Oct
16
No se explicarlo, sin embargo, tengo la idea de que, dentro de los A.N.,...
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (2)
Kip S. Thorne, es uno de los mayores especialistas que existen sobre el difícil tema de los agujeros negros, y, en su libro Agujeros negros y tiempo curvo, en el prefacio dice:
“Durante treinta años en participado en una gran búsqueda: una búsqueda para comprender un legado dejado por Albert Einstein a las generaciones futuras –su teoría de la Relatividad y sus predicciones acerca del Universo- y descubrir dónde y cómo falla la relatividad y que la reemplaza.
Esta búsqueda me ha llevado por laberintos de objetos exóticos: agujeros negros, enanas blancas, estrellas de neutrones, singularidades, ondas gravitacionales, agujeros de gusano, distorsiones del tiempo y máquinas del tiempo. Me ha enseñado epistemología: ¡qué es lo que hace “buena” una teoría?, ¿qué principios transcendentales controlan las leyes de la naturaleza?, ¿por qué piensan los físicos que sabemos las cosas que creemos saber, incluso si la tecnología es demasiado débil para verificar nuestras predicciones? La búsqueda me ha mostrado cómo trabajan las mentes de los físicos, y las enormes diferencias entre unas mentes y otras (por ejemplo, la de Stephen Hawking y la mía) y por qué se necesitan tantos tipos diferentes de científicos, trabajando cada uno a su manera, para desarrollar nuestra comprensión del Universo. Nuestra búsqueda, con cientos de participantes diseminados por todo el globo terrestre, me ha ayudado a apreciar el carácter internacional de la ciencia, las diferentes formas en que la empresa científica se organiza en las distintas sociedades, y la imbricación de la ciencia con la política…”
Está claro que Thorne, se ha devanado los sesos buscando las respuestas que le dijeran cosas tales como: ¿Qué es en realidad un agujero negro? ¿Qué ocurre allí dentro de eso que llamamos singularidad? ¿Cómo es posible que se pueda formar un objeto de tal densidad y energía? ¿Hacia dónde ha ido a parar tan ingente cantidad de masa? ¿Es posible que, cientos de miles de trillones de toneladas de materia se puedan comprimir hasta un punto infinitesimal?
Thorne, como todos sabéis, asesoró al desaparecido Carl Sagan en su Obra Contac que, más tarde, fue llevada al cine. Toda la trama de la máquina que abrió el agujero de Gusano que hizo posible el viaje de la heroína hacia galaxias lejanas, la desarrolló Thorne y su equipo, y, todo lo que allí se cuenta salió de concienzudas ecuaciones a partir de la Relatividad General de Einstein que, teóricamente, no impide viajar en el tiempo. Pero, veamos algo mas sobre los exoticos agujeros negros.
Oct
13
¡El UNiverso! ¡Es tan grande! ¡Tan complejo!
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (1)
Todos sabemos que un protón, cuando se encuentra con un antiprotón (materia con antimateria) ambos se destruyen.
Una vez destruidos todos los pares materia antimateria, quedó el sobrante de partículas positivas que es la materia de nuestro universo.
De esa manera se formaron, con esas partículas positivas y los electrones (hadrones y leptones), se originaron grandes conglomerados de gas y polvo que giraban lentamente, fragmentándose en vórtices turbulentos que se condensaban finalmente en estrellas.
Estos conglomerados de gas y polvo podían tener extensiones de años luz de diámetro y, en algunas regiones donde la formación de estrellas fue muy activa, casi todo el polvo y el gas fue a parar a una estrella u otra. Poco o nada fue lo que quedo en los espacios intermedios. Esto es cierto para los cúmulos globulares, las galaxias elípticas y el núcleo central de las galaxias espirales.
Dicho proceso fue mucho menos eficaz en las afueras de las galaxias espirales. Las estrellas se formaron en números muchos menores y sobró mucho polvo y mucho gas.
Nosotros, los habitantes del planeta Tierra, nos encontramos en los brazos espirales de nuestra galaxia, estamos situados en la periferia a unos 30.000 años luz del centro galáctico y vemos las manchas oscuras que proyectan las nubes de polvo contra el resplandor de la Vía Láctea. El centro de nuestra propia galaxia queda oscurecido por tales nubes.
Estas nubes enormes de polvo cósmico es el material primario del que hacen las estrellas. Este material del que está formado el universo consiste en su mayor parte, como se ha dicho anteriormente, de hidrógeno y helio. Los átomos de helio no tienen ninguna tendencia a juntarse unos con otros. Los de hidrógeno sí, pero sólo en parejas, formando moléculas de hidrógeno (H2). Quiere decirse que la mayor parte del material que flota entre las estrellas consiste en pequeños átomos de helio o en pequeños átomos y moléculas de hidrógeno. Todo ello constituye el gas interestelar, que forma la mayor parte de la materia que circula en el universo entre las estrellas.
Oct
13
Sobre el Big Bang, esa teoria…
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (5)
Hablaremos ahora del Big Bang, esa teoría aceptada por todos y que nos dice cómo se formó nuestro universo y comenzó su evolución hasta ser como ahora lo conocemos.
De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.
La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.
