sábado, 13 de septiembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿D-branas? ¡Las nuevas teorías!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                          No hay ninguna descripción de la foto disponible.

 

La teoría tipo I, donde aparecen tanto “cuerdas” y D-branas abiertas como cerradas, que se mueven sobre un espacio-tiempo de 10 dimensiones. Las D-branas tienen 1, 5, 9 dimensiones espaciales.

                 

SUPERCORDAS: ONDE A GRAVITAÇÃO QUÂNTICA E A QCD NÃO PERTURBATIVA SE ENCONTRAM. - ppt carregar

¿Qué son las D-branas? ¿Por qué las requiere la teoría de cuerdas? La respuesta básica a la segunda pregunta es que dan sentido a las cuerdas abiertas que intervienen en la teoría tipo I: cada uno de los dos extremos de una cuerda abierta debe residir en una D-brana. Pero dos extremos de la cuerda abierta residen en un subespacio (q + 1)-dimensional de género tiempo llamado una D-brana, o D-q-brana que es una entidad esencialmente clásica (aunque posee propiedades de supersimetría), que representa una solución de la teoría de super-gravedad 11 dimensional.

Por que la teoría M es la candidata más importante a convertirse en la tan ansiada teoría del todo? – Blog de Divulgación Científica y Tecnológica

En respuesta a la primera pregunta, una D-brana es una estructura de género tiempo, como más arriba indico, 1 + q dimensiones espaciotemporales. Invocando una de las dualidades de la teoría M, alternativamente podemos considerar una D-brana como una solución de las ecuaciones de alguna otra versión de la teoría M de cuerdas.

Imagen

Claro, todo es pura conjetura. Increíblemente el mundo de las Branas es tan colosalmente extraño como lo es el infinitesimal mundo de las partículas quánticas, con la salvedad de que, al tratar de objetos aún más pequeños, es decir aquellos que posiblemente existan más allá de los Quarks, la fascinación sube de tono al topoarnos con un universo de cosas “imposibles”, bueno, mejor alejado de lo que nos dista el sentido común que, está visto, no es el mejor de los sentidos.

                              Cerebro Digital - Actualmente, mediante la teoría de supercuerdas se enuncia la existencia de un espacio de 11 dimensiones, estas son las 3 de espacio que todos somos capaces de intuir, en

Las D-branas aparecen en muchas discusiones modernas relacionadas con las cuerdas (por ejemplo, en la entropía de los agujeros negros). Suelen tratarse como si fueran objetos clásicos que yacen dentro del espacio-tiempo completo 1 + 9 (o 1 + 10) dimensiones. La “D” viene de “Dirichlet”, por analogía con el tipo de problema de valor de frontera conocido como un problema de Dirichlet, en el que hay una frontera de género tiempo sobre la que se especifican datos (según Peter G. Lejeune Dirichlet, un eminente matemático francés que vivió entre 1.805 y 1.859).

Problemas de la física matemática: problema de Dirichlet para la ecuación estacionaria - YouTubeFunción de Green para el problema de Dirichlet de la ecuación de Laplace - YouTube

Con la introducción de tales D-branas, varios teóricos han expresado una “filosofía de cuerdas” que parece representar un profundo cambio respecto a lo anterior. En efecto, se afirma con cierta frecuencia que podríamos “vivir en” esta o esa D-brana, lo que significa que nuestro espacio-tiempo percibido podría yacer realmente dentro de un D-brana, de modo que la razón de que no se perciban ciertas “dimensiones extra” se explicaría por el hecho de “nuestra” D-brana no se extiende a esas dimensiones extra.

                               

                                                       Cosmología De Branas

 

                                INSTITUTO POLIT´ECNICO NACIONAL Soluciones cosmológicas en un sistema de dos mundos Brana.

La última posibilidad sería la postura más económica, por supuesto, de modo que “nuestra” D-brana (una D-3-brana) sería de 1 + 3 dimensiones. Esto no elimina los grados de libertad en las dimensiones extra, pero los reduce drásticamente. ¿Por qué es así?

                            Branas multidimensionales - Mentes Curiosas

                                                 Branas multidimensionales

Nuestra perspectiva ahora es que somos “conscientes” de los grados de libertad que están implicados en el interior profundo del espacio de mayores dimensiones entre las D-branas, y es en esto donde se está dejando sentir la excesiva libertad funcional.

d-brana

 

Sólo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”. Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Klein original:

El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Klein, donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Así, nuestro espacio-tiempo observado aparece ahora como un subespacio 4-dimensional del espacio real de dimensiones más altas. Con algo de imaginación, lo podemos visualizar en nuestra mente.

¿Podría ser nuestro universo una membrana flotando en un espacio de más dimensiones, que se rompe muchas veces en un universo circundante? Según una rama de la teoría de las cuerdas llamada braneword, hay una gran cantidad de dimensiones extra de espacio, y aunque la gravedad puede llegar a salir, nosotros estamos confinados a nuestro propio universo “brana”, con sólo tres dimensiones. Neil Turok, de la Universidad de Cambridge en el Reino Unido, y Paul Steinhardt, de la Universidad de Princeton en Nueva Jersey, EE.UU., han trabajado en cómo el Big Bang se podría haber provocado cuando nuestro universo se enfrentó violentamente con otro. Se repite el enfrentamiento, produciendo un nuevo Big Bang de vez en cuando, por lo que si el modelo del universo cíclico es correcto, el cosmos puede ser inmortal. ¡Por imaginar que no quede!

