martes, 16 de septiembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Cúmulo Globular Omega Centauri

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En la galeria de imágenes que diariamente nos pone el amigo Shalafi (Administrador del lugar), hoy nos ha tocado un cúmulo de estrellas que es una maravilla. Si miramos referencias del mismo, en cualquier sitio que miremos podrán decirnos cosas como esta:

 

“Omega Centauri, ω Cen o NGC 5139 es un cúmulo globular situado en la constelación de Centaurus. Fue descubierto por Edmond Halley en 1677. Este cúmulo orbita alrededor de nuestra galaxia, la Vía Láctea, siendo el más grande y brillante de los cúmulos globulares que la orbitan. Es uno de los pocos que puede ser observado a simple vista. Omega Centauri esta a unos 18.300 años luz (5.6 kpc) de la Tierra y contiene varios millones de estrellas de Población II. Las estrellas de su centro están tan juntas entre si que se cree que se encuentran a tan solo 0,1 años luz las unas de las otras. Su edad estimada es de cerca de 12 mil millones de años. Contiene alrededor de 10 millones de estrellas.

A pesar de no ser una estrella de la constelación recibió una denominación de Bayer, la ω. Una característica que lo distingue de los demás cúmulos globulares de nuestra galaxia es que contiene estrellas de distintas generaciones. Por este motivo se especula que Omega Centauri puede ser el remanente del núcleo de una galaxia enana que fue satélite de nuestra Vía Láctea. Esta galaxia tendría un tamaño cientos de veces superior al actual de Omega Centauri y fue disgregada y absorbida por nuestra galaxia. La química y la dinámica de Omega Centauri son consistentes con esta hipótesis.

Al igual que Mayall II, un cúmulo globular que orbita la galaxia de Andrómeda, Omega Centauri presenta un rango de metalicidades y de edades estelares que llevan a pensar que no se formó de una sola vez (al contrario de lo que es normal en los cúmulos globulares). Muchas de las estrellas que forman Omega Centauri se piensa que son el remanente del núcleo de la galaxia enana ancestral que fue capturada por la Vía Láctea.”

Cúmulo estelar abierto M11. Puede observarse su estructura poco densa, formada por estrellas jóvenes y brillantes que difiere del cúmulo que arriba ponemos como actor principal de ésta reseña.

Cuando observamos el universo mediante un telescopio se nos hace evidente que multitud de estrellas no se encuentran solas, si no que forman parte de sistemas de dos, tres o más soles. De hecho una gran parte de estrellas son consideradas sistemas binarios o múltiples, vinculados gravitatoriamente. Sin embargo es posible encontrar las estrellas formando comunidades aún mucho mayores y que implican una evolución conjunta desde su nacimiento en alguna gran nebulosa, nos referimos a los cúmulos estelares, verdaderas ciudades de estrellas.
Observando estos conglomerados de decenas, centenares o miles de componentes, enseguida nos percataremos que responden a dos tipos de agrupamientos muy diferentes atendiendo a su morfología

Los cúmulos de estrellas se clasifican en dos grupos: cúmulos abiertos, que no poseen forma definida, y cúmulos globulares, que son esféricos o casi esféricos. Los abiertos están formados por unos cientos estrellas jóvenes, mientras que los cúmulos globulares contienen más de mil veces esa cantidad, y generalmente son estrellas muy viejas.

Los cúmulos globulares forman un halo alrededor de nuestra galaxia, la Vía Láctea, mientras que los abiertos se sitúan en los brazos de la espiral.

Los cúmulos abiertos son mucho más numerosos que los globulares: se conocen unos 1.000 en nuestra galaxia mientras que sólo hay 140 globulares.

El pequeño cúmulo abierto de Las Pléyades

“Las Pléyades (que significa «palomas» en griego), también conocidas como Objeto Messier 45, M45, Las Siete Hermanas o Cabrillas, o Los Siete Cabritos, es un cúmulo abierto visible a simple vista en el cielo nocturno, con un prominente lugar en la mitología antigua, situado a un costado de la constelación de Tauro. Las Pléyades son un grupo de estrellas muy jóvenes situadas a una distancia aproximada de 450 años luz de la Tierra y están contenidas en un espacio de treinta años luz. Se formaron hace apenas unos 100 millones de años aproximadamente, durante la era Mesozoica en la Tierra, a partir del colapso de una nube de gas interestelar. Las estrellas más grandes y brillantes del cúmulo son de color blanco-azulado y cerca de cinco veces más grandes que el Sol.”

La nebulosa de Orión es un ejemplo de una región en la que todavía se están formando estrellas. En el centro de la nebulosa se encuentra un grupo de estrellas viejas, el “Trapecio de Orión”. La nebulosa contiene suficiente gas como para formar otros cientos de estrellas del mismo tipo.

Se conoce como “asociación estelar” a una agrupación de estrellas parecida a un cúmulo, pero distribuidas sobre un área mayor. A menudo se encuentran cúmulos abiertos en el interior de una asociación, en zonas donde la densidad del gas a partir del cual se formó la asociación es mayor.

Los miembros de un cúmulo nacen juntos y continúan moviéndose juntos por el espacio. Esto sirve para hallar sus distancias. Midiendo el movimiento de las estrellas a lo largo de la línea de visión y a través de la línea de visión, se pueden calcular las distancias que las separan del Sistema Solar. Esta técnica se conoce como el método del cúmulo móvil.

“Los cúmulos estelares ayudan a comprender la evolución estelar al ser estrellas formadas en la misma época a partir del material de una nube molecular. También representan un importante paso en la determinación de la escala del Universo. Algunos de los cúmulos abiertos más cercanos pueden utilizarse para medir sus distancias absolutas por medio de la técnica del paralaje. El diagrama de Hertzsprung-Russell de estos cúmulos puede entonces representarse con los valores de luminosidad absoluta. Los diagramas similares de cúmulos cuya distancia no es conocida pueden ser comparados con los de distancia calibrada estimando la distancia que los separa de nosotros.”


El Universo nunca dejará de sorprendernos, es demasiado grande para que nuestras mentes tridimensionales lo puedan asimilar y, en él se encuentran muchas cosas que nos sobrepasan, están presentes distancias que no podemos asimilar aunque inventamos unidades para tratar de midirlas. Y, sobre todo, en el Universo que tiene su ritmo particular que viene dado por las cuatro fuerzas fundamentales que, en interacción con la materia presente, producen fenómenos que tratamos de desvelar y, tanto los objetos como los sucesos, tienen su mensaje que no siempre comprendemos.

emilio silvera

La Fascinación de algunas estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «


Aquí tenemos a R Leporis, una estrella de Carbono a la que se puso el de la “Estrella Carmesí”, o, la “Gota de Sangre”.

