Jul
9
Lo que somos, y…¿lo que seremos?
por Emilio Silvera ~
Clasificado en General ~
Comments (6)
El ser humano está dotado de un resorte interior, algo en su mente que llamamos curiosidad y que nos empuja (sin que en muchas ocasiones pensemos en el enorme esfuerzo y en el alto precio que pagamos) a buscar respuestas, a querer saber el por qué de las cosas, a saber por qué la naturaleza se comporta de una u otra manera y, sobre todo, siempre nos llamó la atención aquellos problemas que nos llevan a buscar nuestro origen en el origen mismo del universo y, como nuestra ambición de saber no tiene límites, antes de saber de dónde venimos, ya nos estamos preguntando hacia dónde vamos. Nuestra osadía no tiene barreras y, desde luego, nuestro pensamiento tampoco las tiene, gracias a lo cual, estamos en un estadio de conocimiento que a principios del siglo XXI, se podría calificar de bastante aceptable para dar el salto hacia objetivos más valiosos.
Es mucho lo que hemos avanzado en los últimos ciento cincuenta años. El adelanto en todos los campos del saber es enorme. Las matemáticas, la física, la astronomía, la química, la biología genética, y otras muchas disciplinas científicas que, en el último siglo, han dado un cambio radical a nuestras vidas.
El crecimiento es exponencial; cuanto más sabemos más rápidamente avanzamos. Compramos ordenadores, teléfonos móviles, telescopios y microscopios electrónicos y cualesquiera otros ingenios e instrumentos que, a los pocos meses, se han quedado anticuados, otros nuevos ingenios mucho más avanzados y más pequeños y con muchas más prestaciones vienen a destituirlos.
¿Hasta dónde podremos llegar?
Jul
9
¿Un Universo en evolución, o, camino de su final?
por Emilio Silvera ~
Clasificado en ¡Noticias! ~
Comments (1)
¡No podía ser de otra manera!
Aunque ahora nos dicen que no tiene principio ni fin, que siempre estará inmersos en ciclos de expansión y contracción. Es decir, un Universo cíclico y eterno. Sir Roger Penrose que establece que la historia del cosmos es una sucesión infinita de ¨eones¨ cada uno con su Big Bang y una expansión acelerada. Nos encontramos ante una propuesta de una historia del universo sin principio ni fin y consistente con el aumento continuo de la entropía.
El Universo, a pesar de que nuestros conocimientos sobre él aumentan cada día, sigue dando sorpresas. Nuevos y misteriosos objetos cuya mera existencia parece desafiar las leyes de la Física siguen apareciendo, a medida que los medios técnicos permiten a los astrónomos realizar observaciones más y más detalladas. Al mismo tiempo, los cuerpos y estructuras celestes que creíamos conocer mejor demuestran que no era así en absoluto.
Para los miles de investigadores que viven con la mirada clavada en el cielo, el asombro es el estado de ánimo habitual. Lejanas estrellas individuales, a miles de millones de años luz, liberan inexplicablemente más energía que miles de galaxias juntas. Pequeñas galaxias albergan en su centro monstruosos agujeros negros, los mayores jamás detectados; materia y energía oscuras, de las que poco se sabe aún y que dan cuenta del 96% de la masa total del Universo, dejando a la materia ordinaria, la que brilla en forma de estrellas y de la que nosotros estamos hechos, apenas el 4% restante.
Desde hace más de dos siglos, cientos de astrónomos de todo el mundo se reúnen periódicamente en el seno de la Sociedad Astronómica Americana, en Seattle, para hacer público el contenido de sus observaciones. Hoy, después de varios días de debates y ponencias, se clausura la 209 edición de esta histórica reunión, y una vez más se ha cumplido la norma. Reseñamos a continuación algunos de los hallazgos más significativos:
Descubren una Andrómeda más grande. Los astrónomos han descubierto que Andrómeda, la galaxia vecina a la Vía Láctea, en la que nosotros vivimos, es en realidad cinco veces más grande de lo que se pensaba. Tanto, que las estrellas de su halo llegan incluso a superponerse con las del nuestro, dando lugar a una continuidad estelar que nadie esperaba. Andrómeda, en efecto, se encuentra a más de dos millones de años luz de distancia. De las tres partes fundamentales de una galaxia, un núcleo con una densa población de estrellas, un disco y un halo, la tercera es, sin duda la más difícil de observar.
