jueves, 05 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




No siempre hablamos de lo que comprendemos

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

 

El Islam, la verdadera superpotencia de la Edad Media
Teoría del todo - Qué es, origen, definición y concepto
La teoría del todo es un desarrollo teórico que brindaría una explicación sobre las interacciones fundamentales de la física y las leyes que rigen el funcionamiento del universo. El concepto se usa con frecuencia en la mecánica cuántica y la física de partículas.

¡La Física! Lo que busca la física fundamental es reducir las leyes de la naturaleza a una teoría final sencilla que lo explique todo. El físico y premio Nobel Steven Weinberg señala que las reglas fundamentales son lo más satisfactorio (al menos para él). Las leyes básicas de Isaac Newton, que predicen el comportamiento de los planetas, son más satisfactorias, por ejemplo, que un almanaque en el que se indique la posición de todos los planetas en cada momento. Weinberg nos dice que la Física no puede explicarlo todo, matizando que sólo puede explicar los sucesos relacionándolos con otros sucesos y con las reglas existentes.

 

Cuatro conceptos que no hay que confundir sobre el universo

¿Dónde estará la materia oscura? ¡Ah! ¿Pero está?

En relación al Universo, los cosmólogos también echan mano de conjeturas que les salve la cara, es decir, que disimule su gran ignorancia, y, se inventaron la materia oscura para explicar lo que para ellos, era inexplicable, es decir, el movimiento de las estrellas y el por qué se alejan las galaxias las unas de las otras y qué fuerza es la que las atrae y, no encontraron nada mejor que la materia oscura.

 

Resultado de imagen de http:salonkritik.net/08-09/planets.jpg

 

Por ejemplo, las órbitas de los planetas son el resultado de unas reglas, pero las distancias de los planetas al Sol son accidentales, y no son consecuencia de ley fundamental alguna. Claro que, también las leyes podrían ser fruto de casualidades. Lo que sí es cierto es que los físicos están más interesados por descubrir las reglas que por los sucesos que dichas reglas determinan, y más por los hechos que son independientes del tiempo; por ejemplo, les interesa más la masa del electrón que un tornado que se pueda producir en un lugar determinado.

La ciencia, como nos dice Weinberg, no puede explicarlo todo y, sin embargo, algunos físicos tienen la sensación de que nos estamos acercando a “una explicación del mundo” y, algún día, aunando todos los esfuerzos de muchos, las ideas de las mejores mentes que han sido, y las nuevas que llegarán, podremos, al fín, construir esa Teoría final tan largamente soñada que, para que sea convincente, deberá también, incluirnos a nosotros. Pero, paradógicamente y a pesar de estos pensamientos, existen hechos que los contradicen, por ejemplo, conocemos toda la física fundamental de la molécula de agua desde hace 7 decenas de años, pero todavía no hay nadie que pueda explicar por qué el agua hierve a los 100 ºC. ¿Qué ocurre? ¿Somos acaso demasiado tontos? Bueno, me atrevería a pronosticar que seguiremos siendo “demasiado tontos” incluso cuando los físicos consigan (por fin) esa teoría final que nos pueda dar una “explicación del mundo”. Siempre seguiremos siendo aprendices de la naturaleza que, sabia ella, nos esconde sus secretos para que persista el misterio.

 

Carlos Bibiano on X: "“@nochedeletras: Un ignorante lee un sólo libro y cree saberlo todo... http://t.co/twodjURd8a”" / X

    ¿Qué sería de nosotros si lo supiéramos todo?

 

La explicación que dan los físicos actualmente  sobre la subestructura de la materia se llama “el modelo estándar”. En este modelo están incluidas las doce partículas elementales y las tres fuerzas que, cuando se mezclan y se encajan, sirven para construir todo lo que hay en el universo, desde un redondo pan de pueblo hecho en un horno de leña,  hasta las más complejas galaxias, y puede explicar todos los mecanismos de acción, es decir, la mecánica del mundo.

Entre las partículas figuran los seis Quarks famosos: arriba, abajo, extraño, encanto, fondo y cima. Las otras seis partículas son Leptones: el electrón y sus dos parientes más pesados, el muón y el tau y los tres neutrinos a ellos asociados. Las tres fuerzas son la electromagnética, la fuerza nuclear fuerte (que mantiene unidos a los quarks) y la fuerza nuclear débil (responsable de la radioactividasd). Hay una cuarta fuerza: la Gravedad que, aunque tan importante como las demás, nadie ha sabido como encajarla en el modelo estándar. Todas las partículas y fuerzas de este modelo son cuánticas; es decir, siguen las reglas de la mecánica cuántica. Aún no existe una teoría de la gravedad cuántica.

