Dic
7
¡Conjeturar! Tratando de saber
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
El principio antrópico y otras cuestiones

El Universo… ¿Sabía que nosotros íbanos a venir?
Parece conveniente hacer una pequeña reseña que nos explique que es un principio en virtud del cual la presencia de la vida humana está relacionada con las propiedades del Universo. Como antes hemos comentado de pasada, existen varias versiones del principio antrópico. La menos controvertida es el principio antrópico débil, de acuerdo con el cual la vida humana ocupa un lugar especial en el Universo porque puede evolucionar solamente donde y cuando se den las condiciones ademadas para ello. Este efecto de selección debe tenerse en cuenta cuando se estudian las propiedades del Universo.
Una versión más especulativa, el principio antrópico fuerte, asegura que las leyes de la física deben tener propiedades que permitan evolucionar la vida. La implicación de que el Universo fue de alguna manera diseñado para hacer posible la vida humana hace que el principio antrópico fuerte sea muy controvertido, ya que, nos quiere adentrar en dominios divinos que, en realidad, es un ámbito incompatible con la certeza comprobada de los hechos a que se atiene la ciencia, en la que la fe, no parece tener cabida. Sin embargo, algunos han tratado de hacer ver lo imposible.
“Basado en las propuestas del premio Nobel de física Paul Dirac sobre los ajustados, sincronizados y muy precisos valores de las constantes de la naturaleza, los físicos actuales comienzan a valorar aquello que han denominado el “principio antrópico¨, es decir, poco a poco, a lo largo de los años han entendido que siempre quedará un espacio de información faltante cuando intentamos teorizar o conceptualizar los inicios del universo supeditados exclusivamente sobre la capacidad contenida en las leyes de la física para explicar dichos inicios.”
El principio antrópico nos invita al juego mental de probar a “cambiar” las constantes de la Naturaleza y entrar en el juego virtual de ¿Qué hubiera pasado si…? Especulamos con lo que podría haber sucedido si algunos sucesos no hubieran ocurrido de tal a cual manera para ocurrir de ésta otra. ¿Qué hubiera pasado en el planeta Tierra si no aconteciera en el pasado la caída del meteorito que acabó con los dinosaurios? ¿Habríamos podido estar aquí hoy nosotros? ¿Fue ese cataclismo una bendición para la Humanidad y nos quitó de encima a unos terribles rivales?
Fantasean con lo que pudo ser…. Es un ejercicio bastante habitual, solo tenemos que cambiar la realidad de la historia o de los sucesos verdaderos para pretender fabricar un presente distinto. Cambiar el futuro puede resultar más fácil, nadie lo conoce y no pueden rebatirlo con certeza ¿Quién sabe lo que pasará mañana?
![]()
El problema de si las constantes físicas son constantes se las trae. Aparte del trabalenguas terminológico arrastra tras de sí unas profundas consecuencias conceptuales. Lo primero, uno de los pilares fundamentales de la relatividad especial es el postulado de que las leyes de la física son las mismas con independencia del observador. Esto fue una generalización de lo que ya se sabía cuando se comenzó a estudiar el campo electromagnético, pero todo lo que sabemos en la actualidad nos lleva a concluir que este postulado es bastante razonable.
Lo que ocurra en la Naturaleza del Universo está en el destino de la propia Naturaleza del Cosmos, de las leyes que la rigen y de las fuerzas que gobiernan sus mecanismos sometidos a principios y energías que, en la mayoría de los casos, se pueden escapar a nuestro actual conocimiento.
Lo que le pueda ocurrir a nuestra civilización además de estar supeditado al destino de nuestro planeta, de nuestro Sol y de nuestro Sistema Solar y la galaxia, también está en manos de los propios individuos que forman esa civilización y que, con sensibilidades distintas y muchas veces dispares, hace impredecibles los acontecimientos que puedan provocar individuos que participan con el poder individual, es decir, esa parcial disposición que tenemo0s del “libre albedrío”.

¿Cómo sería nuestro mundo si las constantes universales fueran diferentes?
Siempre hemos sabido especular con lo que pudo ser o con lo que podrá ser si…., lo que, la mayoría de las veces, es el signo de cómo queremos ocultar nuestra ignorancia. Bien es cierto que sabemos muchas cosas pero, también es cierto que son más numerosas las que no sabemos.