 

Una teoría sobre el origen del Universo - El DíaSin lugar para el 'qué había antes': incluso el Universo cíclico tuvo que tener un comienzo

Un nuevo estudio demuestra que por ahora no es posible librarse de una singularidad en el principio del Universo. Sin embargo, tampoco descarta el universo cíclico

¿Cuánta libertad funcional esperamos ahora? La situación es ahora algo parecida a la imagen geométrica que hemos adoptado en el gráfico para obtener una perspectiva más convencional con respecto a la “super-geometría”. Puesto que ahora estamos interesados solo en el comportamiento en la D-brana (que suponemos que es geométricamente una (1 + 3)-superficie ordinaria), podemos imaginar que nuestra libertad funcional se ha convertido en una aceptable , aunque para un M bastante grande. Sin embargo, incluso esto supone que la restricción de la dinámica en el 10-espacio (un 11-espacio) completo nos proporciona ecuaciones dinámicas dentro de “nuestra” D-brana 4-dimensional que son del tipo convencional, de modo que bastarán los datos iniciales en una 3-superficie para determinar el comportamiento en todo el 4-espacio. Esto es difícilmente probable, en general, de modo que aún cabe esperar un excesivo . ¡El problema no ha desaparecido todavía!

Tal actitud hacia las D-branas se ha utilizado para intentar resolver el problema de la jerarquía del gráfico siguiente:

 

supersimetriaY qué hacemos con la jerarquía?: cuatro posibles soluciones - Juan Ferrer

               ¿Qué hacemos con la Jerarquía?

Según cierta perspectiva de “gran unificación”, las constantes de acoplamiento de las interacciones fuerte, débil y electromagnética, tratadas como constantes de acoplamiento móviles, deberían alcanzar exactamente el mismo valor a temperaturas suficientemente grandes, aproximadamente 1028 K, que se habrían dado alrededor de 10.000 instantes de Planck después del Big Bang (~10-39 s). Se ha visto que la supersimetría es necesaria para resolver que los tres valores coincidan exactamente.

                      gran-colisionador-de-particulas (1)

“Supersimetría (o como la conocen los físicos por sus siglas en inglés, SUSY) es una de las teorías más populares que postulan la existencia de física más allá del Modelo Estándar de Física de Partículas (teoría que describe las partículas elementales y sus interacciones). El Modelo Estándar se construye a partir de simetrías muy fundamentales que dan lugar a leyes de conservación: SUSY incluye todas las simetrías que ya contiene el Modelo Estándar y añade otra más que involucra a un número cuántico llamado espín (en inglés spin, ‘giro’), una propiedad de las partículas elementales que hace referencia a su momento angular intrínseco.

En busca de SUSY: Supersimetría, cuerdas y teoría del todo: 1 (Drakontos Bolsillo) : Gribbin, John, Riera, Joan Lluís: Amazon.es: Libros

Este número cuántico divide a todas las partículas conocidas en dos tipos: fermiones (con espín semi-entero) y bosones (con spin entero). Los fermiones en el Modelo Estándar son los quarks y los leptones (como por ejemplo el electrón), mientras que los bosones son los mediadores de las interacciones (como por ejemplo el fotón).”

                                                Acercándonos al LHC - Supersimetría

Lo que postula SUSY es que a cada partícula del Modelo Estándar le corresponde un compañero super-simétrico que tiene el espín contrario. Es decir, por cada fermión, SUSY añade un bosón y por cada bosón añade un fermión. Por tanto, el número de partículas predicho por SUSY es el doble que en el Modelo Estándar.

 

El fin de la supersimetría?

No se ha podido confirmar su existencia, porque aún no se ha encontrado su señal, pero hay grandes experimentos que lo están intentando.

 

 

En concreto, esta es la cuestión de por qué las interacciones gravitatorias son tan minúsculas comparadas con las demás fuerzas importantes de la naturaleza o, de manera equivalente, por qué es la masa de Planck tan enormemente mayor que las masas de las partículas elementales de la naturaleza (en un factor de, aproximadamente, 1020). La aproximación de la D-brana a este problema parece requerir la existencia de más de una D-brana, una de las cuales es “grande” y la otra “pequeña”. Hay un factor exponencial involucrado en cómo se estira la geometría desde una D-brana hasta la otra, y esto se considera una ayuda para abordar la discrepancia en 1040, más o menos, entre las intensidades de la fuerza gravitatoria y las otras fuerzas.

Qué es la materia oscura? 💡 El Universo en 1 Minuto - YouTube

 

La materia oscura podría no ser una “cosa”, podría ser un un nombre engañoso para un extraño comportamiento de la gravedad. La teoría llamada MOND (Dinámica de Newton Modificada), sugiere que la gravedad no se debilita con tanda rapidez como lo predice la teoría actual. Esta gravedad más fuerte puede llenar el rol de la materia oscura, uniendo galaxias y racimos que de otro modo deberían volar separados. Una nueva formulación de MOND, consistente con la relatividad, ha reavivado el interés en la idea, aunque no se ajusta al patrón de puntos de la radiación de fondo de microondas cósmicas.

Teoría MOND y la materia oscura — AstronooInvestigadores analizan la teoría MOND como alternativa a la hipótesis del Planeta Nueve

Investigadores analizan la teoría MOND como alternativa a la hipótesis del Planeta Nueve

Investigadores analizan la teoría MOND como alternativa a la hipótesis del Planeta NueveInvestigadores analizan la teoría MOND como alternativa a la hipótesis del Planeta Nueve

 

“MOND propone que la ley de gravitación de Newton es válida hasta el punto en el que la aceleración gravitacional se vuelve suficientemente pequeña para que un régimen diferente de comportamiento gravitacional tome control. Brown y Mathur, quienes habían estudiado previamente el efecto de MOND en la dinámica galáctica, encontraron un interés renovado en la teoría después de que los astrónomos anunciaran en 2016 que algunos objetos en el sistema solar exterior mostraban anomalías orbitales que podrían ser explicadas potencialmente por la presencia de un noveno planeta.”