GRAVEDAD CUANTICA

 

En realidad, la región que denominamos Gravedad cuántica nos lleva y comprende preguntas sobre el origen del universo observable que nadie ha sabido contestar. Nos lleva a complejos procesos cuánticos situados en las épocas más cercanas imaginables en un espacio-tiempo clásico, es decir, en lo que se conoce como Tiempo de Planck a 10-43 segundos del supuesto big bang, cuando reinaba una temperatura del orden de 10 x 1031 K. Pero, como hemos dicho, al no existir una teoría autoconsistente de la Gravedad cuántica, lo único que podemos hacer (como en tantas otras áreas de la Ciencia)  es especular.

Resultado de imagen de el modelo estándar de la física de partículasEl modelo estándar extendido SM*A*S*H - La Ciencia de la Mula Francis

 

El Modelo Estándar no es, ni mucho menos, satisfactorio. Los científicos piensan que no sólo es incompleto, sino que es demasiado complicado y, desde hace mucho tiempo, buscan, incansables, otro modelo más sencillo y completo que explique mejor las cosas y que, además, no tenga (como tiene el modelo actual) una veintena de parámetros aleatorios y necesarios para que cuadren las cuentas…, un ejemplo: el bosón de Higgs necesario para dar masa a las partículas.

¡La masa! ese gran problema. Todas las partículas tienen masa diferentes pero nadie sabe de donde salen sus valores. No existe fórmula alguna que diga, por ejemplo,  que el quark extraño debería pesar el doble (o lo que sea) del quark arriba, o que el electrón deba tener 1/200 (u otra proporción) de la masa del muón. Las masas son de todo tipo y es preciso “ponerlas a mano”, como se suele decir: cada una ha de ser medida experimental e individualmente. En realidad, ¿por qué han de tener masa las partículas? ¿de dónde viene la masa?

 

 

No puedo evitarlo ni tampoco me puedo quedar callado, cuando he asistido a alguna conferencia sobre la materia y, el ponente de turno se agarra a la “materia oscura” para justificar lo que no sabe, si al final hay debate, entro en escena para discutir sobre la existencia de esa “materia fantasma” que quiere tapar nuestra enorme ignorancia.

Pero, sigamos con el problema de la masa. Para resolverlo, muchos expertos en física de partículas creen actualmente en algo que llaman “campo de Higgs”. Se trata de un campo misterioso, invisible y etéreo que está permeando todo el espacio (¿habrán vuelto al antiguo éter pero cambiándole el nombre?). Hace que la materia parezca pesada, como cuando tratamos de correr por el fondo de la piscina llena de agua pero que el agua no se pudiera ver. Si pudiéramos encontrar ese campo, o más bien la partícula la partícula que se cree es la manifestación de ese campo (llamada el bosón de Higgs), avanzaríamos un largo trecho hacia el conocimiento del universo. Sí, ya se que hace un par de años dijeron haberla encontrado y, sin embargo yo, todavía tengo dudas al respecto, no acabo de convencerme de su existencia y de cómo da la masa a las otras partículas, el mecanismo para mí no ha quedado nada claro.

 

                                       El Gran Colisionador de Hadrones

Aquí, en este imponente artilugio inventiva de nuestras mentes, se quiere dar respuesta a una serie de interrogantes que se espera solucionar con este experimento:

Qué es la masa.
• El origen de la masa de las partículas
• El origen de la masa para los bariones.
• El número exacto de partículas del átomo.

Claro que, si no fuera tan largo de contar, os diría que, en realidad, el Campo de Higgs se descubrió hace ya muchos siglos en la antigua India, con el nombre de maya, que sugiere la idea de un velo de ilusión para dar peso a los objetos del mundo material. Pocos conocen que, los hindúes fueron los que más se acercaron a las ideas modernas sobre el átomo, la física cuántica y otras teorías actuales. Ellos desarrollaron muy temprano sólidas teorías atomistas sobre la materia. Posiblemente, el pensamiento atomista griega recibió las influencias del pensamiento de los hindúes a través de las civilizaciones persas. El Rig-Veda, que data de alguna fecha situada entre el 2000 y el 1500 a. C., es el primer texto hindú en el que se exponen unas ideas que pueden considerarse leyes naturales universales. La ley cósmica está realcionada con la luz cósmica.