Sabiendo que el destino irremediable de nuestro mundo, el planeta Tierra, es de ser calcinado por una estrella gigante roja en la que se convertirá el Sol cuando agote la fusión de su combustible de Hidrógeno, Helio, Carbono, etc., para que sus capas exteriores de materia exploten y salgan disparadas al espacio exterior, mientras que, el resto de su masa se contraerá hacia su núcleo bajo su propio peso, a merced de la Gravedad, convirtiéndose en una estrella enana blanca de enorme densidad y de reducido diámetro. Sabiendo eso, el hombre está poniendo los medios para que, antes de que llegue ese momento (dentro de algunos miles de millones de años), poder escapar y dar el salto hacia otros mundos lejanos que, como la Tierra ahora, reúna las condiciones físicas y químicas, la atmósfera y la temperatura adecuadas para acogernos.

El Sol será una Gigante roja y, cuando eso llegue, la Tierra…
Pero el problema no es tan fácil y, se extiende a la totalidad del Universo que, aunque mucho más tarde, también está abocado a la muerte térmica, el frío absoluto si se expande para siempre como un Universo abierto y eterno. A estas alturas se ha descartado el Big Crunch y se saber que la expansión del Universo es imparable y que con el paso del tiempo las galaxias estarán más alejadas las unas de las otras hasta que, la energía, las temperaturas sean -273 ºC, un ámbito de muerte, allí nada -ni siguiera los átomos-, absolutamente nada se mueve.
Nuevos cálculos sugieren que el Cosmos puede estar un poco más cerca a una muerte térmica. La muerte térmica (también muerte entrópica) es uno de los posibles estados finales del universo, en el que no hay energía libre para crear y mantener la vida y otros procesos. En términos físicos, el universo habrá alcanzado la máxima entropía.
“Para tener todo ese tumulto —estrellas en erupción, galaxias chocantes, agujeros negros que colapsan– el cosmos es un lugar sorprendentemente ordenado. Los cálculos teóricos han demostrado desde hace mucho que la entropía del universo – una medida de su desorden – no es más que una diminuta fracción de la cantidad máxima permitida.
Un nuevo cálculo de la entropía mantiene este resultado general pero sugiere que el universo está más desordenador de lo que los científicos habían pensado — y ha llegado ligeramente más lejos en su gradual camino hacia la muerte, según concluyen dos cosmólogos australianos.
Un análisis de Chas Egan de la Universidad Nacional Australiana en Canberra y Charles Lineweaver de la Universidad de Nueva Gales del Sur en Sydney indica que la entropía colectiva de todos los agujeros negros super-masivos en el centro de las galaxias es unas 100 veces mayor de lo anteriormente calculado. Debido a que los agujeros negros super-masivos son los mayores contribuyentes a la entropía cósmica, el hallazgo sugiere que la entropía del universo también es 100 veces mayor que la anterior estimación, según informaban los científicos el 23 de septiembre en ArXiv.org.
Big Freeze o Muerte térmica del universo. Este escenario es generalmente considerado como el más probable y ocurrirá si el Universo continúa en expansión como en el presente y llega al punto de que la temperatura alcanza el cero absoluto. Entonces ni los átomos se moverán.
El irreversible final está entre los tres modelos que se han podido construir para el futuro del Universo, de todas las formas que lo miremos es negativo para la Humanidad -si es que puede llegar tan lejos-. En tal situación, algunos ya están buscando la manera de escapar. Stephen Hawking ha llegado a la conclusión de que estamos inmersos en un multiverso. Como algunos otros él dice que existen múltiples universos conectados los unos a los otros. Unos tienen constantes de la Naturaleza que permiten vida igual o parecida a la nuestra, otros posibilitan formas de vida muy distintas y otros muchos no permiten ninguna clase de vida.
Este sistema de inflación auto-reproductora nos viene a decir que cuando el Universo se expande (se infla) a su vez, esa burbuja crea otras burbujas que se inflan y a su vez continúan creando otras nuevas más allá de nuestro horizonte visible. Cada burbuja será un nuevo Universo, o mini-universo en los que reinarán escenarios diferentes o diferentes constantes y fuerzas.
El escenario que describe la imagen, ha sido explorado y el resultado hallado es que en cada uno de esos universos, como hemos dicho ya, pueden haber muchas cosas diferentes, pueden terminar con diferentes números de dimensiones espaciales o diferentes constantes y fuerzas de la Naturaleza, pudiendo unos albergar la vida y otros no. Claro que, sólo son pensamientos y conjeturas de lo que podría ser.