R Leporis (R Lep / HD 31996 / HR 1607) es una estrella variable de la constelación de Lepus, del límite con Eridanus. Visualmente es una estrella de un color rojo vívido, cuyo brillo varía entre magnitudes aparentes entre +5,5 y +11,7. Descubierta por John Russell Hind en 1845, es también conocida como Estrella carmesí de Hind.

A una distancia aproximada de 1100 años luz, R Leporis pertenece a la rara clase de estrellas de carbono, siendo su tipo espectral C6. En estas estrellas, los compuestos de carbono no permiten pasar la luz azul, por lo que tienen un color rojo intenso. En R Leporis la relación carbonooxígeno estimada es 1,2, más del doble que la existente en el Sol. un radio entre 480 y 535 veces más grande que el radio solar, equivalente a 2,2 – 2,5 UA. Si estuviese en el centro del Sistema Solar, su superficie se extendería más allá de la órbita de Marte. Su temperatura superficial, extremadamente baja una estrella, está comprendida entre 2050 y 2290 K. Brilla con una luminosidad entre 5200 y 7000 veces a la del Sol, siendo la mayor de la energía radiada como radiación infrarroja. (Wikipedia)

El concepto de vecindad es relativo e indefinido. Su valor variar según sean las distintas medidas de celeridad de los medios habituales de comunicación y según sea la extensión dentro de la cual sirva de medida de relación.

Con el de la expresión “vecina” va siempre implícita o sugerida la idea de que existe una región que no es vecina. La vecina persistente de la Tierra es la Luna; los cometas son sólo visitantes ocasionales. Podemos considerar vecinas del Sol a las estrellas situadas a una distancia comprendida los cincuenta y cien años-luz, dejando excluidos a los miles de millones de estrellas de la Vía Láctea. Los planetas y los cometas no son vecinos del Sol, sino miembros de su familia, y los bólidos serían una especie de parásitos cósmicos.

Pero mi intención al comenzar comentario, era el de exponer aquí alguno de los muchos caprichos cósmicos que en el Universo podemos contemplar y, en este caso concreto, me he decidido por contaros lo siguiente:

Cerca de la famosa estrella Rigel (Beta Orionis), la débil constelación de Lupus (la Liebre) es escenario cada catorce meses de un prodigio de la evolución estelar: R Leporis, la estrella carmesí, cobra vida y regala a los astrónomos toda su belleza al encender en la oscuridad del cielo el resplandor de color rojo más acentuado que observarse a través de un telescopio. La encontró el astrónomo inglés John Russell Hind en el año 1845 y dijo de ella, estupefacto, que era como una “gota de sangre”. aquel día, el espectáculo celeste se repite periódicamente año y dos meses, cuando R Leporis abandona la oscuridad y resplandece como un candil en un área del firmamento casi vacía de estrellas que contrasta con el fulgor de los soles azules que forman la constelación de Orión.

Estrella hipotética de más de 120 masas solares, tan luminosa que se esperaría que se desintegrase por la presión de su propia radiación. Las estrellas supermasivas fueron propuestas explicación a unos muy brillantes existentes en la Gran Nube de Magallanes, aunque en la actualidad se sabe que son cúmulos de estrellas O ordinarias.

R Leporis es una estrella de Carbono y constituye uno de esos caprichos cósmicos a los que me refería y que han permitido al hombre percibir la magia de los cielos y en ellos la belleza de sus orígenes. La ausencia de colores intensos de las que adolece el firmamento se rompe aquí deleite del observador nocturno, que asistía a un acontecimiento de la Naturaleza extensivo a miles de millones de estrellas y que en el siglo XVII asombró al científico alemán Johannes Hevelius.

A diferencia del Sol y de las estrellas de su , que permanecen estables, el brillo de una gran de la población estelar es variable, y en algunos casos su ciclo hace oscilar espectacularmente su intensidad lumínica ante nuestros ojos. En R Leporis, más que sus cambios de brillo, la faceta más hermosa es su tonalidad roja, una de las más intensas que puede observarse en todo el cielo, pero otras variables tienen un ciclo que las hace apagarse y encenderse como si fueran faros en la Vía Láctea. Ese es el caso de Mira, a la que Hevelius llamó “la estrella maravillosa” después de que apareciera en el cielo como por arte de magia.

Del grupo destaca Antares, una supergigante M 1,5, 10 000 veces más luminosa que el Sol y con un diámetro que es probablemente más de 500 veces el del Sol. Nos contempla 520 a.l. de distancia y una compañera enana. Su color es el rojo intenso.

Aldebaran, la estrella Alfa Tauri, es una Gigante K5. Aparentemente parte del grupo de estrella de las Hyades, aunque en realidad sólo está a 60 a.l., aprpoximadamente la mitad de la distancia del cúmulo.

Betelgeuse, la estrella Alfa Orionis, la décima más brillante del cielo, es una gigante M2 que es una variable semirregular. Se dice que está a unos 400 a.l. de la Tierra y su luminosidad es 5000 veces a la del Sol pero, si se encuentra a la misma distancia de la Asociación de Orión ( algunos postulan), la luminosidad verdadera sería de 50 000 veces la del Sol. Su diámetro es cientos de veces el del Sol. Su brillo varía a medida que se expande y contrae en tamaño.

Arthurus es la estrella Alfa Boötis, magnitu -o,o4, la estrella más brillante al norte del ecuador celeste y la cuarta más brillante de todo el cielo. Es una gigante K 1 situada a 35 a.l.

Rigel, la estrella Beta Orionis de magnitud o,12 es una gigante B 8 siatuada a 1 400 a.l., su luminosidad es de unas 150 000 veces la del Sol, tiene una compañera de magnitud 6,8, que es a su vez una binaria espectroscópica.

Al lado de estas gigantes, el Sol y otras estrellas resultan minusculos como podemos ver en la y, sin embargo, ya sabemos todos la importancia que nuestro Sol tiene hacer posible la vida en la Tierra.

Las consecuencias de una explosión supernova de una de estas estrellas gigantes, a pesar de sus distancias a la Tierra, no sabemos lo que podría pasar, y, hay varias candidatas en la lista a futuras supernovas y agujero negro. ¿Qué repercuciones podrá ?