 

Espacio tiempo fotos de stock, imágenes de Espacio tiempo sin royalties | DepositphotosLa Quinta Perspectiva: trascender el espacio y el tiempo | Space pictures, Hubble space telescope images, Hubble images

Buscamos esas otras dimensiones que no podemos ver para cuadrar las cuentas

Se puede decir que este tipo de imagen de espacio-tiempo de dimensiones más altas, que se estira desde la frontera de una D-brana hasta la otra, es uno de los tipos de geometría sugeridos por las teorías 11 dimensionales, tales como la teoría M, donde la undécima dimensión tiene la forma de un segmente abierto, y la geometría de cada frontera tiene la forma topológica (por ejemplo, M×V) de los 10 espacios considerados antes. En otros modelos, la undécima dimensión es topológicamente S1.

¿Qué harán de todo esto los físicos con respecto al estatus de la teoría de cuerdas como una teoría física para el futuro?

 

Qué es la teoría de cuerdas? – Ciencia de Sofá

Dibuja bellos escenarios pero… ¡La Teoría de Cuerdas es inverificable (Por el momento)

La situación tiene aspectos muy enigmáticos y notables, y otros aspectos parecen inconsistentes y sería un error, en este momento, que los demos por buenos; mejor esperemos a que maduren. Pese a todo, muchas de las afirmaciones de los teóricos de cuerdas se hacen con gran seguridad y aparente confianza. Es indudable que estas afirmaciones deben ser suavizadas hasta que se adquiera más certeza en el conocimiento de los múltiples aspectos de la teoría que deben ser tomados con cierta reserva antes de ser lanzadas alegremente al mundo.

La cosmología moderna no consigue responder a las dudas sobre la existencia

Tres misterios de la cosmología moderna podrían enmarcarse en una presencia fantasmal. Después de unos ajustes en la teoría general de Einstein, un equipo de físicos encontraron una extraña sustancia que surgía de su nueva teoría el “condensado fantasma“. Produce la gravedad repulsiva que genera la inflación cósmica en el Big Bang, más tarde podría generar una aceleración más tranquila que se le asigna a la energía oscura. Por otro lado, si esta resbaladiza sustancia se agrupara, formaría la materia oscura.

Roger Penrose afirma que algunas de las afirmaciones de más peso pueden ser descartadas (tal es el caso de que la teoría de cuerdas ha proporcionado una teoría completa y consistente de la gravedad cuántica). En mi modestia, estoy totalmente de acuerdo con él, y según lo poco que sé al respecto, me hace pensar que la teoría de cuerdas es una firme candidata para llegar a esa teoría cuántica de la gravedad, aunque de momento, le queda inalcanzable.

                      Gravedad Cuántica | Posters de ciencias, Enseñanza de química, Paginas de matematicas

Según todos los indicios, parece que, en la Teoría de Cuerdas, subyace una Teoría Cuántica de la Gravedad. Ya que, cuando los físicos trabajan con las ecuaciones de campo de esta teoría, sin que nadie las llame, allí aparecen las ecuaciones de campo de la Relatividad General de Einstein. ¿Por qué será?

El viejo Einstein, allá donde se pueda encontrar, mirará para nuestro mundo sonriendo al ver que, en eso, también llevaba razón.

No obstante, sería injusto no admitir que parece haber algo de auténtica trascendencia “entre bastidores” en algunos aspectos de la teoría M de cuerdas. Claro que podría resultar que ese algo sea de interés puramente matemático, sin que haya ninguna razón real para creer que nos acerca más a los secretos de la naturaleza.

La teoría M de cuerdas es una teoría muy adelantada a su tiempo; incluso las matemáticas necesarias para desarrollarla al completo nos son desconocidas. Por otra parte, la energía necesaria para verificarla no está a nuestro alcance.

La fuerza del argumento a favor de la teoría de cuerdas parece residir en varias relaciones matemáticas notables entre “situaciones físicas” en apariencia diferentes, normalmente, algo alejadas de la física del mundo real de la naturaleza. ¿Son una coincidencia estas relaciones, o hay alguna razón más profunda tras ellas?

La materia oscura podría estar hecha de las partículas más elusivas jamás imaginadas: los neutrinos estériles. Ellos son los hipotéticos primos más pesados de los neutrinos ordinarios y podrían interactuar con otra materia sólo a través de la fuerza de la gravedad, haciéndolos esencialmente imposibles de detectar. Pero tienen la propiedad correcta de “calentar” la materia oscura, zumbando a velocidades de unos pocos kilómetros por segundo, lo que forma los grandes grupos de materia oscura que fueron mapeadas en observaciones recientes. Los neutrinos estériles podrían ayudar a formar las estrellas y los agujeros negros en el universo temprano y dio el impulso que envió a las estrellas de neutrones con exceso de velocidad alrededor de nuestra galaxia.

Si hablamos de matemáticas, las coincidencias sin una razón determinada suelen ser más bien escasas. Me inclino y apuesto por el hecho de que para muchas de estas “coincidencias” hay realmente una razón, todavía no descubierta. Algunos, no sé si calificarlos de envidiosos o de tener carencia de ilusiones, han llegado a decir que, los teóricos de cuerdas no es seguro que estén haciendo física, o si la hacen, ¿qué área de la física están explorando realmente? Se me ocurre pensar que el mismo escepticismo encontró a Einstein en su tiempo, al formular sus famosas teorías relativistas, y sin embargo, nos trajo hasta aquí.

No parece que se pueda hacer una valoración adecuada de estas cuestiones sin mencionar el papel concreto de Edward Witten. Él es aceptado generalmente como la figura con más responsabilidad en la dirección de la investigación en la teoría de cuerdas (y la teoría M) desde finales de la década de los 80. Ha tenido un papel primordial en el lanzamiento de la “segunda revolución en supercuerdas” en 1.995, pero ya entonces había establecido su preeminencia al iniciar varios desarrollos importantes en la teoría de cuerdas, y en muchas otras áreas que tienen cierta relación (no siempre obvia) con la teoría de cuerdas. Sin duda, Witten ha sido hasta el momento el mejor conductor de la teoría de cuerdas.