El reto que queda para los cosmólogos es calcular las probabilidades de que emerjan diferentes universos a partir de esta complejidad inflacionaria ¿Son comunes o raros los universos como el nuestro? Existen, como para todos los problemas planteados diversas conjeturas y consideraciones que influyen en la interpretación de cualquier teoría cosmológica futura cuántico-relativista. Hasta que no seamos capaces de exponer una teoría que incluya la relatividad general de Einstein (la Gravedad-Cosmos y la Mecánica Cuántica-Átomo, no será posible contestar a ciertas preguntas.

Existen en realidad, en nuestro Universo las cuerdas vibrantes de la Teoría M, o, simplemente se trata de un ejercicio mental complejo
Todas las soluciones que buscamos parecen estar situadas en teorías más avanzadas que, al parecer, solo son posibles en dimensiones superiores, como es el caso de la teoría de supercuerdas situada en 10 ó 26 dimensiones, allí, si son compatibles la relatividad y la mecánica cuántica, hay espacio más que suficiente para dar cabida a las partículas elementales, las fuerzas gauge de Yang-Mill, el electromagnetismo de Maxwell y, en definitiva, al espacio-tiempo y la materia, la descripción verdadera del Universo y de las fuerzas que en el actúan.
Científicamente, la teoría del Hiperespacio lleva los nombres de teoría de Kaluza-Klein y súper gravedad. Pero en su formulación más avanzada se denomina teoría de supercuerdas, una teoría que desarrolla su potencial en nueve dimensiones espaciales y una de tiempo, diez dimensiones. Así pues, trabajando en dimensiones más altas, esta teoría del Hiperespacio puede ser la culminación que conoce dos milenios de investigación científica: la unificación de todas las fuerzas físicas conocidas. Como el Santo Grial de la Física, la “teoría de todo” que esquivó a Einstein que la buscó los últimos 30 años de su vida.
En ausencia de materia y energía, el espacio-tiempo es plano, no tiene curvatura. Este es el llamado espacio-tiempo de Minkowski o de la relatividad especial. Cuando hay materia/energía, el espacio-tiempo se curva, siendo la curvatura más alta en aquellas regiones donde la acumulación de materia/energía es mayor.
De todas las maneras y a pesar de lo que hemos podido desvelar, parece que algo no va, algunos parámetros se presentan difusos, la Gravedad no acabamos de entenderla, el mundo infinitesimal… es raro.
Durante el último medio siglo, los científicos se han sentido intrigados por la aparente diferencia entre las fuerzas básicas que mantienen unido al al Universo: la Gravedad, el electromagnetismo y las fuerzas nucleares fuerte y débil. Los intentos por parte de las mejores mentes del siglo XX para proporcionar una imagen unificadora de todas las fuerzas conocidas han fracasado. Sin embargo, la teoría del Hiperespacio permite la posibilidad de explicar todas las fuerzas de la Naturaleza y también la aparentemente aleatoria colección de partículas subatómicas, de una forma verdaderamente elegante. En esta teoría del Hiperespacio, la “materia” puede verse también como las vibraciones que rizan el tejido del espacio y del tiempo. De ello se sigue la fascinante posibilidad de que todo lo que vemos a nuestro alrededor, desde los árboles y las montañas a las propias estrellas, no son sino vibraciones del Hiperespacio.
No, no será fácil llegar a las respuestas de éstas difíciles preguntas que la física tiene planteadas. Y, sin embargo, ¿Cómo podríamos describir lo que en estas teorías han llegado a causar tanta pasión en esos físicos que llevan años luchando con ellas? Recuerdo haber leído aquella conferencia apasionante que dio E. Witten en el Fermilab. Su pasión y forma de encausar los problemas, sus explicaciones, llevaron a todos los presentes a hacerse fervientes y apasionados fans de aquella maravillosa teoría, la que llaman M. Todos hablaban subyugados mucho después de que el evento hubiera terminado. Según contó León Lederman, que asistió a aquella conferencia: “Yo nunca había visto nada igual, cuando Witten concluyó su charla, hubo muchos segundos de silencio, antes de los aplausos y, tal hecho, es muy significativo.