Con nuestro conocimiento actual de física de partículas de altas energías, podemos hacer avanzar el reloj hacia atrás a través de la teoría leptónica y la era hadrónica hasta una millonésima de segundo después del Big Bang, cuando la temperatura era de 1013 K. Utilizando una teoría más especulativa, los cosmólogos han intentado llevar el modelo hasta 1035 s después de la singularidad, cuando la temperatura era de 1028 K. Esa infinitesimal escala de longitud es conocida como límite de Planck, = 10–35 m, que en la Ley de radiación de Planck, es distribuída la energía radiada por un cuerpo negro mediante pequeños paquetes discretos llamados cuantos, en vez de una emisión continua. A estas distancias, la gravedad está ausente para dejar actuar a la mecánica cuántica.
La teoría del Big Bang es capaz de explicar la expansión del universo, la existencia de una radiación de fondo cósmica y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.
Oct
13
¡Singularidad!
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
El concepto mismo de “singularidad” desagradaba a la mayoría de los físicos, pues la idea de una densidad infinita se alejaba de toda comprensión. La naturaleza humana está mejor condicionada a percibir situaciones que se caracterizan por su finitud, cosas que podemos medir y pesar, y que están alojadas dentro de unos límites concretos; serán más grande o más pequeñas pero, todo tiene un comienzo y un final pero… infinito, es difícil de digerir. Además, en la singularidad, según resulta de las ecuaciones, ni existe el tiempo ni existe el espacio. Parece que se tratara de otro universo dentro de nuestro universo toda la región afectada por la singularidad que, eso sí, afecta de manera real al entorno donde está situada y además, no es pacífica, ya que se nutre de cuerpos estelares circundantes que atrae y engulle.
La noción de singularidad empezó a adquirir un mayor crédito cuando Robert Oppenheimer, junto a Hartlan S. Snyder, en el año 1.939 escribieron un artículo anexo de otro anterior de Oppenheimer sobre las estrellas de neutrones. En este último artículo, describió de manera magistral la conclusión de que una estrella con masa suficiente podía colapsarse bajo la acción de su propia gravedad hasta alcanzar un punto adimensional; con la demostración de las ecuaciones descritas en dicho artículo, la demostración quedó servida de forma irrefutable que una estrella lo suficientemente grande, llegado su final al consumir todo su combustible de fusión nuclear, continuaría comprimiéndose bajo su propia gravedad, más allá de los estados de enana blanca o de estrella de neutrones, para convertirse en una singularidad.
Los cálculos realizados por Oppenheimer y Snyder para la cantidad de masa que debía tener una estrella para terminar sus días como una singularidad estaban en los límites másicos de M =~ masa solar, estimación que fue corregida posteriormente por otros físicos teóricos que llegaron a la conclusión de que sólo sería posible que una estrella se transformara en singularidad, la que al abandonar su fase de gigante roja retiene una masa residual como menos de 2 – 3 masas solares.
Oppenheimer y Snyder desarrollaron el primer ejemplo explícito de una solución a las ecuaciones de Einstein que describía de manera cierta a un agujero negro, al desarrollar el planteamiento de una nube de polvo colapsante. En su interior, existe una singularidad, pero no es visible desde el exterior, puesto que está rodeada de un horizonte de suceso que no deja que nadie se asome, la vea, y vuelva para contarlo. Lo que traspasa los límites del horizonte de sucesos, ha tomado el camino sin retorno. Su destino irreversible, la singularidad de la que pasará a formar parte.
Oct
12
¿Que sabes sobre Galaxias?
por Emilio Silvera ~
Clasificado en Astronomía y Astrofísica ~
Comments (0)
GALAXÍA
La Galaxia espiral que acoge a nuestro Sol y a las estrellas visibles a simple vista durante la noche; es escrita con G mayúscula para distinguirla de las demás galaxias. Su disco es visible a simple vista como una débil banda alrededor del cielo, la Vía Láctea; de ahí que a la propia Galaxia se la denomine con frecuencia Vía Láctea.
Nuestra galaxia tiene tres componentes principales. Uno es el disco de rotación de unas 6×1010 masas solares consistentes en estrellas relativamente jóvenes (población II), cúmulos cubiertos de gas y polvo, estando estrellas jóvenes y material interestelar concentrados en brazos espirales. El disco es muy delgado, de unos 1.000 a. l., comparado con su diámetro de más de 100.000 años luz. Aún continúa una activa formación de estrellas en el disco, particularmente en las nubes moleculares gigantes.
El segundo componente principal es un halo débil y aproximadamente esférico con quizás el 15 – 30% de la masa del disco. El halo está constituido por estrellas viejas (población II), estando concentradas parte de ellas en cúmulos globulares, además de pequeñas cantidades de gas caliente, y se une a un notable bulbo central de estrellas, también de la población II.
El tercer componente principal es un halo no detectado de materia oscura con una masa total de al menos 4×1011 masas solares. En total, hay probablemente alrededor de 2×1011 estrellas en la Galaxia (unos 200 mil millones), la mayoría con masas menores que el Sol.
La edad de la Galaxia es incierta, si bien el disco tiene al menos 10.000 millones de años, mientras que los cúmulos globulares y la mayoría de las estrellas del halo se cree que tienen entre 12.000 y 14.000 millones de años.
















Totales: 85.388.847
Conectados: 9






