Jul
9
¡Litio! La energía del futuro
por Emilio Silvera ~
Clasificado en Física ~
Comments (1)
Hay noticias que te alegra el Alma, y, cuando un País pobre, encuentra en las entrañas de su territorio, una riqueza que podría solucionar muchas necesidades, en verdad, es para alegrarse.
– Bolivia posee la mayor reserva de litio del planeta Tierra, con cerca de 21 millones de toneladas de este recurso estratégico, lo que la posiciona como un actor clave en el mercado global. El Salar de Uyuni, el mayor desierto de sal del planeta, concentra gran parte de estas reservas, consolidando al país como líder mundial en depósitos de litio.
– En América Latina, el litio se encuentra principalmente en salmueras y rocas minerales, dentro de una región conocida como el “triángulo del litio” conformada por Argentina, Bolivia y Chile. Sus principales vértices incluyen el salar del Hombre Muerto (Argentina), el Salar de Uyuni (Bolivia) y el salar de Atacama (Chile), además de otros salares en la región de la Puna de Atacama
“Bolivia tiene la mayor reserva de litio de laTierra
Así es, Bolivia, el pequeño país sudamericano, tiene la mayor reserva de litio de la tierra, fuente de energía que será crucial dentro de unos años.
Pero para que esta gran fuente de energía pueda ser adquirida por los demás países y empresas del mundo, primero se deberá negociar con el Presidente Evo Morales (Hoy fuera de juego), un paso que no será del todo sencillo, ya que de ante mano, el mismo no tiene unas buenas relaciones con Estados Unidos(país con más necesidad de esta energía).
Jul
9
Las cosas que creemos que sabemos
por Emilio Silvera ~
Clasificado en AIA-IYA2009 ~
Comments (5)
Me hace gracia ver y escuchar como “doctos” licenciados dicen que ellos conocen lo que es el Universo, por ejemplo, o lo que pasó en los primeros tres minutos a partir de lo que llamamos Big Bang. En realidad, se están refiriendo a que tienen un modelo del Universo temprano, y que este mo0delo encaja con los resultados que hasta el momento hemos obtenido mediante experimentos y observaciones.
No siempre este modelo científico es una fiel imagen de la realidad. Los átomos y las moléculas que componen el aire que respiramos, por ejemplo, se pueden describir en términos de un modelo en el que imaginamos cada partícula como si fuera una pequeña esfera perfectamente elástica, con todas las pequeñas esferas rebotando unas contra otras y contra las paredes del recipiente que las contiene.
Esa es la imagen mental, pero es sólo la mitad del modelo; lo que lo hace modelo científico es describir el modo como se mueven las esferas y rebotan unas contra otras mediante un grupo de leyes físicas, escritas en términos de ecuaciones matemáticas. En este caso, éstas son esencialmente las leyes del movimiento descubiertas por Newton hace más de trescientos años. Utilizando estas leyes matemáticas es posible predecir, por ejemplo, que le pasará a la presión ejercida por un gas si se aplasta hasta la mitad de su volumen inicial. Si hacemos el experimento, y, el resultado que se obtiene encaja con la predicción del modelo, este será un buen modelo.
Moléculas que vibran
De hecho, todos los modelos científicos tienen aplicabilidad limitada. Ninguno de ellos es “la verdad “. Cuando un científico afirma, por ejemplo, que el núcleo de un átomo está compuesto por partículas denominadas protones y neutrones, lo que en realidad debería decir es que el núcleo de un átomo se comporta, bajo determinadas circunstancias, como si estuviera formado de protones y neutrones. Los mejores científicos toman el “como sí “, pero entienden que sus modelos son, efectivamente, sólo modelos; científicos menores a menudo olvidan esta diferencia crucial.
Teoría de errores
Los científicos menores, y muchos no-científicos, tienen otra idea equivocada. A menudo piensan que el papel de los científicos hoy en día es llevar a cabo experimentos que probarán la exactitud de sus modelos con una precisión cada vez mayor (hacia posiciones con más y más decimales). ¡En absoluto! La razón para llevar a cabo experimentos que demuestren predicciones previas no comprobadas es descubrir dónde fallan los modelos. Encontrar defectos en sus modelos es la esperanza abrigada por los mejores científicos, porque esos defectos destacarán los lugares donde necesitamos una nueva comprensión, con modelos mejores, para progresar.
Jul
9
Pensar en el Mundo del Futuro… ¡Me da miedo!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)