Claro que, a medida que la teoría ha ido topándose con unas matemáticas cada vez más difíciles y una proliferación de direcciones posibles, el progreso y la intensidad que rodeaban a las supercuerdas disminuyeron hasta un nivel más sensato, y ahora, sólo podemos seguir insistiendo y esperar para observar que nos puede traer el futuro de esta teoría que, es posible (y digo sólo posible) que se pueda beneficiar, de alguna manera, de las actividades del LHC que, en algunas de sus incursiones a ese mundo fantasmagórico de lo infinitesimal, podría -y digo podría- atisbar las sombras que puedan producir las supercuerdas.

“Estamos a las puertas de desafiar las actuales leyes de la física. El Fermilab y un equipo internacional de 200 científicos ha publicado los primeros resultados de su experimento Muon g-2 y se han encontrado importantes evidencias de que el Modelo Estándar de la física de partículas no es suficiente para explicar lo observado. Un experimento realizado con una precisión sin precedentes y que anticipa la posible existencia de una fuerza o partícula desconocida.”
No son pocos los físicos capaces que están empeñados en demostrar esa teoría. Por ejemplo, Físicos de SLAC desarrollan una prueba de marco de trabajo dependiente para la Teoría de Cuerdas Crítica. La Teoría de Cuerdas resuelve muchas de las cuestiones que arruinan la mente de los físicos, pero tiene un problema importante — no hay actualmente ningún método conocido para comprobarla y, si las energías requeridas para ello, es la de Planck (1019 GeV), la cosa se pone fea.
Está claro que, al tratar todas estas hipotéticas teorías, no pocos, han pensado que, algún día, se podría realizar el sueño de viajar por el Hiperespacio y, de esa manera, se habría logrado el medio para escapar de la Tierra cuando el momento fatídico, en el cual el Sol se convierta en gigante roja, no podamos seguir aquí.
Aunque muchas consecuencias de esta discusión son puramente teóricas, el viaje en el Hiperespacio (El Hiperespacio en ciencia ficción es una especie de región conectada con nuestro universo gracias a los agujeros de gusano, y a menudo sirve como atajo en los viajes interestelares para viajar más rápido que la luz), si llegara a ser posible, podría proporcionar eventualmente la aplicación más práctica de todas: salvar la vida inteligente, incluso a nosotros mismos de la muerte de este Universo cuando al final llegue el frío o el calor.
También en la teoría de supercuerdas está incluida ¡la Gravedad-Cuántica! Otra Ilusión
Esta nueva teoría de supercuerdas, tan prometedora del hiperespacio es un cuerpo bien definido de ecuaciones matemáticas, podemos calcular la energía exacta necesaria para doblar el espacio y el tiempo o para cerrar agujeros de Gusano que unan partes distantes de nuestro Universo. Por desgracia, los resultados son desalentadores. La energía requerida excede con mucho cualquier cosa que pueda existir en nuestro planeta. De hecho, la energía es mil billones de veces mayor que la energía de nuestros mayores colisionadores de átomos. Debemos esperar siglos, o quizás milenios, hasta que nuestra civilización desarrolle la capacidad técnica de manipular el espacio-tiempo utilizando la energía infinita que podría proporcionar un agujero negro para de esta forma poder dominar el Hiperespacio que, al parecer, es la única posibilidad que tendremos para escapar del lejano fin que se avecina. ¿Qué aún tardará mucho? Sí, pero el tiempo es inexorable y…., la debacle llegará.
Sí, hemos logrado mucho. Arriba tenemos la imagen de la emisión en radio de un magnetar
No existen dudas al respecto, la tarea que nos hemos impuesto es descomunal, imposible para nuestra civilización de hoy pero, ¿y la de mañana, no habrá vencido todas las barreras? Creo que, el hombre es capaz de plasmar en hechos ciertos todos sus pensamientos e ideas, solo necesita tiempo y, como nos ha demostrado DA14 en el presente, ese tiempo que necesitamos, está en manos de la Naturaleza y, nosotros, nada podemos hacer si ella, no nos lo concede. Y, si por desventura es así, todo habrá podido ser, un inmenso sueño ilusionante de lo que podría haber sido si…
emilio silvera
Dic
7
Evolución por la energía III
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
Las reacciones en el núcleo solar consumen entre 4’3 y 4’6 millones de toneladas de materia cada segundo, de manera que de 4.654.000 t de hidrógeno, 4.650.000 se transforman en helio, y las 4.000 toneladas que faltan son lanzadas al espacio en forma de radiación termonuclear (luz y calor) de la que una pequeña parte nos llega a la Tierra para hacer posible la vida.
