lunes, 14 de julio del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Inmersos en una inmensidad

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡EL UNIVERSO!

¡Y menudo Universo! Poderosas corrientes de galaxias se precipitan por el espacio. Blondas de burbujas y de abismos aparecen por todas partes, burlándose de los que intentan encontrar una uniformidad sencilla en la Naturaleza. Ni siquiera la fábrica del Universo es lo que esperábamos. Por lo menos el noventa por ciento de lo que hay ahí fuera está compuesto por materiales cuya forma y composición nos son desconocidas. Apenas pasa un mes sin que salga a la luz alguna nueva y sorprendente e inesperada faceta del Universo. A medida que nos acercamos a las preguntas finales parece incrementarse el ritmo con el que el Universo nos entrega sus secretos.

Resultado de imagen de Una burbuja de gas, fotografiada por el Telescopio Espacial HubbleResultado de imagen de Una burbuja de gas, fotografiada por el Telescopio Espacial HubbleNASA celebra aniversario del Hubble con colorida foto de la nebulosa del Cangrejo del Sur

Una burbuja de gas y otras fotografiada increíbles captadas por el Telescopio Espacial Hubble de la NASA, flotab serenamente en las profundidades del espacio.

Resulta que la mayor parte del Universo es invisible para nosotros, al no desprender luz ni ondas de radio nuestros ingenios no lo pueden captar ópticamente para que nos hablen de su presencia. Puede ser que la enorme cúpula estrellada de los cielos tenga tan poco que ver con cómo funcionan realmente las cosas como una ramita arrastrada por la corriente tiene que ver con la forma en que fluye el agua. En otras palabras, puede que vivamos en un Universo en el que el comportamiento de las formas familiares de la materia, tales como el Sol o la Vía Láctea, esté absolutamente determinado por los materiales que no podemos ver, pero que llamamos “materia oscura”, denotando así, la oscuridad que reina en nuestras mentes que, en esa misteriosa realidad, está repleta de ignorancia.

                                

            En lugares como este nacen y mueren las estrellas y surgen los Mundos

Y sucede con frecuencia que, cuando surgen ideas nuevas en una ciencia, aparecen relaciones entre las nuevas ideas y los viejos problemas. A los astrónomos siempre les ha sido difícil explicar por qué las estrellas están agrupadas en galaxias en lugar de esparcirse por el espacio de una manera más uniforme. Parece que cuanto más aprendemos sobre las leyes básicas de la Naturaleza, más parecen decirnos esas leyes que la materia visible –los objetos que podemos ver- no debería estar organizada como está. No debería haber galaxias por ahí y, si las hubiera, no deberían estar agrupadas del modo que lo están.

Los astrónomos que se asoman al Universo con instrumentos cada vez más potentes han visto cómo tomaban forma ante sus ojos extraños diseños. Primero vieron otras galaxias como la Vía Láctea, luego vieron que esas galaxias estaban agrupadas en cúmulos. No hace tanto tiempo que se ha descubierto que esos cúmulos están a su vez agrupados en largas estructuras en forma de cuerda llamadas supercúmulos. El más asombroso de esos descubrimientos fue el hallar que, entre esos supercúmulos existen unos inmensos espacios, unas descomunales regiones donde no arde ninguna estrella ni se forma ninguna galaxia, son los espacios vacíos del Universo. No sabemos a ciencia cierta si, realmente, están vacíos.

 Einstein

Como podemos imaginar un objeto pesado o masivo colocado en el centro de una superficie elástica, se ha hundido a consecuencia del peso y ha provocado una distorsión que cambia completamente la medida original del diámetro de esa circunferencia que, al ser hundida por el peso, se agranda en función de éste. Hemos podido comprobar que el Universo es, mucho más de lo que nadie nunca pudo imaginar.

Resultado de imagen de Aupercumulo de galaxiasResultado de imagen de Aupercumulo de galaxias

Por encima y por debajo de estas grandes cadenas de estructuras, desde los objetos de la Vía Láctea hasta el mayor supercúmulo conocido, encontramos el rastro de lo que creemos será la materia oscura que, delata su presencia por la fuerza de gravedad que genera y que incide en el comportamiento de los objetos del Universo por muy grandes que estos puedan ser. Su presencia, se podría asimilar a la huella que dejara por la arena mojada de la playa, los pies de un gigante invisible que paseara por allí.

En los últimos años hemos llegado a comprender que estos dos problemas –el problema de la estructura y el problema de la materia oscura- están relacionados. También empezamos a ver indicios y sugerencias de que están a su vez relacionados con un tercer problema importante: el problema del origen y la evolución del Universo. En otras palabras, parece que nos hemos colocado en una situación tal que nuestro fracaso en resolver una serie de problemas nos ha obligado a reconocer que todos esos problemas tienen que ser resueltos a la vez. Una resolución parcial no serviría de nada.