 

Así, Witten dice:

Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de cuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos del siglo XX no deberían haber tenido el privilegio de estudiar esta teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos ahora mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.

 

 

Nuevos resultados que apoyan la conjetura AdS/CFT de Maldacena - La Ciencia de la Mula Francis

Nuevos resultados que apoyan la conjetura AdS/CFT de Maldacena

Yo no perdería de vista tampoco, lo que nos dice la Conjetura de Maldacena. Lo que Maldacena encontró es que, cuando se describe el comportamiento de cuerdas en un espacio tiempo curvado de una forma muy particular (concretamente un Anti DeSitter tensoriado a otro espacio), el sistema es completamente equivalente al que describe una teoría de campos sobre la frontera conforme del espacio-tiempo, frontera que resulta ser… ¡¡un espacio de Minkowsky!! En palabras cotidianas, cada cosa que ocurre en el interior de una esfera de cristal se corresponde con algo que ocurre en su superficie.

 

Las teorías de cuerdas y la Conjetura de Maldacena (por Iñaki Ascacibar) – Roberto Colom

La teoría de la relatividad general no puede explicar una singularidad como el big bang, porque no contempla el azar, ni tampoco los misteriosos agujeros negros; por lo tanto para explicar el universo es necesario tener en cuenta también la teoría de cuerdas, porque en algunos casos, las leyes del cosmos parecen no comportarse en forma clásica sino de manera cuántica.

Sabias que...?

 

Las consecuencias de esta conjetura son muy importantes, pues existe la posibilidad de que el resto de interacciones (electromagnéticas y nucleares) sean tan sólo una ilusión, el reflejo sobre el cristal de un escaparate del contenido de la tienda. Así, podría ser que el electromagnetismo tan sólo sea la imagen proyectada de la interacción de algunas cuerdas en un supuesto interior del espacio-tiempo. De la misma manera, la necesidad de compactificar las dimensiones adicionales desaparece en cierto modo si consideramos que, quizás, nuestro mundo sea solamente la frontera; siendo el interior del espacio-tiempo inaccesible.

 

Es interesante que en un nuevo trabajo que parece bastante importante, Witten ha vuelto a consideraciones dentro de un espacio-tiempo 4-dimensional estándar (aunque sigue habiendo supersimetría). Combinando ideas de la teoría de twistores y la teoría de cuerdas, Witten es capaz de obtener algunos resultados fascinantes concernientes a las interacciones de Yang-Mills de varios gluones. Este trabajo es particularmente importante desde una perspectiva orientada a los twistores, y bien podría llevar a nuevos desarrollos.

La calidad de los logros intelectuales de Witten es extraordinaria. Se puede comentar, por ejemplo, sobre los seminarios de matemáticas de Oxford (en la serie de geometría y análisis), en los que se ha anunciado algún informe nuevo y muy original de algún problema, y ha resultado que la idea seminal procedía en realidad de Witten. A menudo, tales enfoques han abierto un nuevo campo, donde estas ideas imprevistas y nuevas han arrojado un potente fogonazo de luz original sobre problemas matemáticos difíciles (a veces problemas que previamente parecían intratables). Sin duda, Witten posee una extraordinaria intuición y unos conocimientos matemáticos que sobrepasan a los de primer orden; su medalla Field de 1.990 es más que justificada. Sin embargo, sus capacidades, según las ideas que expone, están más cerca de la observación profunda de la naturaleza. Si él tiene razón, entonces quizá éste sea uno de los argumentos más contundentes para aceptar sus opiniones de que la supersimetría y la teoría de cuerdas encuentran un profundo favor en la naturaleza. Por otra parte, ¡quizá sea un matemático más notable de lo que él mismo admite!

emilio silvera

Hay partículas muy importantes en nuestras vidas (sin ellas, no seríamos)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

         ¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz?

 

https://www.youtube.com/shorts/xYJFsheeHgQ?feature=share

             Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?

 

Qué le sucede al átomo cuando absorbe fotones y no son reemitidos? - Quora

 

 

Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.

Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.

 

demo tunnel GIF

 

De forma similar a nuestro análisis de la expresión para los intervalos de tiempo, encontramos que, a medida que aumenta la velocidad de un objeto, la masa observada a partir de un marco de referencia estacionario también aumenta. Alcanzará una masa infinita (o indefinida) si alcanza la velocidad de la luz

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increíblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

 

                                             

                                      No un pulsar tampoco puede ser más rápido que la luz

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

                               

En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad.

 

La sorprendente relación entre la Gran Pirámide y la velocidad de la luz-0

                Sí, hemos encontrado extrañas coincidencias

Sucede que la latitud de la pirámide de Guiza es 29º 58’ 45,02” N; al expresarse en sistema decimal, es igual a 29,9791722º N, es decir, una magnitud que transformada en diezmilésimas de grado da como resultado 299.791,722. Esto supone una aproximación del 99.99 por ciento a la velocidad de la luz, que es de 299.792,458 kilómetros por hora.

 

 

Demostración fehaciente de que la velocidad de la gravedad es más de diez mil veces la velocidad de la luz | TARDÍGRADOS

Demostración fehaciente de que la velocidad de la gravedad es más de diez mil veces la velocidad de la luz ¿Cómo se explica eso?

Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa que, llegado a cierto límite, podría ser infinita y, como infinito no hay nada, nos quedamos con que nunca, nada, podrá sobrepasar esa velocidad.

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.

¿Que velocidad podría ser la de la luz en otros mundos paralelos que pudieran existir fuera de nuestro universo?

 

           

    Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz

La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían traspasar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿Cómo iremos?

 

 

 

Agujero De Gusano Viaje En El - Imagen gratis en Pixabay - Pixabay

Es posible que algún día demos con la manera de abrir la puerta de un Agujero de Gusano

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

 

El sábado fue lanzado el James Webb, el mayor telescopio enviado al espacio | AgendARSobre qué tratan las impresionantes y maravillosas imágenes del telescopio James Webb

De momento sólo con los Telescopios podemos llegar tan lejos.

 

 

CERN construirá un acelerador de partículas tres veces mayor al actual | Aristegui Noticias

                                   El LHC del CERN y el Fermilab

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

 

                                     

 

Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos coger para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.

La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

 

Otro estudio demuestra que es posible superar la velocidad de la luz

 

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.

A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

 

File:Military laser experiment.jpg

   Fotones emitidos por un rayo coherente conformado por un láser

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relegar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.

¡La Naturaleza! Observémosla.

emilio silvera

Sobre la Relatividad Especial

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                                                               

                       En cualquier parte que podamos buscar información nos dirán:

 

Resultado de imagen de Henri Poincaré el matemático francés

 

Henri Poincaré, matemático francés, sugirió a finales del siglo XIX que el principio de relatividad establecido desde Galileo (la invariancia galileana) se mantiene para todas las leyes de la naturaleza. Joseph Larmor y Hendrik Lorentz descubrieron que las ecuaciones de Maxwell, la piedra angular del electromagnetismo, eran invariantes solo por una variación en el tiempo y una cierta unidad longitudinal, lo que produjo mucha confusión en los físicos, que en aquel tiempo estaban tratando de argumentar las bases de la teoría del éter, la hipotética substancia sutil que llenaba el vacío y en la que se transmitía la luz. El problema es que este éter era incompatible con el principio de relatividad.”

 

 

Diagrama: Apariencia del espacio-tiempo a lo largo de una línea de universo de un observador acelerado.

La dirección vertical indica el tiempo, la horizontal indica la distancia espacial, la línea punteada es la trayectoria del observador en el espacio tiempo. El cuarto inferior representa el conjunto de sucesos pasados visibles al observador. Los puntos pueden representar cualquier tipo de sucesos en el espacio tiempo.

La pendiente de la línea de universo o trayectoria de la vertical da la velocidad relativa del observador.

 

     

       Marie Curie y Poincaré

“Poincaré (1900) analizó la «fabulosa invención» del tiempo local de Lorentz (no estaba al tanto de que el concepto lo introdujo en realidad Woldemar Voigt en 1887), y manifestó que el concepto surge cuando se trata de sincronizar dos relojes en movimiento, mediante la emisión de señales luminosas que se supone viajan a la misma velocidad en ambas direcciones en un marco de referencia en movimiento.2​ (en inglés) En La medida del tiempo (Poincaré, 1898), el autor analizó la dificultad de establecer la simultaneidad a distancia, y concluyó que la misma puede ser establecida por convención. También discutió el «postulado de la velocidad de la luz», y formuló el Principio de la Relatividad según el cual ningún experimento mecánico o electromagnético puede diferenciar entre un estado de movimiento uniforme y el estado de reposo.”

 

 

fisica 2º bachiller: Las transformaciones de LorentzTransformaciones de Lorentz (teoria de la relatividad) - YouTube

 

En su publicación de 1905 en electrodinámica, Henri Poincaré y Albert Einstein explicaron que, con las transformaciones hechas por Lorentz, este principio se mantenía perfectamente invariable. La contribución de Einstein fue el elevar a este axioma a principio  y proponer las transformaciones de Lorentz como primer principio. Además descartó la noción de tiempo absoluto y requirió que la velocidad de la luz en el vacío sea la misma para todos los observadores, sin importar si éstos se movían o no. Esto era fundamental para las ecuaciones de Maxwell, ya que éstas necesitan de una invarianza general de la velocidad de la luz en el vacío.

 

 

Como en otras ocasiones, aquí dejamos una muestra de la velocidad de la luz cuando viaja desde la Tierra a la Luna, el tiempo que tarda la línea amarilla (que refleja el movimiento de la luz) es lo que tarda en llegar la luz desde la Tierra a la Luna.

 

 

 

Viajes en el tiempo y otros fenómenos: la teoría de la relatividad - La Soga | Revista Cultural

Como elefante en una cacharrería, así entró Einstein en el “mundillo” de la Física: Materia y energía son la misma cosa, si se viaja a la velocidad de la luz, el Tiempo se ralentiza… Postulados así causaron el asombro en los físicos que, no las tenían todas consigo y, sólo unos pocos (entre ellos Max Planck), se dieron cuenta de la gran importancia de todos aquellos postulados.

La aparición de la Teoría de la relatividad fue tan poco convencional como su autor. El ya famoso artículo que escribió en 1905 (con el apoyo de los trabajos de los arriba mencionados) y que enunciaba por primera vez la teoría, era algo rústico y sencillo y no mencionaba o contenía cita  científico-literaria alguna, tampoco mencionaba ayuda de ninguna persona a excepción de su amigo Besso, que dicho sea de paso no era científico (él, por aquel entonces, no conocía a científico alguno). La primera conferencia de Einstein explicando la Teoría, en Zurich,  no fue dada en ninguna universidad sino en el salón del Sindicato de Carpinteros, duró más de una hora, y luego repentinamente se interrumpió para preguntar la hora, explicando que no tenía reloj. Sin embargo, a pesar de los modestos comienzos, allí comenzó a reformarse los conceptos del espacio y del tiempo.

 

                                     

 

Lo cierto es que, con su teoría de la relatividad, Einstein finalmente resolvió la paradoja que se había presentado a los dieciséis años, por la que las ecuaciones de Maxwell pierden su validez si uno atrapa un haz de luz a la velocidad de la luz. Lo hizo mediante la conclusión de que no se puede acelerar la velocidad de la luz, de que la velocidad de la luz es la misma para todos los observadores, cualquiera que sea su movimiento relativo. Si un astronauta que vuela hacia la estrella más cercana a una velocidad del cincuenta por ciento de la de la luz, , midiera la velocidad de la luz a bordo de la nave, el resultado sería exactamente igual que el que daría la medición de otro colega suyo situado en la Tierra.