De acuerdo a la relación masa-energía de Einstein, liberan 3’89×1026 J de energía nuclear. Este inmenso flujo de energía es rápidamente transformado en energía térmica, que es transportado, isotrópicamente, hacia el exterior, primero por irradiación aleatoria y luego más rápidamente por convección direccional.
Suponiendo (como antes apuntaba) que la radiación es isótropa, la potencia de la luz visible que atraviesa cada metro cuadrado de la capa emisora de la fotosfera es aproximadamente de 64 MW. Como en el espacio no hay prácticamente atenuación de la radiación solar, cuando ésta alcanza la órbita de la Tierra tiene una densidad de potencia igual al cociente entre la luminosidad total del Sol (3’89 × 1026 W) y el área de una esfera de radio orbital (que, como promedio, es de unos 150 millones de kilómetros).

Este flujo, tradicionalmente conocido como la constante solar, es la tasa máxima de energía que llega a la parte superior de la atmósfera terrestre. A principios de los años setenta, la NASA utilizó para el diseño de las naves espaciales un valor de la constante solar igual a 1.353 W/m2. El flujo ha sido medido directamente en el espacio desde 1.979, cuando el satélite Nimbus 7 obtuvo un valor de 1.371 W/m2. En el más reciente satélite de la Solar Maximum Mission lanzado en 1.980 se obtuvo una media ponderada de 1.368’3 W/m2.
Las observaciones continuadas desde el espacio han revelado la existencia de una compleja regularidad de pequeñas fluctuaciones de corta duración que, debido a la interferencia de la atmósfera, no habían podido ser observadas anteriormente. Estas fluctuaciones de poca duración (del orden de días a semanas) y de hasta un 0’2 por ciento son debidas al paso de manchas oscuras y fáculas brillantes que arrastra el Sol en su rotación; el ciclo medido es de 11 años, en el que la radiación solar disminuye en un 0’1 por ciento entre el valor máxima y el mínimo.
La longitud de onda de la energía electromagnética emitida por el Sol y que llega a la Tierra varía en más de diez órdenes de magnitud. Va desde la longitud de onda más corta, que corresponde a los rayos gamma y rayos X de menos de 10-10 m, hasta la longitud de ondas de radio que superan el metro.

El aspecto del espectro de la radiación solar es similar al de un cuerpo negro a 6.000º K. Ambos espectros son especialmente parecidos en el rango de la longitud de onda mayor que la del amarillo, pero para longitudes de onda menores, el espectro solar cae notablemente por debajo de la línea de los 6.000º K. De acuerdo con la ley de desplazamiento de Wien, la emisión máxima a esta temperatura es de 483 nm, cerca del final de la zona azul del espectro visible y próximo al verde.
El flujo de energía se reparte desigualmente entre las tres grandes categorías espectrales: radiación ultravioleta (UV), cuya longitud de onda va desde las más cortas hasta los 400 nm y contribuye con menos del 9 por ciento de la radiación total; la luz visible, que va desde los 400 nm del violeta más lejano hasta los 700 nm del rojo más oscuro y representa un 39 por ciento; y la radiación infrarroja (IR), que representa cerca del 52 por ciento.

Reacción protón-protón para formar helio 4 liberando energía
La radiación que llega a la superficie de la Tierra es muy diferente de la radiación extraterrestre, tanto cualitativa como cuantitativamente. Las razones físicas de esta diferencia son varias: que la órbita de la Tierra es elíptica, la propia forma del planeta, la inclinación del eje de rotación, la composición de la atmósfera y la reflectividad (albedo) de las nubes y superficies terrestres. Consecuentemente, la radiación solar que llega a la superficie de la Tierra presenta una compleja pauta espacial y temporal. La media anual global es ligeramente inferior a 170 W/m2 en los océanos y de unos 180 W/m2 en los continentes. La diferencia más importante del valor esperado, según la latitud de la zona, se encuentra en la disminución que se presenta en los trópicos y durante los monzones subtropicales, debido a la alta nubosidad. Grandes regiones de Brasil, Nigeria y el sur de China reciben menos insolación que Nueva Inglaterra o las regiones de Europa occidental. Es aún más sorprendente que no haya diferencia entre el flujo máximo que se recibe al mediodía durante el verano en Yakarta, situada en el ecuador, y el que se recibe en ciudades subárticas como Edmonton en Canadá o Yakutsk en Liberia. Quizás el mejor ejemplo sea el de Oahu, donde la casi siempre nublada cordillera Koolau, que intercepta las nubes y las lluvias arrastran los alisios, tiene una media anual de radiación de 150 W/m2, mientras que en Pearl Harbor, a 15 Km de distancia en la dirección del viento, la media es de 250 W/m2.