 Resultado de imagen de Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas,

Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas, visiones poéticas y espirituales en las que la imaginación humana ve la Naturaleza y la expresa en creación poética, y después va avanzando hacia unidades más intensamente reales que espirituales hasta llegar al Brahmán único de los Upanishads.

Hacia la época de Buda (500 a, C.), los Upanishad, escritos durante un período de varios siglos, mencionaban el concepto  de svabhava, definido como “la naturaleza inherente de los distintos materiales”; es decir, su eficacia causal única, , tal como la combustión en el caso del fuego, o el hecho de fluir hacia abajo en el caso dela agua. El pensador Jainí Bunaratna nos dijo: “Todo lo que existe ha llegado a existir por acción de la svabhava. Así… la tierra se transforma en una vasija y no en paño… A partir de los hilos se produce el paño y no la vasija”.

 

 

También aquellos pensadores, manejaron el concepto de yadrccha, o azar desde tiempos muy remotos. Implicaba la falta de orden y la aleatoriedad de la causalidad. Ambos conceptos se sumaron a la afirmación del griego Demócrito medio siglo más tarde: “Todo lo que hay en el universo es fruto del azar y la necesidad”. El ejemplo que que dio Demócrito -similar al de los hilos del paño- fue que, toda la materia que existe, está formada por a-tomos o átomos.

Bueno, no lo puedo evitar, mi imaginación se desboca y corre rápida por los diversos pensamientos que por la mente pasan, de uno se traslada a otros y, al final, todo resulta un conglomerado de ideas que, en realidad, quieren explicar, dentro de esa diversidad, la misma cosa.

Una cosa que no puedo olvidar: Ellos inventaron el Cero, hablaron por primera vez de átomo y de vacío.

Emilio Silvera Vázquez

La química que encendió la chispa del origen de la vida

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen relacionadaLa química que encendió la chispa del origen de la vida : Blog de Emilio  Silvera V.La química que encendió la chispa del origen de la vida : Blog de Emilio  Silvera V.Nuevas evidencias sobre el mundo ARN: un poco más cerca de entender el  origen de la vida

 

Una reciente investigación ha sugerido por primera cómo pudo aparecer el ARN, quizás la primera molécula de material genético, a partir de las transformaciones de sustancias encontradas en cometas.

La hipótesis del “mundo ARN” es uno de los pilares de la investigación sobre el origen de la vida. Según ella, antes de la vida tal como la conocemos, debieron formarse moléculas de ARN que asumieron, además de sus funciones actuales, las del ADN y las enzimas.

Un ARN sencillo puede generar péptidos en las condiciones del “mundo ARN”. Así, actuaría como un antecesor muy simple de la función que lleva a cabo el ribosoma. La química demuestra que la formación abiótica de un híbrido ARN-péptido es posible.

 

Se cree que hay posibles precursores de la vida dispersos por nubes interplanetarias, cometas y asteroides

Se cree que hay posibles precursores de la vida dispersos por nubes interplanetarias, cometas y asteroides – NASA/JENNY MOTTAR

 

Descubren una megaestructura de chorros de plasma del tamaño de 140  galaxias - Tribuna Noticias.

 

El Universo es un infierno frío, oscuro y absolutamente inmenso. Los rayos de luz tardan miles de años en recorrer las galaxias, y las estrellas están tan lejos entre sí que apenas son puntos en la negrura. En medio de esa oscuridad, la temperatura media del Universo ronda los 270 grados centígrados bajo cero, casi en el límite mínimo posible. Pero ni el frío ni el vacío han conseguido evitar la aparición de un pequeño y sorprendente milagro: la vida.

 

Imagen relacionada

La Tierra primigenia

 

Los científicos llevan muchos años tratando de averiguar cómo fue posible que ocurriera. Cómo, en medio de la muerte, la vida parece luchar contra el caos y aferrarse a la supervivencia con todo lo que tiene a su alcance. Recientemente, los investigadores han descubierto algo que llevaban buscando 50 años. Por primera vez, han conseguido encontrar una explicación química para una pequeña parte de este milagro. En concreto, un artículo publicado recientemente en «Science» ha explicado cómo algunas moléculas inanimadas pueden convertirse en ARN, una de las chispas que encendió el origen de la vida.

