio, la mayoría de las sustancias son sólidos en condiciones ordinarias (grasas, ceras, etc).
Sustancias Compuestas y simples:
Las sustancias pueden ser simples y compuestas, según que la molécula correspondiente tenga átomos iguales o diferentes. El número de las primeras es enormemente inferior al de las segundas.
El concepto de molécula, como individuo físico y químico, pierde su significado en ciertas sustancias que no hemos considerado aún. Entre ellas figuran las llamadas sales, el paradigma de las cuales es la sal de cocina.
Red Cristalina del cloruro de sodio (NaCl)
Es requerida por el organismo para mantener la volemia y procurar el adecuado equilibrio electrolítico. Además, conserva isotonicidad entre plasma e intersticio, así como también mantiene equilibrio con la célula. Implicada directa en el mantenimiento de la presión arterial media y en el equilibrio osmolar. Su disociación en sangre es parcial (sólo un 93 por ciento).
Se trata de cloruro de sodio, por lo que cualquier estudiante de E.G.B. escribiría sin titubear su fórmula: Cl Na. Sin embargo, le podríamos poner en un aprieto si le preguntásemos dónde se puede encontrar aisladamente individuos moleculares que respondan a esa composición. Le podemos orientar diciéndole que en el gas Cl H o en el vapor de agua existen moléculas como individualidades. En realidad y salvo casos especiales, por ejemplo, a temperaturas elevadas, no existen moléculas aisladas de sal, sino una especie de molécula gigante que se extiende por todo el cristal. Este edificio de cristal de sal consiste en una red o entramado, como un tablero de ajedrez de tres dimensiones, en cuyos nudos o vértices se encuentran, alternativamente, las constituyentes, que no son los átomos de Cl y Na sino los iones Cl– y Na+. El primero es un átomo de Cl que ha ganado un electrón, completándose todos los orbitales de valencia; el segundo, un átomo de Na que ha perdido el electrón del orbital s.


Por esta zona de Huelva, conocida como Marismas del Odiel, llevaba con frecuencia a mis hijos pequeños que, jugando por aquellos parajes, se lo pasaban estupendamente, y, de camino, tenía la oportunidad de despertarles la curiosidad de cómo se producía la Sal en el medio natural dejando que se evapore el agua del Mar por los efectos del calor radiado por el Sol que dejaba, finalmente, la Sal al descubierto para ser refinada y vendida comercialmente.
Cuando los átomos de Cl y Na interaccionan por aproximarse suficientemente sus nubes electrónicas, existe un reajuste de cargas, porque el núcleo de Cl atrae con más fuerza los electrones que el de Na, así uno pierde un electrón que gana el otro. El resultado es que la colectividad de átomos se transforma en colectividad de iones, positivos los de Na y negativos los de Cl. Las fuerzas electromagnéticas entre esos iones determinan su ordenación en un cristal, el Cl Na. Por consiguiente, en los nudos de la red existen, de manera alternativa, iones de Na e iones de Cl, resultando una red mucho más fuerte que en el caso de que las fuerzas actuantes fueran de Van der Waals. Por ello, las sales poseen puntos de fusión elevados en relación con los de las redes moleculares.
emilio silvera
Mar
15
Newton, Einstein…¿Y después?
por Emilio Silvera ~
Clasificado en Cosas curiosas ~
Comments (3)

Isaac Newton y sus leyes del movimiento nos decía que si alguien pudiera correr a una velocidad suficientemente rápida podría emparejarse con un rayo de luz que se esté emitiendo, y las leyes del electromagnetismo de Maxwell decían que esto era totalmente imposible. Einstein, en 1.905, vino a solucionar el problema con su teoría de la relatividad especial y a partir de ahí le dio un vuelco completo a nuestro modo de entender el espacio y el tiempo que, según esta teoría, no se pueden considerar separadamente y como conceptos fijos e inamovibles para todos, sino que por el contrario, el espacio-tiempo era una estructura maleable cuya forma y modo de presentarse dependían del estado de movimiento del observador que lo esté midiendo.