Resultado de imagen de Aupercumulo de galaxias"

                              Inmensas estructuras mayores que grupos de galaxias

Nadie, hasta el momento, ha podido hacer otra cosa que especular acerca de la “Materia Oscura”.

Me gustaría presentar ante vuestros ojos el extraño rincón del mundo científico en el que se piensa en soluciones para todos esos problemas. Es un lugar en el que los teóricos juegan con galaxias de un millón de soles de la misma manera que un niño juega con las canicas, donde un descubrimiento apenas tiene tiempo de aparecer en los titulares antes de ser respaldado por otro todavía más asombroso. Es un mundo que ensancha los límites de la Mente Humana, un mundo en el que las pepitas de los quarks, los universos en sombra y las cuerdas cósmicas pueblan el paisaje teórico. Es un lugar violento y en ebullición donde el fermento de las nuevas ideas es todo lo excitante y vital que pueda ser en una ciencia.

Resultado de imagen de Los físicos teóricos especulanResultado de imagen de Los físicos teóricos especulan

Tenemos mucha suerte, porque lo que estamos viendo hoy día es una fotografía instantánea de una nueva Ciencia emergente en el acto de su nacimiento. Como todavía no están disponibles todas las respuestas, podemos concentrarnos en el proceso mediante el cual los científicos se encaminan hacia la certeza, en lugar de en lugar de las certezas mismas. Vamos a aprender bastante acerca de cómo se eliminan en la Ciencia las ideas equivocadas y se emplean las energías disponibles en aquellas otras que prometen y nos han mostrado indicios de estar apuntando en la dirección correcta.

Foto

Distribución en 3D de la materia oscura en una zona del Universo estudiada. Foto: ESA.

¡Será por imaginar!

Resultado de imagen de Materia oscura por todas partes"Resultado de imagen de Materia oscura por todas partesResultado de imagen de Materia oscura por todas partesResultado de imagen de Materia oscura por todas partes

Si en verdad existe estaría por todas partes, permeando todo el espacio, entre las galaxias y mundos y rodeando las estrellas. Lo malo es que, no saben de qué está hecha, es invisible y no emite radiación, y, sin embargo, genera fuerza de Gravedad… (¿)

Si la “materia oscura” existe (como dicen y, a ves parece), en sus grandes hipódromos de materia desconocida que la conforman, también deben estar enterrados algunos de los secretos mejor guardados del Universo, ya que, nos tenemos que preguntar: ¿Qué es esa extraña materia y de qué clase de partículas y átomos está conformada? Está claro que, el mismo hecho de que se pudieran formar las galaxias a pesar de la expansión del Universo, denota una cosa: enormes y largos cordones de materia oscura, inimaginablemente densos, se formaron cuando el Universo sólo tenía una fracción de segundos de edad. Más tarde sirvieron como núcleos alrededor de los cuales se agrupaba la materia visible (nacida algo después) para formar las primeras estrellas y galaxias y, algunos teóricos sugieren que podrían encontrarse en supercúmulos que atraviesan el cielo. Si esto es así, entonces el Universo es más extraño que cualquiera de las cosas que hayamos sido capaces de imaginar hasta ahora.

         El Universo dinámico y cambiante, también nos cambiará a nosotros si, finalmente, nos adaptamos.

¡Qué me gustaría poder acceder hasta los límites exteriores del conocimiento y la imaginación humanos! Nuestro objetivo: nada menos que una comprensión del origen, la estructura y el destino del Universo.

Pensad en todo esto amigos, como nos decía nuestro admirado Einstein, será un buen ejercicio.

emilio silvera

Preguntamos pero, no siempre sabemos contestar

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                     Todo es materia, es decir, está conformado por Quarks y Leptones

Los astrónomos han confirmado mediante observaciones espectroscópicas que los átomos son reralmente los mismos en cualquier lugar del Cosmos, Un átomo de Carbono en la galaxia Andrómeda es exactamente igual que un átomo de Carbono de la Galaxia Vía Láctea, son idénticos y también, idénticos, a los átomos de Carbono de la Tierra. Cinco elementos químicos desempeñan un papel estelar en la Biología terrestre:

Carbono

Oxígeno

Hidrógeno

Nitrógeno, y

Fósforo

Estos elementos están entre los más abundantes del Universo. Sin embargo, no siempre fue así. Hubo un tiempo, antes de que nacieran las primeras estrellas, que en el Universo todo era Hidrógeno y Helio, los materiales primordiales a partir de los cuales, pudieron surgir todos los demás en los hornos nucleares de las estrellas y en las explosiones supernovas.