Mira es el propio que Hevelius le puso a esta estrella, cuya denominación original en el catálogo de Johann Bayer, basado en el alfabeto griego, era Omicrón Ceti, es decir, la estrella omicrón de la constelación de Cetis, la Ballena. Su variabilidad fue descubierta en 1596 por David Fabricius, pero Hevelius se sintió tan atraído por ella que le dedicó un , que tituló Historia de la estrella maravillosa. Realmente lo es; el brillo de Mira disminuye hasta la magnitud 11, invisible a ojo desnudo y sólo observable con telescopio como un débil punto de luz, pero al cabo de un tiempo su gigantesca máquina nuclear la hincha vertiginosamente y se convierte en una estrella de segunda magnitud, alcanzando un brillo notable, similar al de la estrella polar. Por eso, cuando está en la inferior del ciclo, Mira no puede verse sin ayuda óptica, pero después surge entre las demás estrellas de su constelación, como si se hubiera encendido de repente.

http://upload.wikimedia.org/wikipedia/commons/e/e8/Mira_1997.jpg

de Mira obtenida con el Telescopio Espacial HubbleHubble

Mira pertenece a la clase espectral M, la misma que Antares y Betelgeuse. Las tres son estrellas muy frías en comparación con el Sol, ya que su temperatura es del orden de los 3000 grados. Sin embargo, Mira, Betelgeuse y Antares son decenas de miles de veces más luminosas que el Sol, puesto que figuran entre las estrellas más grandes conocidas, alcanzando diámetros de unos ochocientos millones de kilómetros, equivalentes a la distancia a la que se halla Júpiter del Sol. Estas tres gigantes, sin embargo, comparten sus atributos relativos a la clase espectral con las estrellas representativas del polo opuesto: las enanas rojas, como la estrella de Barnard y Próxima Centauri. Todas se muestran ante nosotros con el bello color rojizo, pero la gigante Betelgeuse es una estrella inestable a la que los astrónomos consideran una de las mejores candidatas de la Vía Láctea para estallar en cualquier momento en de supernova; puede ocurrir mañana o dentro de mil años, pero Betelgeuse está destinada a un final cataclísmico que se observará alguna vez. En cambio Barnard y Próxima, dos diminutos soles rojos, viven en la eternidad, al ser tan frías y pequeñas podrían permanecer en sus actuales en torno a doscientos mil millones de años, de acuerdo con la teoría aceptada de la evolución estelar para este de bajo consumo de material nuclear.

      El grupo de estrellas gigantes Pismis 24-1 (CSIC).

Mucho de que Russell descubriera la estrella carmesí y Johannes Hevelius quedara fascinado por Mira, la estrella maravillosa, los astrónomos árabes se fijaron en una estrella de la constelación de Perseo que cambiaba de brillo cada tres días, con una pauta muy regular y acentuada. Los árabes escribieron una de las escasas páginas destacadas de la astronomía medieval, paliando de alguna manera la decadencia que sufrió esta ciencia en ese período en Europa y el Mediterráneo en el periodo comprendido Ptolomeo y Copérnico, que duró un milenio y medio.

http://upload.wikimedia.org/wikipedia/commons/7/7c/EtaCarinae.jpg

Eta Carinae, un monstruo arrojando material al espacio interestelar vía de escape y regular su estabilidad que, debido a sus es muy precaria. Es la criatura más prodigiosa de la Vía Láctea: una súper estrella azul que brilla como cinco millones de soles juntos. Es tan grande que, si estuviera en el centro de nuestro Sistema Solar, sus bordes tocarían la órbita de Júpiter.

Bueno, hablar aquí de las estrellas que conocemos bien y de sus historias resulta entretenido y nos enseña un poco de la Historia estelar en objetos individuales y determinados que, por una u otra razón tienen destacadas razones que los astrónomos se fijaran en ellos. Alguno de estos días, tendremos que hablar de Eta Carinae (arriba), otra variable irregular hipergigante, que llegó a ser la segunda estrella más brillante del cielo. Es una variable azul luminosa con magnitud absoluta de -10, y es clasificada oficialmente como una estrella S Doradus. Se encuentra dentro de un cúmulo de estrellas masivas y una masa estimada en 100 masas solares, es probablemente la estrella más masiva de la Galaxia. El único espectro visible es el de la Nebulosa del Homúnculo que la rodea. Eta Carinae es una intensa fuente infrarroja y su pérdida de masa (alrededor de 0,1 masas solares por año) asociadas energías próximas a las de algunas supernovas y, teniéndola a unos 8000 años-luz, lo mejor será estar vigilante, ya que, aunque son distancias inmensas…Nunca se sabe lo que un monstruo de ese calibre nos podría enviar.

Estrellas fijas:

Expresión arcaica el de estrellas en general, con el fin de distinguirlas de los planetas que eran conocidos estrellas errantes. En la actualidad, el término se aplica a las estrellas sin movimiento propio detectable.

rica en metales:

Estrellas con una alta proporción de elementos pesados como calcio, hierro y titanio. Son miembros de la Población I, y se encuentran en el y en los brazos espirales de nuestra Galaxia.

reloj:

Brillante estrella situada en la región ecuatorial del cielo con ascensión recta muy bien conocida, determinar el de los relojes empleados para medir tránsitos en el meridiano.

Estrella simbiótica:

Estrella (en muchos casos una cataclísmica) que presenta líneas espectrales a temperaturas muy diferentes, como las típicas de una gigante roja de tardío o supergigante (3000K) y las de una estrella enana B (20 000 K). Dichas características indican que la estrella es una binaria interaccionante.

Estrellas de Neutrones:

Estrellas que se forman a partir de estrellas amasivas (2-3 masas solares) cuando al final de sus vidas, agotado el combustible nuclear de fusión, quedan a merced de la Gravedad que no se ve frenada por la fusión nuclear, y, en ese , la comienza a contraerse su propio peso, de tal que, los protones y electrones  se funden y se convierten en neutrones que, al verse comprimidos tan violentamente, y, no pudiendo permitirlo por el principio de esclusión de Pauli, se degeneran y y hacen frente a la fuerza gravitatoria, consiguiendo así el equilibrio de lo que conocemos estrella de nweutrones de intensom electromagnético y rápida rotación.

Estos objetos, después de los Agujeros Negros, son los más densos que se conocen en el Universo, y, su masa podría pesar 1017 Kg/m3.

La estrella de Quarks

Es hipotética, aún no se ha observado ninguna , se cree que pueden estar por ahí, y, si es así, serían mucho más densas que las de neutrones, ya que, ni la degeneración de los neutrones podría parar la Fuerza de la Gravedad.

Enana Blanca

Nuestro Sol es de de estrellas y, tampoco su densidad se queda corta, ya que, alcanzan 5 x 108 Kg/m3. Aquí, cuando la estrella implosiona y comienza a comprimirse bajo su propio peso por la fuerza de Gravedad, ocurrió con la estrella de Neutrones, aparece el Principio de Exclusión de Pauli, el cual postula que los fermiones (los electrones son fermiones) no pueden ocupar el mismo lugar estando en posesión del mismo cuántico, y, siendo así, se degeneran y que, la compresión de la estrella por la Gravedad se frene y vuelve el equilibrio que la convierte en estrellas enana blanca.

El fenómeno de convertirse en enana blanca ocurre cuando la estrella original una mása máxima posible de 1,44 masas solares, el límite de Shandrashekar, si fuera mayor se convertiría en estrella de neutrones. Y, siendo mayor la masa de 3-4 masas solares, su destino sería un agujero negro.