 

Introducción a la relatividad especial y los diagramas espacio-tiempo de Minkowski | Física - YouTube73 Relatividad Especial IX. Diagramas De Minkowski - YouTube1 Diagramas de Minkowski para diferentes coordenadas de velocidad. | Download Scientific Diagram

Diagrama de Minkouski  para diferentes coordenadas

Podrían ocurrir fenómenos que ni podemos imaginar pero, quedándonos en lo que más llama la atención al público en general, podríamos conseguir que el tiempo … ¡Se ralentizara y pasara más despacio para el viajero relativista! Si miráis el  diagrama del Minkouski os hablará de los fenómenos que se pueden producir al viajar a la velocidad de la luz, cuando el Tiempo se ralentiza.

Diferentes sistemas de referencia para el mismo fenómeno. Claro que, en la teoría están presentes factores y trabajos que no se mencionan y, la fórmula

siguiente:   \gamma = \frac{1}{\sqrt{1 - v^2/c^2}} es el llamado factor de Lorentz  donde c\, es la velocidad de la luz en el vacío.

Contrario a nuestro conocimiento actual, en aquel momento esto era una completa revolución, debido a que se planteaba una ecuación para transformar al tiempo, cosa que para la época era imposible. En la mecánica clásica, el tiempo era un invariante. Y para que las mismas leyes se puedan aplicar en cualquier sistema de referencia se obtiene otro tipo de invariante a grandes velocidades (ahora llamadas relativistas), la velocidad de la luz. Los sucesos  que se realicen en el sistema en movimiento S’ serán más largos que los del S. La relación entre ambos es esa \gamma . Este fenómeno se lo conoce como dilatación del tiempo. Si se dice que el tiempo varía a velocidades relativistas, la longitud también lo hace.

 

                                                             

                                 En el gráfico se escenifica la contracción de Lorentz

Para cuantificar aquella extraña situación, Einstein se vio obligado a emplear la contracción de Lorentz (En aquel momento no conocía a Lorentz al que más tarde consideraría “el hombre más grande y más noble de nuestro tiempo… una obra de arte viviente.)” En manos de Einstein, las ecuaciones de Lorentz especifican que, cuando aumenta la velocidad a la que se desplaza un observador, sus dimensiones, y la de la nave espacial y todo aparato de medición que haya a bordo, se contrae a lo largo de su movimiento en la cantidad requerida para hacer que la medición de la velocidad de la luz sea siempre la misma.

 

El experimento de Michelson-Morley y sus conclusiones

      El experimento de Michelson-Morley

La importancia de este experimento es crucial, pues junto a las predicciones de la Relatividad General es considerado la base o apoyo más importante de la Teoría de la Relatividad.

Esta era la razón de que Michelson y Morley no hallasen ningún  rastro del “arrastre del éter”. En verdad, el éter es superfluo, al igual que el espacio y el tiempo absolutos de Newton, pues no hay ninguna necesidad de un marco de referencia inmóvil. “Al concepto de reposo absoluto no le corresponde ninguna propiedad de los fenómenos, ni en la mecánica ni en la electromecánica.” Lo importante son los sucesos observables, y no puede observarse ningún suceso hasta que la luz (o las ondas de radio o cualquier otra forma de radiación electromagnética) que lleve noticias de él no llegue al observador. Einstein reemplazó el espacio de Newton por una red de haces de luz; la de ellos era una red absoluta dentro de la cual el espacio mismo se vuelve flexible.

 

              Resultado de imagen de Los observadores en movimiento experimentan también una lentificación del paso del tiempo. Un astronáuta que viaje al 90 por 100 de la velocidad de la luz sólo envejecerá a la mitad de rápido

Los observadores en movimiento experimentan también una lentificación del paso del tiempo. Un astronauta que viaje al 90 por 100 de la velocidad de la luz sólo envejecerá a la mitad de rápido que su colega de la Tierra. Ya conocéis la paradoja de los gemelos en la que se explica tal fenómeno.

 

http://universitam.com/academicos/wp-content/uploads/2011/01/i-relativity.gif

 

También en aquel primer artículo Einstein nos habló sobre la igualdad entre la masa y la energía. Él demostró que la masa de un cuerpo aumenta cuando absorbe energía. Se sigue de ello que su masa disminuye cuando irradia energía. Esto es verdadero no sólo para una nave espacial que se desplaza hacia las estrellas, sino también para un objeto en reposo. Una máquina fotográfica pierde algo (muy poco) de masa cuando el flash se dispara, y la gente cuya fotografía se saca se vuelve también, un poco más masiva al absorber sus cuerpos aquella radiación perdida por la máquina. Masa y energía son intercambiables.

m = E/c2

donde m es la masa del objeto, E su energía y c la velocidad de la luz. Al formular esta ecuación particularmente sencilla, que unifica los conceptos de energía y materia, y relaciona ambos con la velocidad de la luz, Einstein inicialmente estaba interesado en la masa. En cambio, si despejamos la energía, adquiere una forma más familiar y presagiosa:

 

E mc2 fotografías e imágenes de alta resolución - Página 2 - Alamy

 

 

En la Isla de los Museos (Berlín). Festejando el Año mundial de la Física en 2005, en el centenario de la publicación de la ecuación más famosa del mundo. Contemplada desde esta perspectiva, la teoría dice que la materia es energía congelada. Esto, por supuesto, es la clave de la fuerza nuclear y, en manos de los astrofísicos, la ecuación sería usada para descubrir los procesos termonucleares en el corazón de las estrellas.