                    Arriba tenemos el agua y un átomo de carbono, y, sin ellos la vida tal como la conocemos no sería posible en nuestro Universo

Todas las leyes de la física nos muestran que la existencia y sostenimiento de la vida se asientan en equilibrios y medidas o cantidades específicas. La estructura general del universo, el lugar de la Tierra en el mismo, las características materiales de ésta –aire, luz, agua, etc.–, se basan en propiedades esenciales para nuestra supervivencia y, sobre todo eso… ¡El Carbono!

El Carbono es el elemento auténticamente vital. Merece un lugar de honor debido a una propiedad química única: los átomos de Carbono (como tantas veces expliqué aquí) pueden unirse para formar moléculas de cadena extendida, o polímeros, de variedad y complejidad ilimitadas. Las Proteínas y el ADN son dos ejemplos de dichas moléculas de cadena larga.

Si no fuera por el Carbono, la vida como la conocemos sería imposible. Probablemente sería imposible cualquier cualquier tipo de vida. Soy muy remiso (aunque no descarto nada), a que existan formas de vida que no estén basadas en el Carbono.

Cuando el Universo “empezó” con el “Big Bang”, el Carbono estaba completamente ausente. El intenso calor del nacimiento cósmico impedía cualquier núcleo atómico compuesto. En lugar de ello, el material cósmico consistía en una sopa de partículas elementales tales como protones y neutrones que pudieron conformar los núcleos de átomos de hidrógeno. Sin embargo, a medida que el universo se expandía y enfriaba durante los primeros mimutos, las reacciones nucleares transmutaron parte del hidrógeno en helio.

Muchos millones de años más tarde, en las estrellas, por algo que se llama “proceso triple Alfa”, surgió el Carbono en el Universo. No siendo el tema aquí el de explicar como se llega en las estrellas al Carbono a partir del helio, seguiremos habolando de la química cósmica.

La Química es algo más que unos tubos de ensayo, y, está presente de manera natural por todo el espacio interestelar. Allá por los 70 me llamó poderosamente la atención el descubrimiento de moléculas de amoníaco y de agua en el espacio exterior. ¿Cómo llegaron a llí? Bueno, todos conocemos esas inmensas nubes estelares que llamamos Nebulosas y, en ellas, se producen, a partir de materiales sencillos, esos cambios que tan poderosamente llaman nuestra atención.

El timo de átomo más común en el universo, después del hidrógeno y el helio, es el oxígeno. El oxígeno puede combinarse con hidrógeno para formar grupos grupos oxhidrilos (HO) y moléculas de agua (H2O), que tiene una marcada tendencia a unirse a otros grupos y moléculas del mismo tipo que encuentren por el camino, de forma que poco a poco se van constituyendo pequenísimasm partículas compuestas por millones y millones de tales moléculas. Los grupos oxhidrilo y las moléculas de agua pueden llegar a constitur una parte importante del polvo cósmico. Allá por el año 1965 se detectó por primera vez grupos oxhidrilo en el espacio y se comenzó a estudiar su distribución. desde entonces, se han encontrado allí, moléculas más, complejas que contienen átomos de carbono, de hidrógeno y de oxígeno. También átomos de calcio, sodio, potasio y hierro han sido detectados al observar la luz que dichos átomos absorben.


                            En regiones como la que arriba podemos ver, están presentes elementos que no siempre sospechamos

Actualmente, la lista de las moléculas descubiertas en el espacio es larga y más de cien sustancias químicas la adornan, siendo muchas de esas moléculas interestelares orgánicas. La más abundante es el monóxido de carbono, pero también hay abundancia de acetileno, formaldehido y alcohol. También se han detectado moléculas orgánicas más complejas, tales como aminoácidos y HAP (hidrocarburos aromáticos policíclicos). Ahora está claro que no sólo abunda en todo el Universo elementos que favorecen la Vida, sino que también lo hacen muchas de las miléculas orgánicas realmente utilizadas por la vida. Con miles de millones de años disponibles para que la química cósmica pudiera generar dichas sustancias, ha habido tiempo más que suficiente para que estas se formen en las nubes moleculares gigantes de las que emergen las estrellas y los sistemas solares como el nuestro.

Nubes Moleculares Gigantes  en este caso (NGC 7822 en Cefeo). Colapsos gravitacionales, estrellas nuevas, vientos estelares, abundante radiación ultravioleta, todas esas fuentes de energías que dan lugar al nacimiento de estrellas nuevas, hacen también posible que, los materiales se mezclen y sufran mutaciones de simples a complejos y, a partir de ellos, nacen los nuevosm sistemas planetarios y…¡la Vida!

Que en un principio, sin temor a equivocarnos podemos decir que la génesis de la vida ha sido posible a partir de lo que en el espacio pasó, ¿qué duda nos puede caber? Incluso, no se descarta que los materiales que trajeron la vida al planeta Tierra, fuera deposita por cometas.

Cometas: West

      El cometa West, con sus colas de plasma y polvo.