La variedad de Nebulosas Planetarias es enorme, y, cada una de ellas tiene sus propias características. Nuestro Sol podría ser cualquiera de ellas, y, al final de su vida, después de la etapa de Gigante Roja en la que su óbita aumentará hasta engullirse a Mercurio, a Venus y a la propia Tierra, comenzará a contraerse convertirse en una de ellas y, lo que fué el Sol, se quedará reducido a ese puntito blanco y denso que vemos en el centro de la Nebulosa de abajo.

Está claro que la lección de hoy sobre las estrellas es insuficiente y de que existen muchas más clases de estrellas que aquí no han sido nombradas pero, es tanta la diversidad y tan enorme la gama de peculiaridades de todas las estrellas del cielo que, exponerlas aquí todas sería imposible. Además, y, como muy bien nos dijo Nelson hace unos días, lugar es para aficionados que, en amable tertulia puedan desahogar sus pasiones por la Astronomía y los objetos del cielo, exponer sus propias ideas e intercambiar pareceres que, de esa manera, siempre dentro de los parámetros del bien estar, aprenderemos los unos de los otros y, todos, nos enriqueceremos.

emilio silvera

Existen enigmas en el Sol que debemos conocer

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Gracias al Sol, podemos tener una serie de mejoras y tecnologías que aprovechan sus rayos de luz y su calor para obtener la energía limpia que necesitamos, y, cierto es que, teniendolo tan cerca (es la estrella más cercana a nosotros), aún nos quedan por desvelar muchos secretos que esconde. Pero veamoslo otras perspectivas.

Se han programado modelos donde la composición de la Corona del Sol ha sido alterada digitalmente y que, mediante la combinación de 30 fotografías se nos hace ver las periféricas olas y filamentos y, por mi , con el modelo por delante en la pantalla de mi ordenador, estoy viendo esa parte interior brillante de la corona (corona K), provocada por la luz del Sol difundida por electrones. Es la auténtica corona, al revés que la corona F, que es debida a la luz difundida por las partículas de polvo.

Debido a las velocidades extremadamente altas de los electrones libres (en promedio 10.000 Km/s para una temperatura coronal de unos 2 millones de K, las líneas de Fraunhofer del espectro fotosférico se encuentran difuminadas de manera que el espectro de la corona K es casi un puro continuo.

Yo, ante la imagen de arriba y las figuras que están presenten en ese resplandor de la corona del Sol, estoy viendo la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitacionales son intensos, es el caso de la fuerza de Gravedad que produce la inmensa masa de nuestro Sol y, a su alrededor, el espacio se curva y el tiempo se distorsiona.

En relatividad general la geometría del espacio-tiempo está íntimamente relacionada con la distribución de materia. En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría euclidea se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvarán. Esto es, en esencia, lo que ocurre en relatividad general.

Es un hecho comprobado que, la presencia de grandes masas como la de planetas (La Tierra) o estrellas (El Sol), distorsionan el espacio y dibujan la geometria del Universo gracias a la fuerza de Gravedad. Así nos lo explica la relatividad general de Einstein largamente comprobada.

En los modelos cosmológicos más sencillos, basados en el universo de Friedman, la curvatura del espacio-tiempo está relacionada simplemente con la densidad media de materia, y se describe por una función matemática exacta denominada métrica de Robertson-Walker.

     Métrica de Robert-Walker

Si un universo una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio tiempo está curvado sobre sí mismo, la superficie de una esfera; la suma de los ángulos de un triángulo dibujados sobre la esfera es entonces mayor que 180º. Dicho universo tiene tamaño y vida finita; se trata de un universo cerrado.

Un universo con menor densidad que la crítica se dice que tiene curvatura negativa, como la superficie de una silla de montar, en la que la suma de los ángulos de un triángulo es menor que 180º. Dicho universo sería infinito y se expandiría siempre, se trata de un universo abierto. El Universo del Einstein-de Sitter tiene densidad crítica y es, por consiguiente, especialmente plano (euclideo) e infinito tanto en el espacio como en el tiempo.

la distorsión del tiempo y la curvatura espacial no la podemos ver (sólo se dejan sentir sus efectos) al ver la Imagen distorsionada de la Corona me vino a la mente la curvatura espaciotemporal que producen las grandes masas en el espacio circundante, y, de ahí llegue a los tres modelos del universo abierto, cerrado y plano que arriba quedan significados.

En realidad, lo que aquí arriba estamos viendo es la corona visible en luz blanca, la Corona del Sol observada en longitudes de onda visibles los eclipses totales de Sol y con corónografos. La emisión en luz blanca tiene su origen en la luz de la fotosfera del Sol que se difunde por los electrones libres (la corona K) y el polvo (la corona F). Una pequeña cantidad de luz visible procede de las líneas de emisión (la corona E).

En presencia de grandes masas de materia, tales planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio–tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se alrededor de la masa que provoca dicha distorsión, cuya importancia iría en función de la importancia de la masa que distorsiona el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad de planetas, satélites y grandes objetos cosmológicos, es importante.

fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra, cuya gravedad tira de nosotros para que así sea. También, es la gravedad la que hace que se fusionen las galaxias vecinas que, con el tiempo, se unen en un matrimonio indisoluble.

No obstante, a escala atómica la fuerza gravitacional resulta ser unos 1040 veces más débil que la fuerza de atracción electromagnética, muy potente en el ámbito de la mecánica cuántica donde las masas de las partículas son tan enormemente pequeñas que la gravedad es despreciable.

Es difícil imaginar que una partícula subatómica genere gravedad

La gravitación cuántica es la teoría en la que las interacciones gravitacionales entre los cuerpos son descritas por el intercambio de partículas elementales hipotéticas denominadas gravitones. El gravitón es el cuanto del campo gravitacional. Los gravitones no han sido observados, aunque se presume que existen por analogía a los fotones de luz.

Cuando hablamos de la Corona del Sol nos estamos refiriendo a un gas altamente ionizado y extremadamente caliente (alrededor de los 2 millones de K) que rodea al Sol. Existen otras estrellas que presentan coronas. La corona solar (como podemos comprobar arriba) son visible durante los eclipses totales como una región blanca que se extiende varios radios solares, mostrando filamentos, penachos, plumas y burbujas o bucles.

La radiación de la corona en luz blanca componentes debidas a líneas de emisión (la corona E) a la difusión de electrones (la corona K) y a partículas de polvo (la corona F). La extensión externa de la corona es el viento solar.

Las imágenes de rayos X de la corona solar muestran estructuras complejas con bucles cerca de los grupos de manchas solares, y cerca de los puntos brillantes de rayos X, más pequeños. La emisión de rayos X, además de las líneas de emisión de los átomos altamente ionizados (líneas coronales), indican que la temperatura es de 2 millones de K; pueden ser encontradas temperaturas incluso mayores de 4 millones K en las condensaciones coronales.