1 - Curso de Relatividad General - YouTubeNuevas medidas en el espectro solar verifican la Relatividad General de Einstein | Instituto de Astrofísica de Canarias • IAC

Estas ecuaciones lo cambiaron todo

Relatividad General cumple 100 años | Conexión causal

Pero pese a todos sus variados logros, la relatividad especial no decía nada de la gravitación y, su autor, la veía incompleta. Aquella teoría sin la presencia de la otra gran fuerza más conocida del universo se veía desáalida: Había que vincularla con la masa inercial. La resistencia al cambio que ofrecen los objetos en estado de movimiento, su “peso” por decirlo así. La gravitación actúa sobre los objetos según su masa gravitacional, esto es, su “peso”. Todos sabemos lo que es la masa inercial y de ella, tendremos que hablar cuando acometamos la página sobre la relatividad general. Dejemos aquí el apunte de que, la masa inercial y la gravitación de cualquier objeto son iguales. También se podría decir que, es la masa de los cuerpos que pueblan el universo, la que moldea y modela la geometría del del Cosmos, del espacio-tiempo.

 

                                                                     

Terminemos con la misma imagen del comienzo. Causalidad e imposibilidad de movimientos más rápidos que la luz. Previo a esta teoría, el concepto de causalidad estaba determinado: para una causa existe un efecto. Anteriormente, gracias a los postulados de Laplace,  se creía que para todo acontecimiento se debía obtener un resultado que podía predecirse. La revolución en este concepto es que se “crea” un cono de luz de posibilidades (Véase gráfico adjunto).

Se observa este cono de luz y ahora un acontecimiento en el cono de luz del pasado no necesariamente nos conduce a un solo efecto en el cono de luz futuro. Desligando así la causa y el efecto. El observador que se sitúa en el vértice del cono ya no puede indicar qué causa del cono del pasado provocará el efecto en el cono del futuro.

Asumiendo el principio de causalidad obtenemos que ninguna partícula de masa positiva puede viajar más rápido que la luz. A pesar que este concepto no es tan claro para la relatividad general. Pero no solo el principio de causalidad imposibilita el movimiento más rápido que el de la luz. Ya hablaremos de ello.

emilio silvera

¿La Quinta Dimensión? ¿Dónde?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Desde siempre han surgido mentes que imaginaron nuevas formas, nuevas dimensiones, nuevas estructuras para el universo que no acabamos de conocer. No hemos dejado de construir teorías de todo tipo para tratar de saber, de una vez por todas, en qué universo estamos.

¿Qué si lo hemos conseguido?

¡Que más quisiéramos!

¿Universo de más dimensiones?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Compactación (física) - Wikipedia, la enciclopedia libre

              T. Kaluza

Las dimensiones mas altas fueron introducidas en una teoría unificada por primera vez en 1919, en Alemania, por Theodor Kaluza. Le escribió a Einstein sugiriéndole que su sueño de hallar una teoría unificada de la gravitación y el electromagnetismo podía realizarse si elaboraba sus ecuaciones en un espacio-tiempo de cinco dimensiones. Einstein al principio se burlo de la idea, pero mas tarde, pensando y estudiando la sugerencia con mas frialdad y examen mas profundo, lo reconsidero y ayudo a Kaluza a que pudiera publicar su articulo.

 

      Oskar Klein

 

 

Gravedad Cuántica | Posters de ciencias, Enseñanza de química, Paginas de matematicas

 

 

Teoría de Kaluza-Klein - Wikipedia, la enciclopedia libreQué es una torre de estados Kaluza-Klein? - Quora

 

Pocos años mas tarde, el físico sueco Oskar Klein publico una versión del trabajo de Kaluza que, lo mejoraba dejando un diseño matemático mas fino, de mas calidad y que explicaba de manera mas contundente lo que la teoría quería significar al elevar la teoría a cinco dimensiones y lograr unificar la gravedad con el magnetismo. Desde entonces, la teoria es conocida como de Kaluza-Klein y, aunque parecia muy interesante, en realidad nadie sabia que hacer con ella hasta los años setenta, cuando resulto beneficioso trabajar en la supersimetria.

 

 

Qué postula la teoría general de la relatividad? - Quora

Claro que el verdadero descubrimiento era la Relatividad General

Pronto Kaluza-Klein estuvo en los labios de todo el mundo (los físicos mas destacados del momento hablaron de esa teoría). Aunque la teoría de cuerdas en particular y la super-simetría en general apelaban a mas dimensiones, las cuerdas tenían un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la teoría de cuerdas solo seria eficaz en dos, diez y veintiséis dimensiones, y solo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta hacia algo tan tajantemente, los científicos prestan atención, y a finales de los años ochenta había muchos físicos que trabajaban en las cuerdas.

 

El Modelo Estándar de la Física de Partículas (figura 3) permite comprender como estas partículas y tres de las fuerzas fundamentas están relacionadas entre sí. Desarrollado a principios de la década de 1970, ha explicado con éxito casi todos los resultados experimentales y predijo con precisión una amplia variedad de fenómenos. Con el tiempo y a través de muchos experimentos, el Modelo Estándar se ha establecido como una teoría de la física bien probada.

   

Qué es la gravedad cuántica de bucles? Definición y principios

 

La cuerda es cuántica y gravitatoria, de sus entrañas surge, como por arte de magia, la partícula mensajera de la fuerza de gravedad: el gravitón. Funde de forma natural las dos teorías físicas más poderosas de que disponemos, la mecánica cuántica y la relatividad general, y cuando se convierte en supercuerda -con mayores grados de libertad- es capaz de describir bosones y fermiones, partículas de fuerza y de materia. La simple vibración de una cuerda infinitesimal podría unificar todas la fuerzas y partículas fundamentales.