 

Los Cometas que a pesar de todo lo que sabemos de ellos, siguen siendo algo enigmáticos, incluso algunos que han sido minuciosamente observados durante siglos. Muchos son los que dicen que llevan la semilla de la Vida con ellos y, de vez en cuando, la siembran en algún planeta que, como la Tierra, recibe sus esporádicas visitas.

Mucho se podría hablar aquí de cómo llegaron a formarse los cometas a partir de aquella Nebulosa planetaria pero, no siendo el tema de hoy, lo dejaremos en lo que ya hemos explicado y que, de manera muy simple y general, os dará una idea de lo que en el Universo puede pasar y de cómo, todo se confabula para que la vida, sea posible.

En la parte primera hemos hablado de los supermicrobios y de otras cuestiones que nos acercan al saber, al menos, de cómo hemos tratado de conocer el origen de la Vida en nuestro mundo, uan pregunta que más o menos ha quedado contestada pero, a medias, toda vez que, contestar a la pregunta primera de… ¿qué es la vida? no he podido, me faltan conocimientos para ello.

Para documentarme, he leído sobre el misterioso origen de la vida, he tratado de saber qué es la vida, he buceado en la historia de las moléculas antiguas, he dado un largo paseo por el Edén de los microbios y sus dominios, he tratado de estudiar lo que es el principio de generación biológica y química, a todo ello, he añadido meros conocimientos del hueco de entropía y la Gravedad como fuente de Orden, He querido saber sobre el árbol de la vida y me he querido enterar de qué hallaron los expertos en las rocas antiguas, qué fósiles había allí como huella de la vida del pasado, también procuré saber si era posible la generación expontánea y sobre “la sopa primordial”. Me interesé sobre el Azar en relación con el Origen de la Vida.

También sobre las células replicantes que nos trajeron la vida, el código genético de la reproducción, el ARN y el ADN. No me olvidé del Polvom de Estrellas y de la Química cósmica para hacer posible una génesis a partir del espacio esterior y, en fin, muchos espacios y muchas razones más que me han llevado a conocer, lo que creemos que la vida es. Sin embargo, a pesar de todo eso, con algunos conocimientos más de los que tenía hace veinte años sobre el tema pero, sigo sin saber contestar la pregunta:

¿Qué es la Vida?

emilio silvera

Materia de sombra, Axiones, ¿WIMPs en el Sol?

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

«

Resultado de imagen de Planetas descubiertos por la sonda KeplerResultado de imagen de Planetas descubiertos por la sonda KeplerResultado de imagen de Planetas descubiertos por la sonda KeplerResultado de imagen de Planetas descubiertos por la sonda Kepler

Es curioso como a veces, la realidad de los hechos observados, vienen a derribar esas barreras que muchos ponen en sus mentes para negar lo evidente. Por ejemplo: Los extraordinarios resultados de la sonda Kepler, que en su primer año de misión encontró 1.235 candidatos a planetas, 54 de ellos en la zona habitable de sus estrellas, ha permitido a los investigadores extrapolar el numero total de mundos que podría haber sólo en la Vía Láctea, nuestra Galaxia. Y ese número ronda los 50.000 millones. De los cuales, además, unos 500 millones estarían a la distancia adecuada de sus soles para permitir la existencia de agua en estado líquido, una condición necesaria para la vida.

Resultado de imagen de Planetas descubiertos por la sonda KeplerResultado de imagen de Planetas descubiertos por la sonda Kepler

Planetas parecidos a la Tierra, como arriba nos dicen, hay miles de millones y sólo cabe esperar que estén situados en los lugares adecuados para que la vida tenga la oportunidad de surgir acogida por el ecosistema ideal del agua líquida, una atmósfera acogedora y húmeda, temperatura ideal media y otros parámetros que la vida requiere para su existencia.

Un equipo de astrónomos internacionales pertenecientes al Observatorio Europeo Austral (ESO), el más importante del mundo, investiga la formación de un posible nuevo sistema planetario a partir de discos de material que rodea a una estrella joven. Según un comunicado difundido hoy por el centro astronómico que se levanta en la región norteña de Antofagasta (Chile), a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.

Resultado de imagen de a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.Resultado de imagen de a través del “Very Large Telescope”(VLT), los científicos han estudiado la materia que rodea a una estrella joven.

Según los astrónomos, los planetas se forman a partir de discos de material que rodean a las estrellas, pero la transición desde discos de polvo hasta sistemas planetarios es rápida y muy pocos son identificados en esta fase. Uno de los objetos estudiados por los astrónomos de ESO, es la estrella T Chamaleontis (T-Cha), ubicada en la pequeña constelación de Chamaleón, la cual es comparable al sol pero en sus etapas iniciales.