La radiación solar media de 170 W/m2 representa anualmente una energía de 2’7×1024 J, que equivale a 87 PW. Esta cantidad es casi 8.000 veces mayor que el consumo mundial de combustibles sólidos y electricidad durante los primeros años noventa. Sólo una pequeña fracción de este inmenso flujo es absorbida por los pigmentos de las plantas para realizar la fotosíntesis, y una parte algo mayor, pero también pequeña, se utiliza para calentar las plantas, los cuerpos de los animales y las personas, así como sus refugios.
La radiación también sustenta la vida porque al calentar los océanos, las rocas y los suelos, impulsa funciones fundamentales en la biosfera, tales como el ciclo del agua, la formación de los vientos, el mantenimiento de la temperatura adecuada para que funcionen los procesos metabólicos y la descomposición orgánica. Además, es la causante de la erosión que transporta los nutrientes minerales para la producción primaria de materia orgánica.

Sección transversal del Sol
A la larga, para mantener el equilibrio térmico del planeta, la radiación solar absorbida debe emitirse al espacio, pero la longitud de onda está drásticamente desplazada hacia el infrarrojo. A diferencia de la radiación de longitud de onda corta emitida por el Sol, que está determinada por la temperatura de la fotosfera (5.800º K), la radiación terrestre corresponde muy aproximadamente a las emisiones electromagnéticas de un cuerpo negro a 300º K (27ª C). El máximo de emisión de esa esfera caliente está en la zona del IR a 966 μm. Como el 99% de la radiación solar llega en longitudes de onda menores de 4 μm y el espectro terrestre apenas alcanza los 3 μm, el solapamiento de frecuencias entre estos dos grandes flujos de energías es mínimo.
Observar la Naturaleza es el único camino que tenemos para obtener las respuestas a tantas preguntas sin contestar. El motor que produce la energía que mantiene la vida en el planeta Tierra es el Sol y, de él debemos aprender para lograr esa energía de fusión que pronto, se hará imprescindible. Los combustibles fósiles no duraran para siempre y, alternativas viables que logren suplir y abastacer las exigencias de las nuevas Sociedades Humanas…Están en la Naturaleza para que, nuestro ingenio, las sepan captar.

Falta mucho aún, en un futuro muy lejano, en el que la Humanidad podrá obtener energías sin fin del disco de Acreción de los Agujeros Negros Super-masivos. Ahí, se encuentran corrientes de energías que, algín día, podrán ser captadas para los distintos usos que, en aquellos momentos del futuro, serán cosa cotidiana para la Humanidad. ¿Abrir agujeros de gusano será uno de los objetivos?
Bueno, según los cálculos realizados por expertos en relatividad General y Agujeros Negros, las energías desatadas en los discos de acreción de estos exóticos objetos, van más allá de lo que conocemos y, sus posibilidades (si algún día podemos dominarla, serán…”infinitas”.
emilio silvera
Dic
6
¡Cuántas maravillas! Y, nuestra Mente, entre ellas
por Emilio Silvera ~
Clasificado en General ~
Comments (1)
¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso? La Luz! Esa maravilla conformada por fotones en la que muchísimos experimentos dieron ese resultado de que los fotones se comportaran de esa manera.
“
No sería descabellado decir que las simetrías que vemos a nuestro alrededor, desde un arco iris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría deca-dimensional original.
Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia. Por ejemplo, la fuerza de Gravedad generada por la presencia de la materia, determina la geometría del espacio-tiempo.