Los campos magnéticos con una intensidad de 10 exp. -3 tesla, gobiernan la de la corona. Los campos magnéticos forman bucles cerrados en las regiones activas, y en la mayor parte de la corona tranquila (es decir, regiones no activas), si bien en los agujeros coronales las líneas de campo magnéticos son abiertas y se extienden por el espacio, no volviendo al Sol.

Por el , se desconoce como se calienta la corona, aunque el mecanismo probablemente está conectado con los fuertes campos magnéticos allí presentes. De todas las maneras de millones de K en la corona a 5.770 K en la superficie, 4.400 K en el mínimo de temperatura de la fotosfera y, una cromosfera de 20.000 K, nos da a entender que existe un aumento de temperatura con la altitud –en la región de transición- hacia la corona donde la tempera llega al máximo antes expresado de millones de K.

Está claro que, sobre el Sol debemos procurar profundizar en esas lagunas que se forman en nuestro entendimiento de los fenómenos que allí ocurren y, la temperatura de la Corana Solar, es una de ellas.

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene encuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 tonelada.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 654 millones de toneladas por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.

Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás. Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

      La radiación solar incide en la Tierra y produce una serie de fenómenos que contribuyen a que las cosas sean tal las podemos ver

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.

La complejidad que encierra los mecanismos de una simple estrella es tan profunda que, conocer los entrecijos de la más cercana a nosotros (el Sol, del que por cierto depende la vida en la Tierra), necesitamos investigar más, hacer nuevos midelos y nuevas observaciones que, a través de sondas espaciales robóticas nos puedan decir lo que realmente allí ocurre.

emilio silvera

Las galaxias y la Vida… ¡Crean entropía negativa!

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

        Estamos en un planeta lleno de vida y tal maravilla se nos olvida con frecuencia

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida multiforme, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

                      Las cosas que podemos encontrar en el espacio interestelar nos pueden sorprender

                                     La vida es un signo de entropía negativa se replica

 

Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Ahora, parece que han recapacitado y han enviado a Marte y otros lugares de nuestro entorno, una pléyade de ingenios que ya nos han enviado e imágenes de cómo son otros mundos y de las posibilidades que en ellos pueden existir de que la vida esté presente. De momento han encontrado hielo de agua, han diluido porciones de la tierra marciana en agua y debidamente tratada, han hallado la presencia de magnesio, sodio, potasio y cloruros.  En algunos lugares, como Titán, por ejemplo,  hay más que evidencia de agua porque las sales están allí con otros elementos esperanzadores y una atmósfera prometedora. Además han encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de estos lugares (también Marte) es que no son un mundos extraños, sino que, en muchos aspectos, son iguales que la Tierra fue en el pasado o podrá ser en el futuro. Por eso es importante que los estudiémos.

                   La Vida puede estar presente… ¡En tántos mundos!

En alguna ocasión me he referido al comentario que hizo Darwin:

“… los materiales primigenios… en alguna pequeña charca caliente, tendrían la oportunidad de hacer el y organizarse en sistemas vivos…”

 

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo,  es difícil no conjeturar que allí, junto a esos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener para generar la vida en cualquiera de sus millones de formas, incluso desconocidas para nosotros como ocurre aquí mismo en nuestro planeta.

Supertierras que son fáciles de detectar por su inemnsas masas pero, los planetas terrestres también están por ahí, orbitando a miles y miles de estrellas y a la distancia adecuada poder contener la vida. Los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON). Están ahí, dispersos por las Nebulosas que forman los mundos y las estrellas y… ¡la vida!

Lee Smolin, de la Universidad de Waterloo,  Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae formar nuevas estrellas y mundos.

                   De sitios así surgen las estrellas y los mundos… ¿Y la vida?

Nuestro dentro del espacio, la Vía Láctea, es una entre los cientos de miles de millones de estructuras similares dispersas por todo el Universo visible, y parece ser una más, con todas las características típicas – de tipo medio en cuanto a tamaño, composición química, etc.- La Vía Láctea tiene forma de disco plano, con alrededor de cien mil años luz de diámetro, y está formada por doscientos mil millones de estrellas que describen órbitas en torno al centro del disco.

El Sol, en realidad, sólo es importante para nosotros al ser el cuerpo central de nuestro Sistema Solar, y con mucho, la estrella más cercana al planeta Tierra y la única que se puede estudiar con todo lujo de detalles. Se clasifica como una estrella G2V: una estrella amarilla con una temperatura efectiva de 5.770 K ( espectral G2) y una enana de la secuencia principal (clase de luminosidad V). Los detalles de su composición son sobradamente sabidos por todos y cabe destacar su abundancia de hidrógeno – 71% en masa- y de helio el 27% y elementos más pesados hasta completarlo. Por lo tanto, nuestro Sol no destaca por nada entre esa multitud de de cientos de miles de millones de estrellas.

Recorre su órbita a una distancia del centro que viene a ser más o menos dos tercios del diámetro. En el centro de la Galaxia las estrellas forman una protuberancia, de tal modo que el exterior daría la sensación de estar viendo un enorme huevo frito, en el que la protuberancia sería la yema. Sin embargo, el modo en que este disco gira revela que todo el material brillante (materia bariónica) que compone la parte visible de la Vía Láctea queda sujeto por el tirón gravitatorio que la propia masa galáctica genera. Otros hablan de una materia invisible que no brilla ni emite radiación y que viene a ser más o menos diez veces mayor que la materia visible de la Galaxia y que suponen diseminada en un halo situado alrededor de ella, extendiéndose mucho más allá del borde del disco de estrellas brillantes.

qué es realmente esta materia oscura (si existe, yo prefiero llamarla no luminosa o materia escondida) constituye un tema de crucial interés para los astrónomos, pero no entraremos ahora en eso, ya que, para lo que estamos tratando, no tiene importancia. Muchas galaxias en forma de disco se caracterizan por una especie de serpentinas que se alejan en espiral desde su centro, lo que hace que se les aplique el de galaxias espirales. Es fácil estudiar las pautas que siguen los llamados “brazos espirales”, porque las galaxias se encuentran relativamente cerca unas de otras, si comparamos estas distancias con sus tamaños.

Andrómeda (que no es la que arriba vemos), la galaxia espiral más cercana comparable a la Vía Láctea, se encuentra con respecto a nosotros a una distancia de poco más de dos millones de años luz; parece una gran distancia, pero la galaxia de Andrómeda es tan grande (un poco mayor que la Vía Láctea) que, incluso a esa distancia, vista la Tierra cubre un trozo de cielo del tamaño de la Luna, y puede observarse a simple vista en una noche despejada y sin luz lunar, si nos situamos lejos de las ciudades y de otras fuentes de emisión de luz.