Epigenética - Wikipedia, la enciclopedia libreNucleótidos: qué son y componentes (estructura del ADN y ARN) -  Enciclopedia Significados

 

«Describimos una ruta química simple que permite a pequeñas moléculas transformarse en nucleósidos, los precursores del ARN», ha explicado a ABC Thomas Carell, químico en la Universidad de Múnich y primer autor del estudio.

A través de unas reacciones químicas relativamente sencillas, estos investigadores han sugerido cómo es posible que unas moléculas de aspecto insignificante se conviertan en uno de los ingredientes básicos de la vida.

Tal como ha explicado Ricardo Amils, catedrático en microbiología de la Universidad Autónoma de Madrid, se trata de compuestos sencillos (como ácido cianhídrico, amoníaco y derivados del ácido fórmico) con los que se puede sintetizar ARN. Este «primo» del ADN es capaz de hacer dos importantísimas funciones en los seres vivos: puede almacenar y codificar información genética (que se hereda y se transfiere) y puede formar monedas energéticas, unas moléculas que se intercambian en el interior de los seres vivos y que permiten que desarrollen sus reacciones químicas.

 

Una de las cosas más interesantes de estas moléculas precursoras es que parecen estar dispersadas por el Universo. Están presentes en el polvo interplanetario y sobre la superficie de asteroides, cometas y planetas rocosos. De hecho, en el caso de esta investigación, los precursores se encontraron sobre la superficie del cometa 67 P/Churyumov-Gerasimenko, la «roca» investigada por la sonda Philae de la Agencia Espacial Europea.

El papel de volcanes y rayos

 

Resultado de imagen de Los rayos de las tormentasVolcanes: qué son y cómo se forman

 

El investigador Juli Peretó, especialista en la investigación del origen de la vida en la Universidad de Valencia, ha explicado cómo se cree que ocurrió el milagro: «El ARN pudo actuar como material genético y como catalizador (facilitando ciertas reacciones químicas). Podría haber estado encapsulado en vesículas membranosas de aminoácidos y otros péptidos cortos». Gracias a esto, y a la presencia de azúcares y aminoácidos, estas pequeñas cápsulas «aprendieron» a conectar la materia y la energía del exterior para su propio beneficio, en lo que sería la versión más primitiva del metabolismo.

 

Resultado de imagen de Cómo pudo surgir la vidaResultado de imagen de Las primeras formas de vida en la Tierra primitiva

Así fue cómo, hace 4.000 o 3.500 millones de años, esas vesículas se organizaron y originaron las primeras formas de vida. Algunos creen que las moléculas precursoras de la vida llegaron a la Tierra bordo de asteroides, y que allí se transformaron y permitieron la aparición de los primeros seres vivos. Pero otros, como Thomas Carell, sitúan el origen en el propio planeta. Quizás, los rayos, los volcanes y los mares de la superficie pudieron ser el caldo de cultivo ideal para las semillas de la vida. Y así, a partir de una posible chispa de ARN, comenzó un proceso imparable de supervivencia, multiplicación y adaptación a un Universo hostil.

 

Representación del nacimiento de la Tierra. Millones de años después, las condiciones cambiaron y favorecieron la aparición de la vida- JULIAN BAUM

El huevo y la gallina

Resultado de imagen de El Huevo o la Gallina?Mapi: ¿Qué fue antes, el huevo o la gallina?

 

-El primer ser vivo, basado en el ADN: ¿Qué fue antes? ¿El huevo o la gallina? Para muchos investigadores esta es la paradoja que surge cuando se piensa en el primer ser vivo. Por una parte este necesitaba pasar a sus herederos su material genético, y por otra extraer energía de ciertas reacciones químicas. Algunos creen que el ADN quedó rodeado por una vesícula y comenzó a replicarse. El problema es que esta molécula necesita a otros para hacer estas reacciones.

 

Resultado de imagen de El ARN

 

-El ARN, «chico para todo»: La mayoría apoya la idea de que fue el ARN el que permitió la aparición del primer ser vivo. Este material genético puede él solo favorecer reacciones químicas cruciales.

-Proteínas, el poder del músculo: No pueden replicarse, pero son grandes trabajadoras. Algunos sugieren que fueron las protagonistas en el origen de la vida.

Reportaje de prensa.