Nueva confirmación de la Teoría de la Relatividad de Einstein
” Un tipo particular de ‘microlente gravitacional’ ha permitido observar una predicción de Albert Einstein y abre otra ventana para entender la historia y la evolución de galaxias como la nuestra. Albert Einstein predijo que siempre que la luz de una estrella distante pasa por un objeto más cercano, la gravedad actúa como una especie de lente de aumento, iluminando y doblando la luz de las estrellas lejanas. Sin embargo, en un artículo publicado en 1936 en la revista Science.”
El escenario creado por el desarrollo de la relatividad especial construyó inmediatamente el escenario para el segundo conflicto. Una de las conclusiones de Einstein es que ningún objeto (de hecho, ninguna influencia o perturbación de ninguna clase) puede viajar a una velocidad superior a la de la luz. Einsteinamplió su teoría en 1.915 –relatividad general– y perfeccionó la teoría de la gravitación de Newton, ofreciendo un nuevo concepto de la gravedad que estaba producida por la presencia de grandes masas, tales como planetas o estrellas, que curvaban el espacio y distorsionaban el tiempo.

Tales distorsiones en la estructura del espacio y el tiempo transmiten la fuerza de la gravedad de un lugar a otro. La luna no se escapa y se mantiene ahí, a 400.000 Km de distancia de la Tierra, porque está influenciada por la fuerza de gravedad que ambos objetos crean y los mantiene unidos por esa cuerda invisible que tira de la una hacia la otra y viceversa. Igualmente ocurre con el Sol y la Tierra que, separados por 150 millones de kilómetros, están influidos por esa fuerza gravitatoria que hace girar a la Tierra (y a los demás planetas del Sistema Solar) alrededor del Sol.

Así las cosas, no podemos ya pensar que el espacio y el tiempo sean un telón de fondo inerte en el que se desarrollan los sucesos del universo, al contrario; según la relatividad especial y la relatividad general, son actores que desempeñan un papel íntimamente ligado al desarrollo de los sucesos.
El descubrimiento de la relatividad general, aunque resuelve un conflicto, nos lleva a otro. Durante tres décadas desde 1.900, en que Max Planck publicó su trabajo sobre la absorción o emisión de energía de manera discontinua y mediante paquetes discretos a los que él llamo cuantos, los físicos desarrollaron la mecánica cuántica en respuesta a varios problemas evidentes que se pusieron de manifiesto cuando los conceptos de la física del siglo XIX se aplicaron al mundo microscópico. Así que el tercer conflicto estaba servido, la incompatibilidad manifiesta entre relatividad general y mecánica cuántica.

La forma geométrica ligeramente curvada del espacio que aparece a partir de la relatividad general, es incompatible con el comportamiento microscópico irritante y frenético del universo que se deduce de la mecánica cuántica, lo cual era sin duda alguna el problema central de la física moderna.
Las dos grandes teorías de la física, la relatividad general y la mecánica cuántica, infalibles y perfectas por separado, no funcionaban cuando tratábamos de unirlas, eran incompatibles.

Algunas teorías de supersimetría tienen la ventaja adicional de proporcionar los candidatos ideales para la materia oscura. Algunos de los supercompañeros …
Entonces llegó la nueva teoría que siguió a la de supersimetría y supergravedad que no dieron la talla. Sin embargo, la teoría de supercuerdas, según todos los indicios, es una candidata muy firme para que de una vez por todas queden unificadas la relatividad general de Einstein y la mecánica cuántica de Planck y otros.
La solución que ofrece la teoría de cuerdas data de mediados de la década de los ochenta. Además, la teoría de cuerdas se construye sobre la relatividad general y sobre la relatividad especial y a partir de la teoría de Kaluza-Klein que vino a imponer el concepto de más dimensiones; además de las tres de espacio y una de tiempo cotidianas, otras dimensiones permanecen enrolladas como espacios arrugados que no se desarrollaron, como las tras que conocemos en el mundo ordinario, y quedaron retenidos en el límite de Planck. Son como estructuras plegadas del cosmos, dimensiones que existen y que por razones que no conocemos, no llegaron a desplegarse en el instante primero del Big Bang y permanecen ahí ocultas a nuestra vista.