Dicha estrella se encuentra a unos 330 años luz de la Tierra y tiene 7 millones de años de edad, lo que se considera joven para una estrella. “Estudios anteriores han demostrado que T Cha es un excelente objetivo para estudiar cómo se forman los sistemas planetarios”, señala el astrónomo Johan Olofsson, del Max Planck Institute of Astronomy de Alemania.

Algunas veces hablando de los extensos y complejos temas que subyacen en la Astronomía, lo mismo hablamos de “materia de sombre” que de “supercuerdas” y, se ha llegado a decir que existe otro universo de materia de sombra que existe en paralelo al nuestro. Los dos universos se separaron cuando la Gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo cual las convierte en candidatas ideales para la tan traída y llevada “materia oscura”.

Llegamos a los Axiones.

Resultado de imagen de La materia oscura del UniversoResultado de imagen de La materia oscura del Universo

                    Según nos cuentan, la materia oscura permea todo el Universo

El estado actual de la cuestión es que los cosmólogos creen saber que hay una gran cantidad de materia oscura en el Universo y, han conseguido eliminar la candidatura de cualquier tipo de partícula ordinaria que conocemos. En tales circunstancias no se puede llegar a otra conclusión que la materia oscura debe de existir en alguna forma que todavía no hemos visto y cuyas propiedades ignoramos totalmente. Sin embargo, se atreven a decir que, la Gravedad, es el efecto que se produce cuando la “materia oscura” pierde consistencia… , o algo así.  ¡Cómo son!

A los teóricos nada les gusta más que aquella situación en la cual puedan dejar volar libremente la imaginación sin miedo a que nada tan brusco como un experimento u observación acabe con su juego. En cualquier caso, han producido sugerencias extraordinarias acerca de lo que podría ser la “materia oscura” del universo.

                    Lo que hay en el Universo…no siempre lo podemos comprender.

Otro de los WIMPs favoritos se llama axión. Como el fotino y sus compañeros, el axión fue sugerido por consideraciones de simetría. Sin embargo, a diferencia de las partículas, sale de las Grandes Teorías Unificadas, que describen el Universo en el segundo 10ˉ³5, más que de las teorías totalmente unificadas que operan en el tiempo de Planck.

Resultado de imagen de La  simetría que llamamos CPT.Resultado de imagen de La  simetría que llamamos CPT.

Durante mucho tiempo han sabido los físicos que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la película hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reversa del tiempo (pasar la película al revés).

Resultado de imagen de La  simetría que llamamos CPT."

                                        Logran romper la simetría CPT dentro de un sistema cuántico

Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es éste el caso. El mundo visto en un espejo se desvía un tanto al mundo visto directamente, y lo mismo sucede al mundo visto cuando la película pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el inverso en cada uno de estos casos se cancelan una a la otra cuando miramos las tres inversiones combinadas.

Aunque esto es verdad, también es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?

La respuesta a esta cuestión parece que puede estar en la posible existencia de esa otra partícula apellidada axión. Se supone que el Axión es muy ligero (menos de una millonésima parte de la masa del electrón) e interacciona sólo débilmente con otra materia. Es la pequeña masa y la interacción débil lo que explica el “casi” que preocupa a los teóricos.

Resultado de imagen de Nos adentramos en la Teoría de cuerdasResultado de imagen de Nos adentramos en la Teoría de cuerdasResultado de imagen de Nos adentramos en la Teoría de cuerdasResultado de imagen de Nos adentramos en la Teoría de cuerdas

Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de momento, es imposible verificarla.

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

Dispersas entre oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.

Resultado de imagen de Un Universo en permanente sombraResultado de imagen de Un Universo en permanente sombraResultado de imagen de Un Universo en permanente sombra

               ¿Podéis imaginar la existencia de un Universo en permanente sombra?

La idea de un universo en sombra nos proporciona una manera sencilla de pensar en la materia oscura. El universo dividido en materia y materia se sombra en el Tiempo de Planck, y cada una evolucionó de acuerdo con sus propias leyes. Es de suponer que algún Hubble de sombra descubrió que ese universo de sombra se estaba expandiendo y es de suponer que algunos astrónomos de sombras piensan en nosotros como candidatos para su materia oscura.

¡Puede que incluso haya unos ustedes de sombras leyendo la versión de sombra de este trabajo!

Partículas y Partículas Supersimétricas

¿Partículas y partículas supersimétricas? ¿Dónde están?

Partículas son las que todos conocemos y que forman la materia, la supersimétricas, fotinos, squarks y otros, las estamos buscando sin poder hallarlas.

Estas partículas son predichas por las teorías que unifican todas las fuerzas de la naturaleza. Forman un conjunto de contrapartidas de las partículas a las que estamos habituados, pero son mucho más pesadas. Se nombran en analogía con sus compañeras: el squark es el compañero supersimétrico del quark, el fotino del fotón, etc. Las más ligeras de estas partículas podrían ser la materia oscura. Si es así, cada partícula probablemente pesaría al menos cuarenta veces más que el protón.