Dado el enorme poder de sus simetrías, no es sorprendente que la teoría de supercuerdas sea radicalmente diferente de cualquier otro de física. De hecho, fue descubierta casi por casualidad. Muchos físicos han comentado que si este accidente fortuito no hubiese ocurrido, entonces la teoría no se hubiese descubierto hasta bien entrado el siglo XXI. Esto es así porque supone una neta desviación de todas las ideas ensayadas en este siglo. No es una extensión natural de tendencias y teorías populares en este siglo que ha pasado; permanece aparte.
Por el contrario, la teoría de la relatividad general de Einstein tuvo una evolución normal y lógica. En primer lugar, su autor, postula el principio de equivalencia. Luego reformuló principio físico en las matemáticas de una teoría de campos de la gravitación basada en los campos de Faraday y en el tensor métrico de Riemann. Más tarde llegaron las “soluciones clásicas”, tales el agujero negro y el Big Bang. Finalmente, la última etapa es el intento actual de formular una teoría cuántica de la gravedad. Por lo tanto, la relatividad general siguió una progresión lógica, un principio físico a una teoría cuántica.
Geometría → teoría de campos → teoría clásica → teoría cuántica.
Contrariamente, la teoría de supercuerdas ha estado evolucionando hacia atrás su descubrimiento accidental en 1.968. Esta es la razón de que nos parezca extraña y poco familiar, estamos aún buscando un principio físico subyacente, la contrapartida del principio de equivalencia de Einstein.
La teoría nació casi por casualidad en 1.968 cuando dos jóvenes físicos teóricos, Gabriel Veneziano y Mahiko Suzuki, estaban hojeando independientemente libros de matemáticas. Figúrense ustedes que estaban buscando funciones matemáticas que describieran las interacciones de partículas fuertemente interactivas. Mientras estudiaban en el CERN, el Centro Europeo de Física Teórica en Ginebra, Suiza, tropezaron independientemente con la función beta de Euler, una función matemática desarrollada en el S. XIX por el matemático Leonhard Euler. Se quedaron sorprendidos al que la función beta de Euler ajustaba casi todas las propiedades requeridas para describir interacciones fuertes de partículas elementales.
Función beta. Representación de la función valores reales positivos de x e y.
Según he leído, durante un almuerzo en el Lawrence Berkeley Laboratory en California, con una espectacular vista del Sol brillando sobre el puerto de San Francisco, Suzuki le explicó a Michio Kaku mientras almorzaban la excitación de de toparse, prácticamente por casualidad, con un resultado parcialmente importante. No se suponía que la física se pudiera hacer de ese modo casual.
Tras el descubrimiento, Suzuki, muy excitado, mostró el hallazgo a un físico veterano del CERN. Tras oír a Suzuki, el físico veterano no se impresionó. De hecho le dijo a Suzuki que otro físico joven (Veneziano) había descubierto la misma función unas semanas antes. Disuadió a Suzuki de publicar su resultado. Hoy, esta función beta se conoce con el de modelo Veneziano, que ha inspirado miles de artículos de investigación iniciando una importante escuela de física y actualmente pretende unificar todas las leyes de la física.
Gabriele Veneziano es un físico italiano Mahiko Suzuki
“Cuando Gabriele Veneziano, un físico italiano, trataba de entender la fuerza nuclear fuerte -como se llama a la interacción que mantiene unidos a los protones y neutrones en el núcleo de cada átomo-, pareció que por casualidad encontró una fórmula.
La función beta, inventada dos siglos antes por el célebre matemático suizo Leonhard Euler, y considerada una simple curiosidad matemática, encajaba perfectamente con los datos experimentales obtenidos.”
“En matemáticas, la función beta,también llamada integral de Euler de primer orden, es una función especial estrechamente relacionada con la función gamma y los coeficientes binomiales. Está definida como la integral
para
tales que {
Euler y Legendre. No obstante, su nombre le fue dado por Jacques Binet.”
En 1.970, el Modelo de Veneziano-Suzuki (que contenía un misterio), fue parcialmente explicado cuando Yoichiro Nambu, de la Universidad de Chicago, y Tetsuo Goto, de la Nihon University, descubrieron que una cuerda vibrante yace detrás de sus maravillosas propiedades. Así que, como la teoría de cuerdas fue descubierta atrás y por casualidad, los físicos aún no conocen el principio físico que subyace en la teoría de cuerdas vibrantes y sus maravillosas propiedades. El último paso en la evolución de la teoría de cuerdas (y el primer paso en la evolución de la relatividad general) aún está pendiente de que alguien sea capaz de darlo.