La teoría de cuerdas, en realidad, es la historia del espacio y el tiempo desde Einstein en adelante. Físicos modernos y avanzados como el famoso “cuarteto de cuerdas” de Princeton, capitaneados por Gross, trabajaron en la teoría de cuerdas ya elaborada antes por otros y la perfeccionaron con la versión de la cuerda heterótica, muy bien elaborada y de amplios y nuevos conceptos.
La última versión y más avanzada de la teoría de supercuerdas, es la conocida como la teoría M de E. Witten (también de Princeton), que lleva la M de mágica dada su perfección de planteamientos que han llevado a esta teoría a unas alturas del conocimiento científico de la física y de las matemáticas que están al alcance de pocos el poder comprender plenamente.
La teoría de cuerdas profundiza mucho más en la materia y en las fuerzas fundamentales, llega mucho más allá en el conocimiento de las cosas y en ella están los átomos, los electrones, los protones y neutrones, los quarks… y las “cuerdas”.

¿Estará el Universo, toda la materia que lo conforma, hecho de filamentos vibrantes, de “cuerdas”
En realidad, según esta nueva teoría, si pudiéramos observar con aparatos más perfeccionados de los que tenemos actualmente la verdadera estructura de la materia, veríamos que además de los pequeños quarks, existen otros minúsculos filamentos que como cuerdas vibran, oscilan y bailan como elásticos de goma infinitamente delgados.
En los tiempos de Einstein no se había descubierto aun la fuerza nuclear fuerte y la fuerza nuclear débil, pero él opinaba que la existencia de dos fuerzas distintas (la gravedad y el electromagnetismo) era profundamente preocupante. A Einstein le costaba admitir que la naturaleza se basara en un modelo tan extravagante. Esta opinión le llevó a ese viaje de treinta años en los que, infructuosamente, buscó una teoría unificada de campos demostrativa de que todo se basaba en un único principio.
Einstein quedó aislado en esta búsqueda quijotesca que lo apartó de la corriente principal y más viva de la física que, por aquel entonces, estaba más interesada en profundizar en el marco de la mecánica cuántica, surgida con fuerza en aquellos años.

En el comienzo de la década de los 40, Einstein escribía a un amigo:
“Me he convertido en un tipo viejo y solitario que es conocido principalmente por no usar calcetines y al que exhiben como una curiosidad en ocasiones especiales“.
Lo que sucedía era que Einstein, sencillamente, como había hecho en otras ocasiones, se estaba adelantando con su visión de futuro a su época. Más de un siglo después, su sueño de una teoría unificada se ha convertido en el Santo Grial de la física moderna. Los físicos-matemáticos más prestigiosos del mundo están convencidos de que en la teoría de cuerdas puede estar la respuesta al sueño de Einstein que él no pudo alcanzar porque, entre otras razones, en su tiempo no se conocían las matemáticas que son necesarias para plasmarla. Incluso ahora, a principios del siglo XXI en que la teoría está muy avanzada, son necesarias matemáticas que aún nadie es capaz de inventar para llegar al fondo de la esperada respuesta final.
Hemos buscado ese universo de dimensiones extra sin conseguirlo de manera física, ya que, nuestro universo es tridimensional. Si existe ese otro, deberá estar en el mundo de las matemáticas donde sí es posible juntar la relatividad con la cuántica. ¿Estará la respuesta escondida en las funciones modulares de los cuadernos perdidos de Ramanujan?
Ante todo estos planteamientos que tratan los cerebros más privilegiados del mundo para descubrir el misterio final del universo, la materia, el espacio-tiempo y las fuerzas fundamentales que interaccionan con las partículas fundamentales o elementales de las que todo está hecho, nos podríamos parar a pensar y preguntarnos:
El chimpancé y el humano tuvieron un ancestro común que no era ni Homo ni Pan, de él divergieron las dos ramas y, mientras la una sigue en la copa de los árboles, la otra trabaja con la mecánica cuántica
¿Es posible que las maravillas de la vida y del universo sean meros reflejos de unas partículas microscópicas implicadas en una danza sin sentido, totalmente coreografiados por las leyes de la física? Pero, si eso fuera así, ¿cómo podríamos explicar la presencia de esos seres de arriba que nos trajeron a nosotros aquí?
¿Es realmente posible que los sentimientos de alegría, pena, aburrimiento, curiosidad, ansias de saber o de amar no sean más que unas reacciones químicas que tienen lugar en el cerebro, unas reacciones entre moléculas y átomos que, yendo a un nivel aún más microscópico, son reacciones entre algunas de las partículas que llamamos elementales y más profundamente aún, todo sea debido en su origen a unas infinitesimales cuerdas vibrantes?
Yo desde luego no tengo el talento necesario ni los conocimientos requeridos para contestar a estas preguntas de una manera clara y precisa y con todo lujo de detalles. Sin embargo, por lo poco que sé, pocas dudas me pueden acechar sobre una cosa para mí muy cierta: Formamos parte del universo y estamos hechos por los materiales complejos que sólo se pueden formar en las estrellas. El polvo estelar de supernova que hizo posible nuestra existencia se formaría, seguramente, hace miles de millones de años en estrellas situadas a miles o millones de años luz de distancia.