Materia de sombra, si existe, no hemos sabido dar con ella y, sin embargo, existen indicios de que está ahí

En algunas versiones de las llamadas teorías de supercuerdas hay todo un universo de materia de sombra que existe paralelo con el nuestro. Los dos universos se separaron cuando la gravedad se congeló separándose de las otras fuerzas. Las partículas de sombra interaccionan con nosotros sólo a través de la fuerza de la gravedad, lo que las convierte en candidatas ideales para la materia oscura.

Habiendo inventado la “materia oscura” para explicar lo que no pueden, se inventan también, las partículas que la conforma: Axiones, unas partículas supersimétricas que buscará el LHC.

El Axión es una partícula muy ligera (pero presumiblemente muy común) que, si existiera, resolvería un problema antiguo en la teoría de las partículas elementales. Se estima que tiene una masa menor que una millonésima parte de la del electrón y se supone que impregna el universo de una manera semejante al fondo de microondas. La materia oscura consistiría en agregaciones de axiones por encima del nivel general de fondo.

Criostato CDMS

Construímos inmensos aparatos de ingeniosas propiedades tecnológicas para tratar de que nos busquen las WIMPs

¿WIMPs en el Sol?

A lo largo de todo el trabajo se ha dado a entender que todas estas partículas candidatas a materia oscura de la que hemos estado hablando, son puramente hipotéticas. No hay pruebas de que ninguna de ellas se vaya a encontrar de hecho en la naturaleza. Sin embargo sería negligente si no mencionase un argumento –un diminuto rayo de esperanza- que tiende a apoyar la existencia de WIMPs de un tipo u otro. Este argumento tiene que ver con algunos problemas que han surgido en nuestra comprensión del funcionamiento y la estructura del Sol.

Creemos que la energía del Sol viene de reacciones nucleares profundas dentro del núcleo. Si éste es el caso en realidad, la teoría nos dice que esas reacciones deberían estar produciendo neutrinos que en principio son detectables sobre la Tierra. Si conocemos la temperatura y composición del núcleo (como creemos), entonces podemos predecir exactamente cuántos neutrinos detectaremos. Durante más de veinte años se llevó a cabo un experimento en una mina de oro de Dakota del Sur para detectar esos neutrinos y, desgraciadamente, los resultados fueron desconcertantes. El número detectado fue de sólo un tercio de lo que se esperaba. Esto se conoce como el problema del neutrino solar.

Resultado de imagen de Neutrinos solares"Resultado de imagen de Neutrinos solares"

El problema de los neutrinos solares se debió a una gran discrepancia entre el número de neutrinos que llegaban a la Tierra y los modelos teóricos del interior del Sol. Este problema que duró desde mediados de la década de 1960 hasta el 2002, ha sido recientemente resuelto mediante un nuevo entendimiento de la física de neutrinos, necesitando una modificación en el modelo estándar de la física de partículas, concretamente en las neutrinos“  Básicamente, debido a que los neutrinos tienen masa, pueden cambiar del tipo de neutrino que se produce en el interior del Sol, el neutrino electrónico, en dos tipos de neutrinos, el muónico y el tauónico, que no fueron detectados. (Wikipedia).

La segunda característica del Sol que concierne a la existencia de WIMPs se refiere al hecho de las oscilaciones solares. Cuando los astrónomos contemplan cuidadosamente la superficie solar, la ven vibrar y sacudirse; todo el Sol puede pulsar en períodos de varias horas. Estas oscilaciones son análogas a las ondas de los terremotos, y los astrónomos llaman a sus estudios “sismología solar”. Como creemos conocer la composición del Sol, tenemos que ser capaces de predecir las propiedades de estas ondas de terremotos solares. Sin embargo hay algunas duraderas discrepancias la teoría y la observación en este campo.

No mucho que los astrónomos han señalado que si la Galaxia está en realidad llena de materia oscura en la forma de WIMPs, entonces, durante su vida, el Sol habría absorbido un gran de ellos. Los WIMPs, por tanto, formarían parte de la composición del Sol, una parte que no se había tenido en cuenta hasta ahora. Cuando los WIMPs son incluidos en los cálculos, resultan dos consecuencias: primero, la temperatura en el núcleo del Sol resulta ser menor de lo que se creía, de forma que son emitidos menos neutrinos, y segundo, las propiedades del cuerpo del Sol cambian de tal modo que las predicciones de las oscilaciones solares son exactas.