Los brazos espirales, que son una característica tan llamativa en galaxias la nuestra, son visibles porque están bordeados por estrellas calientes de gran masa que relucen con mucho brillo. Esto significa que también son estrellas jóvenes, ya que no hay estrellas viejas que tengan gran cantidad de masa.

No hay misterio alguno en cuanto al modo en que mantienen esa forma espiral. Se debe exclusivamente a un fenómeno de retroalimentación.  Las nubes gigantescas a partir de las cuales se forman las estrellas pueden contener hasta un millón de veces la masa del Sol cuando empieza a contraerse gravitatoriamente para formar estrellas. Cada nube que se contrae produce, no una sola estrella de gran tamaño, sino todo un conglomerado de estrellas, así como muchas estrellas menores. Cuando las estrellas brillantes emiten luz, la energía de esta luz estelar (especialmente en la parte ultravioleta del espectro) forma una burbuja dentro de la nube, y tiende a frenar la de más estrellas. Sin embargo, una vez que las estrellas de gran masa han recorrido sus ciclos vitales y han explotado, sembrando además el material interestelar con elementos de distintos tipos, la onda expansiva ejerce presión sobre las nubes interestelares cercanas y hace que éstas comiencen a contraerse.

Las ondas procedentes de distintas supernovas, al entrecruzarse unas con otras, actúan mutuamente barrer el material interestelar y formar nuevas nubes de gas y polvo que se contraen produciendo más estrellas y supernovas, en un ejemplo clásico de interacción que se mantiene por sí sola en la que intervienen una absorción de energía (procedentes de las supernovas) y una retroalimentación.

Si la nube es demasiado densa, su parte interna se contraerá gravitatoriamente de manera rápida, formando unas pocas estrellas grandes que recorren sus ciclos vitales rápidamente y revientan la nube en pedazos antes de que puedan formarse muchas estrellas. Esto significa que la generación siguiente de estrellas nace de una nube más delgada, porque ha habido pocas supernovas que barrieran material formando pedazos densos. Si la nube es tan delgada que su densidad queda por debajo de la densidad óptima, nacerán muchas estrellas, y habrá gran cantidad de explosiones supernovas, lo cual producirá gran de ondas de choque que barrerán el material interestelar, acumulándolo en nubes más densas.

De esta manera, por ambas partes, las retroalimentaciones operan mantener un equilibrio aproximadamente constante entre la densidad de las nubes y el de supernovas (y estrellas de tipo Sol) que se producen en cada generación. La propia pauta espiral resulta del hecho de que la galaxia realiza movimiento de rotación y está sometida al tirón gravitatorio que crea la fuerza de marea proveniente de esa materia no luminosa.

Claro que, la materia interestelar es variada. Existen nubes de gas y polvo fríos, que son ricas en interesantes moléculas y se llaman nubes moleculares gigantes; a partir de estas nubes se forman nuevas estrellas (y planetas). Hay nubes de lo que consideraríamos gas “normal”, formadas por átomos y moléculas de sustancias tales como el hidrógeno, y quizá tan caliente como una habitación cerrada durante toda la noche y con la temperatura de dos cuerpos dormidos y emitiendo calor. Además, hay regiones que se han calentado hasta temperaturas extremas mediante la energía procedente de explosiones estelares, de tal modo que los electrones han sido arrancados de sus átomos para formar un plasma cargado de electricidad.

La densidad de materia las estrellas es escasa, dado que estas la obsorbieron y la que había están convertidas en cuerpos homogéneos que brillan y generan calor transformando el material más sencillo en otro más complejo y pesado. También, alrededor de estas estrellas se forman los mundos.

Dentro del medio interestelar las densidades varían. En la modalidad más común, la materia existente las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces  en densidad sigue siendo un contraste espectacular.

La cuestión es que, unos pocos investigadores destacaron allá por 1.990 en que todos estos aspectos –composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.

Esto significa que la Vía Láctea ( otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.

Creo que llevan toda la razón.

emilio silvera

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El propio Rutherford empezó a vislumbrar la respuesta a la que arriba hacemos. Entre 1.906 y 1.908 (hace más de un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos.

En la placa fotográfica que le sirvió de blanco tras el metal, Rutherford descubrió varios impactos dispersos e insospechados alrededor del punto central. Comprobó que algunas partículas habían rebotado. Era como si en vez de atravesar las hojas, algunos proyectiles hubiesen chocado contra algo más sólido. Rutherford supuso que aquella “balas” habían chocado contra una especie de núcleo denso, que ocupaba sólo una parte mínima del volumen atómico y ese núcleo de intensa densidad desviaban los proyectiles que acertaban a chocar contra él. Ello ocurría en muy raras ocasiones, lo cual demostraba que los núcleos atómicos debían ser realmente ínfimos, porque un proyectil había de por fuerza muchos millones de átomos al atravesar la lámina metálica

Era lógico , pues, que los protones constituían ese núcleo duro. Rutherford representó los protones atómicos como elementos apiñados alrededor de un minúsculo “núcleo atómico” que servía de centro (después de todo eso, hemos podido que el diámetro de ese núcleo equivale a algo más de una cienmilésima del volumen total del átomo).

En 1.908 se concedió a Rutherford el premio Nobel de Química por su extraordinaria labor de investigación sobre la naturaleza de la materia. Él fue el de importantes descubrimientos que permitieron conocer la estructura de los átomos en esa primera avanzadilla.

File:Hydrogen.svg

    Átomo de hidrógeno, núcleo y electrón.

Desde entonces se pueden describir con términos más concretos los átomos específicos y sus diversos comportamientos. Por ejemplo, el átomo de hidrógeno posee un solo electrón. Si se elimina, el protón restante se asocia inmediatamente a alguna molécula vecina; y cuando el núcleo desnudo de hidrógeno no encuentra por este medio un electrón que participe, actúa como un protón (es decir, una partícula subatómica), lo cual le permite penetrar en la materia y reaccionar con otros núcleos si conserva la suficiente energía.

El helio, que posee dos electrones, no cede uno con tanta facilidad. Sus dos electrones un caparazón hermético, por lo cual el átomo es inerte. No obstante, si se despoja al helio de ambos electrones, se convierte en una partícula alfa, es , una partícula subatómica portadora de dos unidades de carga positiva.

Hay un tercer elemento, el litio, cuyo átomo tiene electrones. Si se despoja de uno o dos, se transforma en ión, y si pierde los tres, queda reducida a un núcleo desnudo, con una carga positiva de tres unidades.

Las unidades de carga positiva en el núcleo atómico deben ser numéricamente idénticas a los electrones que contiene por norma, pues el átomo suele ser un cuerpo neutro, y esta igualdad de lo positivo con lo negativo es el equilibrio. De hecho, los números atómicos de sus elementos se basan en sus unidades de carga positiva, no en las de carga negativa, porque resulta fácil hacer variar el de electrones atómicos dentro de la iónica, pero en cambio se encuentran grandes dificultades si se desea alterar el número de sus protones.