Formamos parte del Universo, todo está hecho de las mismas cosas: mundos, estrellas y galaxias que, han evolucionado hasta conseguir que seres pensantes observen lo que pocurre en el inmenso universo. Es difícil llegar a la consciencia y poder comprender cómo, a partir de la materia inerte, pudo surgir la vida. Y, como nos dice el amigo y contertulio Adolfo, cualquier clse de vida… ¡Es digna de respeto!
Toda la materia conocida está formada por los quarks que forman protones y neutrones que forman los núcleos que al ser rodeados por los electrones, componen los átomos, que al unirse dan lugar a células, que juntas conforman la materia.
Así también estamos formados todos nosotros, que con esos materiales complejos y en unas condiciones muy especiales de un planeta Tierra primitivo, bombardeado por enormes tormentas, acribillado por rayos y partículas y radiaciones cósmicas como las ultravioletas y gamma, en los océanos y mares primigenios y en una enrarecida atmósfera, surgió la primera célula que fue capaz de multiplicarse para que miles de millones de años después, tras una larga y penosa evolución, apareciéramos nosotros, unos seres capaces de pensar y de tener conciencia de su propia existencia, buscar en sus orígenes y mirar en su futuro, sentir unos sentimientos muy profundos que nos elevan a una categoría muy por encima de todas las demás cosas conocidas y, en este punto, tras toda esta larga reflexión, yo mismo me digo que sí, la ciencia nos demuestra que aunque nos parezca mentira, aunque lo clasifiquemos como “milagro”, todos nosotros, a pesar de estar dotados de esos sentimientos, estamos hecho de ese mismo ingrediente que llamamos materia formada por partículas diminutas que a partir de algo inanimado e inerte, dio lugar a lo que somos ahora.
![]()
Habría que analizar muy bien cuando podemos matar a otros seres y que esté justificado
Claro que deberíamos pensar también en los otros seres vivos que nos acompañan en la andadura de la aventura de la vida, toda vez que, aunque conviven con nosotros, respiren el mismo aire y compartan el mismo planeta, aún así, no nos hemos parado a pensar en sus derechos y, a veces, cuando me paro a pensar en ello, me da algo de miedo lo que de nosotros puedan pensar algunas especies que, según creo, son bastante inteligentes. Y, todo esto nos lleva a plantear una pregunta:
Pero, ¿qué somos nosotros?
emilio silvera
















Totales: 84.504.387
Conectados: 78

