       Hasta nos atrevemos a exponer una imagen que nos muestra la distribución de los WIMPs

Este resultado es insignificante en lo que se refiere a la existencia de WIMPs, pero como no debemos despreciar las coincidencias halladas, lo más prudente será esperar a nuevos y más avanzados experimentos (SOHO y otros). Tanto el problema del neutrino como las oscilaciones se pueden explicar igualmente bien por otros efectos que no tienen nada que ver con los WIMPs. Por ejemplo, el de oscilaciones de neutrinos podría resolverse si el neutrino solar tuviera alguna masa, aunque fuese muy pequeña, y diversos cambios en los detalles de la estructura interna  del Sol podrían explicar las oscilaciones. No obstante estos fenómenos solares constituyen la única indicación que tenemos de que uno de los candidatos a la materia oscura pueda existir realmente.

Resultado de imagen de donde está la materia oscuraResultado de imagen de donde está la materia oscura

                       Verificar realmente su presencia…. ¡Nos costará lo suyo!

Toda esta charla sobre supersimetría y teoría últimas da a la discusión de la naturaleza de la materia oscura un tono solemne que no tiene ningún parecido con la forma en que se lleva en realidad el debate entre los cosmólogos. Una de las cosas que más me gusta de este campo es que todo el mundo parece ser capaz de conservar el sentido del humor y una distancia respecto a su propia creencia , ya que, los buenos científicos saben que, todos los cálculos, conjeturas, hipótesis y finalmente teorías, no serán visadas en la aduana de la Ciencia, hasta que sean muy, pero que muy bien comprobadas mediante el experimento y la observación y, no una sino diez mil veces antes de que puedan ser aceptadas en el ámbito puramente científico.

                                        El el Sol podemos hallar algunas respuestas

Posiblemente, el LHC nos pueda decir algo al respecto si, como no pocos esperan, de sus colisiones surgen algunas partículas supersimétricas que nos hablen de ese otro mundo oscuro que, estando en este, no hemos sabido encontrar hasta este momento. Otra posibilidad sería que la tan manoseada materia oscura no existiera y, en su lugar, se descubriera otro fenómeno o mecanismo natural desconocido hasta que, incidiendo en el comportamiento de expansión del Universo, nos hiciera pensar en la existencia de la “materia oscura” cubrir el hueco de nuestra ignorancia.

Resultado de imagen de El Sol en su viaje alrededor de la Galaxia se sale del plano y queda expuesto"

Hace algún tiempo, en esas reuniones periódicas que se llevan a cabo entre científicos de materias relacionadas: física, astronomía, astrofísica, cosmología…, alguien del grupo sacó a relucir la idea de la extinción de los dinosaurios y, el hombre se refirió a la teoría (de los muchas que circulan) de que el Sol, en su rotación alrededor de la Vía Láctea, se salía periódicamente fuera del plano de la Galaxia. Cuando hacía esto, el polvo existente en ese plano podía cesar de proteger la Tierra, que entonces quedaría bañada en rayos cósmicos letales que los autores de la teoría pensaban que podían permeabilizar el cosmos. Alguien, el fondo de la sala lanzó: ¿Quiere decir que los dinosaurios fueron exterminados por la radiación de fotinos?

La cosa se tomó a broma y risas marcaron el final de la reunión en la que no siempre se tratan los temas con esa seriedad que todos creen, toda vez que, los conocimientos que tenemos de las cosas son muy limitados y tomarse en serio lo que podría no ser… ¡No sería nada bueno!

emilio silvera

El Universo asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Dos cúmulos de galaxias camino de fusionarseImagen relacionada

 

Dos cúmulos de galaxias están a punto de chocar.

 

Por primera vez en la historia de los astrónomos han  podido observar cómo dos enermoes cúmulos de galaxias están a punto de fusionars. ¿Imaginaís la que se puede formar?

 

 

Imagen relacionada

En el Universo, todo lo que vemos y lo que no, forma parte de estructuras cada vez mayores. Las estrellas se juntan en galaxias, las galaxias en pequeños grupos, los grupos en cúmulos, después en supercúmulos; y hasta los supercúmulos, con miles de miembros cada uno, se unen para formar continentes galácticos como Laniakea, al que nosotros pertenecemos.Ahora, por primera vez en la historia, un equipo de astrónomos ha conseguido observar cómo dos enormes cúmulos de galaxias están a punto de chocar. Nadie hasta ahora había podido ver algo parecido, y la observación ha conseguido rellenar un importante hueco en el rompecabezas de nuestra comprensión sobre cómo se forman las estructuras más grandes del Universo. El impresionante hallazgo se acaba de publicar en «Nature Astronomy».

Nota de Prensa.

Sucesos del pasado – Noticias de Prensa

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Hubble ha estado 25 años observando los efectos de la gran explosión ocurrida hace más de un siglo en Eta Carinae

El Hubble ha estado 25 años observando los efectos de la gran explosión ocurrida hace más de un siglo en Eta Carinae – ESA/Hubble

El Hubble capta el “bombazo” que borró una estrella del cielo hace 170 años.