Parece que todo está hecho de cuerdas, incluso el espacio y el tiempo podrían emerger de las relaciones, más o menas complejas, entre cuerdas vibrantes. La materia-materia, que tocamos y nos parece tan sólida y compacta, ya sabíamos que está conformada por grandes espacios vacíos, pero no imaginábamos que era tan sutil como una cuerda de energía vibrando. Los átomos, las galaxias, los agujeros negros, todo son marañas de cuerdas y supercuerdas vibrando en diez u once dimensiones espaciotemporales.

 

 

Lo cierto es que, andamos un poco perdidos y no pocos físicos (no sabemos si de forma interesada), insisten una y otra vez, en cuestiones que parecen no llevar a ninguna parte y que, según las imposibilidades que nos presentan esos caminos, ¿no sería conveniente elegir otros derroteros para indagar nuevas físicas mientras tanto?, para dejar que avanzasen las tecnologías, se adquieran más potentes y nuevas formas de energías que nos puedan permitir llegar a sondear las cuerdas y poder vislumbrar si, es cierto, que puedan existir esas cuerdas vibrantes que, con sus resonancias crean las partículas y la materia.

 

Nos queda mucho para poder oír las vibraciones de esas “cuerdas” que la física trata de encontrar, y, mientras tanto, oiremos estas otras.

 

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

Quedaba mucho y duro trabajo por hacer, pero las perspectivas eran brillantes. y, de entre todos ellos, los mas destacados fueron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten. Ellos fueron los artifices de un gran periodo de aventura intelectual que desemboco en la mas moderna versión de la teoria de cuerdas que elaboro E. Witten con el nombre de Teoría M. Esta teoría de mas altas dimensiones nos ha llevado a una enorme profundidad matemática en el campo de la topología y, desde luego, ha dejado un panorama muy optimista en el horizonte.

 

 

 

Tal optimismo, desde luego, podría ser equivocado, ya que, de momento, solo contamos con el aparato teorico de la teoría y su verificación experimental se nos escapa al requerir disponer de la energía de Planck de 1019 GeV para comprobarla y, de momento, dicha energía esta fuera del alcance humano.

 

La Teoría de Cuerdas: Una breve descripción | Cosmo NoticiasLA TEORIA M | PPT

        Como nadie las ha podido ver, las imaginamos de mil maneras

Einstein, como todos sabeis, dedico buena parte de la segunda mitad de su vida a intentar hallar una teoria de campo unificada de la gravitacion y el electromagnetismo, con expectativas populares tan altas que las ecuaciones de su labor en marcha eran expuestas en escaparates a lo largo de la Quinta Avenida de Nueva York, donde eran escudriñadas por multitud de curiosos que no las entendian. En aquel tiempo, Einstein desconocia que las matematicas precisas para desarrollar una teoria asi, aun no existian. De ahi su fracaso en el intento. El habia ignorado los principios cuanticos.

Pero, retomemos las cuerdas. Los criticos del concepto de supercuerda señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoria no habia siquiera repetido los logros del Modelo Estandar, ni habia hecho ni una sola prediccion que pudiera someterse a prueba mediante experimentos.

 

         Hemos podido ver otras muchas cosas pero…, ni fotinos ni selectrones han aparido nunca

 

Cuando puedo admirar la imagen de n magnetar, me siento transportado a regiones lejanas del espacio en las que, ese magnetar o magnetoestrella (que es una estrella de neutrones alimentada con un campo magnético extremadamente fuerte y, Simplemente se trata de una variedad de púlsar cuya característica principal es la expulsión, en un breve período -equivalente a la duración de un relámpago-, de enormes cantidades de alta energía en forma de rayos X y rayos gamma. ), ha surgido a partir de una estrella masiva y se ha conformado como un extraño objeto exótico que nos produce sorpresa y admiración al ver como, a partir de una cosa totalmente diferente, por medio de transiciones de fase de diversa índole, se llega a formar otro objeto totalmente distinto del que fue.

 

Simetrías de las fuerzas y la materia | Instituto de Física Corpuscular

La super-simetría ordenaba que el Universo debía contener familias enteras de nuevas partículas, entre ellas “selectrones” (equivalente super-simértrico del electrón) y “fotinos” (equivalentes del fotón), pero no especificaba las masas hipotéticas de tales partículas. La ausencia de pruebas aducidas en búsquedas preliminares de particulas supe-rsimétricas, como las realizadas en el acelerador PEP de Stanford y el PETRA de Hamburgo, por lo tanto no probaban nada; siempre se podía imaginar que las partículas eran demasiado masivas para ser producidas en esas maquinas y habría que esperar a otras mas adelantadas del futuro que, como ahora el LHC, nos pueda sacar a la luz, algunas de esas partículas super-simétricas que confirmarían la teoria.

 

¡Fotinos y selectrones! ¿Dónde?

La Teoria M que antes mencionaba, es una versión mas adelantada, en 11 dimensiones, nos ha dejado un cuadro que ilusiona y, desde luego, si finalmente se puede verificar lo que predice, estaríamos ante una teoría cuántica de la gravedad y, desde luego, nos explicaría el Universo como nunca antes se pudo hacer. Claro que, nosotros, pobres mortales e ignorantes, nos seguimos haciendo las mismas preguntas:

¿Donde, pues, hemos de buscar ese universo hiper-dimensional de la simetría perfecta? El mundo en el que vivimos esta lleno de simetrías rotas, y solo tiene cuatro dimensiones. La respuesta llega de la Cosmología, la cual nos dice que el universo super-simétrico, si existió, pertenece al pasado. La implicación de esto es que el universo empezó en un estado de perfección simétrica, del que evoluciono al universo menos simétrico en el que vivimos. Si es asi, la búsqueda de la simetría perfecta es la búsqueda del secreto del origen del universo, y la atencion de sus acólitos puede, volverse con buenas razones, como las caras de las flores al alba, hacia la blanca luz de la génesis cósmica.

¡Nos queda tanto por saber!

emilio silvera