Apenas esbozado este esquema de la construcción atómica, surgieron nuevos enigmas. El de unidades con carga positiva en un núcleo no equilibró, en ningún caso, el peso nuclear ni la masa, exceptuando el caso del átomo de hidrógeno. Para citar un ejemplo, se averiguó que el núcleo de helio tenía una carga positiva dos veces mayor que la del núcleo de hidrógeno; pero como ya se sabía, su masa era cuatro veces mayor que la de este último. Y la situación empeoró progresivamente a medida que se descendía por la tabla de elementos, e incluso cuando se alcanzó el uranio, se encontró un núcleo con una masa igual a 238 protones, pero una carga que equivalía sólo a 92.

¿Cómo era posible que un núcleo que contenía cuatro protones (según se suponía el núcleo de helio) tuviera sólo dos unidades de carga positiva? Según la más y primera conjetura emitida, la presencia en el núcleo de partículas cargadas negativamente y con peso despreciable neutralizaba dos unidades de carga. Como es natural, se pensó también en el electrón. Se podría componer el rompecabezas si se suponía que en núcleo de helio estaba integrado por cuatro protones y dos electrones neutralizadores, lo cual deja libre una carga positiva neta de dos, y así sucesivamente, hasta llegar al uranio, cuyo núcleo tendría, pues, 238 protones y 146 electrones, con 92 unidades libres de carga positiva. El hecho de que los núcleos radiactivos emitieran electrones (según se había comprobado ya, por ejemplo, en el caso de las partículas beta), reforzó esta idea . Dicha teoría prevaleció durante más de una década, hasta que por caminos indirectos, llegó una respuesta mejor como resultado de otras investigaciones.

Pero entre tanto se habían presentado algunas objeciones rigurosas contra dicha hipótesis. Por lo , si el núcleo estaba constituido esencialmente de protones, mientras que los ligeros electrones no aportaban prácticamente ninguna contribución a la masa, ¿cómo se explicaba que las masas relativas de varios núcleos no estuvieran representadas por enteros? Según los pesos atómicos conocidos, el núcleo del átomo cloro, por ejemplo, tenía una masa 35’5 veces mayor que la del núcleo de hidrógeno. ¿Acaso significaba esto que contenía 35’5 protones? Ningún científico (ni entonces ni ahora) podía aceptar la existencia de medio protón.

Este singular interrogante encontró una respuesta incluso antes de solventar el problema , y ello dio lugar a una interesante historia.

Los tres isótopos naturales del carbono: carbono-12 (6 protones y 6 neutrones), carbono-13 (6 protones y 7 neutrones) y carbono-14 (6 protones y 8 neutrones). En los tres casos es carbono, tiene el aspecto de carbono y se comporta químicamente como carbono, por tener seis protones (y forma parte de nuestro organismo, por ejemplo). Sin embargo, sus propiedades físicas varían. Por ejemplo, mientras que el carbono-12 y el carbono-13 son estables, el carbono-14 es inestable y radioactivo: emite radiación beta, uno de sus neutrones “extras” se transforma así en un protón y el núcleo se convierte en nitrógeno-14 (que tiene 7 protones y 7 neutrones), con el aspecto y las propiedades del nitrógeno (por tener 7 protones). Dado que la mitad de la masa del carbono-14 pasa a ser nitrógeno-14 cada 5.730 años aproximadamente (más o menos lo que llevamos de civilización humana), la presencia de este isótopo natural resulta especialmente útil para la datación precisa de objetos históricos.

Isótopos; construcción de bloques uniformes

Allá por 1.816, el físico inglés William Prout había insinuado ya que el átomo de hidrógeno debía en la constitución de todos los átomos. Con el tiempo se fueron desvelando los pesos atómicos, y la teoría de Prout quedó arrinconada, pues se comprobó que muchos elementos tenían pesos fraccionarios (para lo cual se tomó el oxígeno, tipificado al 16). El cloro, según dije antes, tiene un peso atómico aproximado de 35’5, o para ser exactos, 35’457. otros ejemplos son el antimonio, con un peso atómico de 121’75, el galio con 137’34, el boro con 10’811 y el cadmio con 112’40.

El Uranio 235 que es el único que de manera natural es apto para la fisión nuclear, es escaso, sólo el 7 por 1.000 es uranio 235, el , es uranio 238 que, no es combustible nuclear y, como la madera mojada, no arde. Sin embargo, si se bombardea con neutrones lentos del uranio 235, resulta que se convierte en Plutonio 239 que sí, es combustible nuclear válido. ¡Qué no idearemos para los objetivos!

          El Uranio es muy radiactivo y si está enriquecido… ¡Ya sabemos las consecuencias!

Hacia principios de siglo se hizo una de observaciones desconcertantes, que condujeron al esclarecimiento. El inglés William Crookes (el del tubo Crookes) logró disociar del uranio una sustancia cuya ínfima cantidad resultó ser mucho más radiactiva que el propio uranio. Apoyándose en su experimento, afirmó que el uranio no tenía radiactividad, y que ésta procedía exclusivamente de dicha impureza, que él denominó uranio X. Por otra parte, Henri Becquerel descubrió que el uranio purificado y ligeramente radiactivo adquiría mayor radiactividad con el tiempo, por causas desconocidas. Si se deja reposar durante algún tiempo, se extraer de él repetidas veces uranio activo X. Para decirlo de otra manera, por su propia radiactividad, el uranio se convertía en el uranio X, más radiactivo aún.

Por entonces, Rutherford, a su vez, separó del torio un torio X muy radiactivo, y comprobó también que el torio seguía produciendo más torio X. Hacia aquellas fechas se sabía ya que el más famoso de los elementos radiactivos, el , emitía un gas radiactivo, denominado radón. Por tanto, Rutherford y su ayudante, el químico Frederick Soddy, dedujeron que durante la emisión de sus partículas los átomos radiactivos se transformaron en otras variedades de átomos radiactivos.

El Radón, uno de los llamados gases nobles, es incoloro, inodoro e insípido, además de –para nuestro mal- radioactivo. Suele presentarse según el tipo de suelos de determinadas zonas y con la descomposición de uranio, concentrándose en la superficie y siendo “arrastrado” en y por el aire que respiramos, y es en grandes cantidades es un gas  perjudicial para la salud… y que anticipa terremotos.

químicos que investigaron tales transformaciones lograron obtener un surtido muy variado de nuevas sustancias, a las que dieron nombres tales como A, B, mesotorio I, mesotorio II y actinio C. Luego los agruparon todos en tres series, de acuerdo con sus historiales atómicos. Una serie se originó del uranio disociado; otra del torio, y la tercera del actinio (si bien más tarde se encontró un predecesor del actinio, llamado protactinio).