Astrónomos han observado la luz ultravioleta liberada por Eta Carinae, una estrella gigantesca que se convirtió en la segunda más brillante del cielo al estallar, pero que luego se desvaneció

 

 

 

Hace 170 años una estrella llamada Eta Carinae se convirtió en el segundo punto más brillante del cielo, solo por detrás deSirio A, gracias a un estallido que duró 18 años y que se conoce como Gran Erupción. Sin embargo, con el tiempo su luz se fue haciendo más tenue y llegó un momento en que se hizo difícil incluso poder verla con el ojo desnudo.

Resultado de imagen de Diferentes imágenes de Eta Carinae

El momento del “bombazo”

El interés de Eta Carinae, situada a 7.500 años luz, radica en que está formada por dos o tres estrellas que sufren impresionantes erupciones cada cierto tiempo. La Gran Erupción formó una nebulosa que oscurece su luz, y que se conoce como nebulosa del homúnculo (porque tiene forma de hombrecillo), pero hoy en día su luz nos sigue dando pistas sobre cómo viven las estrellas y qué ocurre con la materia en condiciones extremas. Recientemente, el vetusto telescopio espacial Hubble ha obtenido una imagen en el rango del ultravioleta que ha sorprendido a los astrónomos, porque les ha mostrado la presencia de capas de gas cuya existencia se desconocía, y que son importantes para entender este sistema estelar.

«Usamos el Hubble durante décadas para estudiar Eta Carinae en el rango de la luz visible e infrarroja», ha explicado en un comunicado Nathan Smith, investigador en el Observatorio Steward de la Universidad de Arizona. «Pero esta nueva imagen en ultravioleta parece sorprendentemente distinta, y revela gas que no vimos en las imágenes anteriores».

 

 

 

 

Gracias a la potente cámara de campo ancho del Hubble, los científicos han observado los espectaculares fuegos artificiales procedentes de Eta Carinae. Según los investigadores, las nuevas capas de gasobservadas parecen haber sido expulsadas de la estrella justo antes de la Gran Erupción. Por eso, creen que este gas puede ayudar a comprender los orígenes de la impresionante erupción estelar. Y así poder sumergirnos en los vientos y terribles fuerzas que dan forma a las estrellas.

Antes de esta observación, sencillamente no se había visto esta masa. «Este material extra es rápido, y aumenta aún más la energía que tiene una explosión estelar que ya era potente», ha dicho Smith.

Imagen relacionada

Foto del Hubble tomada en 1995 de Eta Carinae. Los lóbulos se expanden con una velocidad de millones de kilómetros por hora – Jon Morse (University of Colorado) & NASA Hubble Space Telescope

Estudiar Eta Carinae es muy importante para los astrofísicos porque solo se ha observado algo comparable en un puñado de ocasiones, y nunca con tanta violencia.

Una estrella excepcional

 

 

Este objeto está formado por al menos dos estrellas. La más interesante es una azul variable, una estrella supergigante o incluso hipergigante que tienen un comportamiento impredecible y que de las que se conocen menos de veinte, en todo el Universo. Cada cierto tiempo, este tipo de estrellas sufren drásticos aumentos de su brillo y su espectro. Y, en ocasiones, experimentan enormes estallidos que a veces se confunden con supernovas. Dado su «temperamento» y su enorme masa, no sorprende que estas estrellas tengan vidas muy cortas, de solo millones de años, y que para los astrónomos sea posible ver cómo evolucionan incluso con el paso de las décadas.

La estrella azul variable de este objeto, a la que se conoce como Eta Carinae A, es excepcionalmente luminosa. Tiene una masa de 150 a 250 masas solares y eso que, durante la Gran Erupción, pudo perder hasta la tercera parte de su masa, generando la propia nebulosa del homúnculo. Parece que sus días acabarán en no mucho tiempo, en términos astronómicos, con una violentísima supernova, que podría ser incluso la más brillante observada en toda la historia.

Resultado de imagen de Diferentes imágenes de Eta Carinae

Junto a esta se encuentra Eta Carinae B, una estrella blanca-azulada más pequeña (de unas 30 a 80 masas solares) y extremadamente caliente.

Los extraños «hábitos» de Eta Carinae la llevaron a aumentar su brillo en 1837, hasta situarla por encima de Rigel, en un evento que los astrónomos llamaron Gran Erupción, y que se prolongó durante 18 años. Entre los 11 y 14 de marzo de 1843 la estrella se convirtió en la segunda más brillante del cielo. Después, su brillo declinó hasta desaparecer de la visión del ojo humano a partir de 1856.

Ya en 1892 volvió a aparecer en el cielo, antes de desvanecerse de nuevo. Desde 1940, su brillo ha ido aumentando hasta hacerla visible de nuevo… Sin duda esta peculiar estrella esconde secretos que los astrofísicos quieren investigar.