En total se identificaron unos cuarenta miembros de esas series, y cada uno se distinguió por su peculiar esquema de radiación. Pero los finales de las tres series fueron idénticos: en último término, todas las cadenas de sustancias conducían al mismo elemento, el plomo.

Ahora bien, esas cuarenta sustancias no podían ser, sin excepción, elementos disociados. Entre el uranio (92) y el plomo (82) había sólo diez lugares en la tabla periódica, y todos ellos, salvo dos, pertenecían a elementos conocidos.

En realidad, los químicos descubrieron que aunque las sustancias diferían entre sí por su radiactividad, algunas tenían propiedades químicas idénticas. Por ejemplo, ya en 1.907 los químicos americanos Herbert Newby McCoy y W. H. Ross descubrieron que el radiotorio (uno entre los varios de la desintegración del torio) mostraba el mismo comportamiento químico que el torio, y el D, el mismo que el plomo, tanto que a veces era llamado radioplomo. De todo lo cual se infirió que tales sustancias eran en realidad variedades de mismo elemento: el radiotorio, una forma de torio; el radioplomo, un miembro de una familia de plomos; y así sucesivamente.

En 1.913, Soddy esclareció esta idea y le dio más amplitud. Demostró que cuando un átomo emitía una partícula alfa, se transformaba en un elemento que ocupaba dos lugares más abajo en la lista de elementos, y que cuando emitía una partícula beta, ocupaba, después de su transformación, el lugar inmediatamente . Con arreglo a tal norma, el radiotorio descendía en la tabla hasta el lugar del torio, y lo mismo ocurría con las sustancias denominadas uranio X y uranio Y, es decir, que los tres serían variedades del elemento 90. Así mismo, el radio D, el radio B, el torio B y el actinio B compartirían el lugar del plomo como variedades del elemento 82.

Soddy dio el de isótopos (del griego iso y topos, “el mismo lugar”) a todos los miembros de una familia de sustancias que ocupaban el mismo lugar en la tabla periódica. En 1.921 se le concedió el premio Nobel de Química.

El modelo protónelectrón del núcleo concordó perfectamente con la teoría de Soddy sobre los isótopos. Al retirar una partícula alfa de un núcleo, se reducía en dos unidades la carga positiva de dicho núcleo, exactamente lo que necesitaba para bajar dos lugares en la tabla periódica. Por otra parte, cuando el núcleo expulsaba un electrón (partícula beta), quedaba sin neutralizar un protón adicional, y ello incrementaba en una unidad la carga positiva del núcleo, lo cual era como agregar una unidad al atómico, y por tanto, el elemento pasaba a ocupar la posición inmediatamente superior en la tabla periódica de los elementos. ¡Maravilloso!

¿Cómo se explica que cuando el torio se descompone en radiotorio después de sufrir no una, sino tres desintegraciones, el producto siga siendo torio? Pues bien, en este proceso el átomo de torio pierde una partícula alfa, luego una partícula beta, y más tarde una segunda partícula beta. Si aceptamos la teoría sobre el bloque constitutivo de los protones, ello significa que el átomo ha perdido cuatro electrones (dos de ellos contenidos presuntamente en la partícula alfa) y cuatro protones. (La situación actual difiere bastante de este , aunque en cierto modo, esto no afecta al resultado).

El núcleo de torio constaba inicialmente (según se suponía) de 232 protones y 142 electrones. Al haber perdido cuatro protones y otros cuatro electrones, quedaba reducido a 228 protones y 138 electrones. No obstante, conservaba todavía el atómico 90, es decir, el mismo de antes.

Así pues, el radiotorio, a semejanza del torio, posee 90 electrones planetarios, que giran alrededor del núcleo. Puesto que las propiedades químicas de un átomo están sujetas al de sus electrones planetarios, el torio y el radiotorio tienen el mismo comportamiento químico, sea cual fuere su diferencia en peso atómico (232 y 228 respectivamente).

Los isótopos de un elemento se identifican por su peso atómico, o número másico. Así, el torio corriente se denomina torio 232, y el radiotorio, torio 228. Los isótopos radiactivos del plomo se distinguen también por estas denominaciones: plomo 210 (radio D), plomo 214 (radio B), plomo 212 (torio B) y plomo 211 (actinio B).

Se descubrió que la noción de isótopo podía aplicarse indistintamente tanto a los elementos estables como a los radiactivos. Por ejemplo, se comprobó que las tres series radiactivas anteriormente mencionadas terminaban en tres formas distintas de plomo. La serie del uranio acababa en plomo 206, la del torio en plomo 208 y la del actinio en plomo 207. cada uno de estos era un isótopo estable y corriente del plomo, pero los tres plomos diferían por su peso atómico.

Mediante un dispositivo inventado por cierto ayudante de J. J. Thomson, llamado Francis William Aston, se demostró la existencia de los isótopos estables. En 1.919, Thomson, empleando la versión primitiva de aquel artilugio, demostró que el neón estaba constituido por dos variedades de átomos: una cuyo de masa era 20, y otra con 22. El neón 20 era el isótopo común; el neón 22 lo acompañaba en la proporción de un átomo cada diez. Más tarde se descubrió un tercer isótopo, el neón 21, cuyo porcentaje en el neón atmosférico era de un átomo por cada 400.

Entonces fue posible, al fin, razonar el peso atómico fraccionario de los elementos. El peso atómico del neón (20, 183) representaba el peso conjunto de los tres isótopos, de pesos diferentes, que integraban el elemento en su estado natural. Cada átomo individual tenía un másico entero, pero el promedio de sus masas (el peso atómico) era un número fraccionario.

Aston procedió a que varios elementos estables comunes eran, en realidad, mezclas de isótopos. Descubrió que el cloro, con un peso atómico fraccionario de 35’453, estaba constituido por el cloro 35 y el cloro 37, en la proporción de cuatro a uno. En 1.922 se le otorgó el premio Nobel de Química.

Sabiendo todo lo anteriormente explicado, hemos llegado a comprender cómo parte de la Astronomía que estudia las características físicas y químicas de los cuerpos celestes, la astrofísica es la parte más de la astronomía en la actualidad debido a que, al avanzar la física moderna: Efecto Doppler-Fizeau, el efecto Zeeman, las teorías cuánticas y las reacciones termonucleares aplicadas al estudio de los cuerpos celestes han permitido descubrir que el magnético solar, el estudio de las radiaciones estelares y sus procesos de fusión nuclear, y determinar la velocidad radial de las estrellas, etc. La radiación electromagnética de los cuerpos celestes permite realizar análisis de los espectros que nos dicen de qué están hechas las estrellas y los demás cuerpos del espacio interestelar y, de esa manera, hemos ido conociendo la materia y sus secretos que cada vez, van siendo menos.

emilio silvera