Witten, autor de la teoría M, dice:
“Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de supercuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos c del siglo XX no deberían haber tenido el privilegio de estudiar esta teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.”
Actualmente, como ha quedado dicho en este mismo , Edwar Witten es el físico teórico que, al frente de un equipo de físicos de Princeton, lleva la bandera de la teoría de supercuerdas con aportaciones muy importantes en el desarrollo de la misma. De todas las maneras, aunque los resultados y avances son prometedores, el camino por andar es largo y la teoría de supercuerdas en su conjunto es un edificio con muchas puertas cerradas de las que no tenemos las llaves acceder a su interior y mirar lo que allí nos aguarda.
Ni con colección de llaves podremos abrir la puerta que nos lleve a la Teoría cuántica de la gravedad que, según dicen, subyace en la Teoría M, la más moderna versión de la cuerdas expuesta por E. Witten y que, según contaron los que estuvieron presentes en su presentación, Witten les introdujo en un “universo” fascinante de inmensa belleza que, sin embargo, no puede ser verificado por el experimento.
El problema está en que nadie es lo suficientemente inteligente para resolver la teoría de campos de cuerdas o cualquier otro enfoque no perturbativo de teoría. Se requieren técnicas que están actualmente más allá de nuestras capacidades. Para encontrar la solución deben ser empleadas técnicas no perturbativas, que son terriblemente difíciles. Puesto que el 99 por ciento de lo que conocemos sobre física de altas energías se basa en la teoría de perturbaciones, esto significa que estamos totalmente perdidos a la hora de encontrar la verdadera solución de la teoría.
¿Por qué diez y once dimensiones?
Uno de los secretos más profundos de la teoría de cuerdas, que aún no es bien comprendido, es por qué está definida sólo en diez, once y veintiséis dimensiones. Si calculamos cómo se rompen y se vuelven a juntar las cuerdas en el espacio N-dimensional, constantemente descubrimos que pululan términos absurdos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos indeseados aparecen multiplicados por (N-10). Por consiguiente, para hacer que desaparezcan estas anomalías, no tenemos otra elección cuántica que fijar N = 10. La teoría de cuerdas, de hecho, es la única teoría cuántica conocida que exige completamente que la dimensión del espacio-tiempo esté fijada en un único, el diez.
El enigmático matemático indio
Por desgracia, los teóricos de cuerdas están, por el momento, completamente perdidos explicar por qué se discriminan las diez dimensiones. La respuesta está en las profundidades de las matemáticas, en un área denominada funciones modulares de Ramanujan.
Al manipular los diagramas de lazos de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el 10 aparecen en los lugares más extraños. Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del este. Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro universo actual.
En un plano de 11 dimensiones podremos ver todas esas maravillas, incluida la Gravedad cuántica
Cuando nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de , es imposible verificarla.
El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió antes de cumplir cuarenta años, y Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.
Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. extraña función contiene un término elevado a la potencia veinticuatro.
La magia esconde una realidad como lo es la salida del Sol cada día
El 24 aparece repetidamente en la obra de Ramanujan. Este es un ejemplo de lo que las matemáticas llaman números mágicos, que aparecen continuamente donde menos se esperan por razones que nadie entiende. Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas. El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas. En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda. Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas. Estas son precisamente las entidades matemáticas descubiertas por Ramanujan. Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio-tiempo debe tener 24 + 2 = 26 dimensiones espacio-temporales.

Humo simétrico
Comprender este misterioso factor de dos (que añaden los físicos), consideramos un rayo de luz que tiene dos modos físicos de vibración. La luz polarizada puede vibrar, por ejemplo, o bien horizontal o bien verticalmente. Sin embargo, un campo de Maxwell relativista Aµ cuatro componentes, donde µ = 1, 2, 3, 4. Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell. Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos. Análogamente, una cuerda relativista vibra en 26 dimensiones. Sin embargo, dos de estos modos vibracionales pueden ser eliminados rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.

“En matemática, la función theta de Ramanujan generaliza la forma de las funciones theta de Jacobi, a la vez que conserva sus propiedades generales. En particular, el producto triple de Jacobi se puede escribir elegantemente en términos de la función theta de Ramanujan. La función toma nombre de Srinivasa Ramanujan, y fue su última gran contribución a las matemáticas.”
Como un revoltijo de hilos entrecruzados que son difíciles de seguir, así son las matemáticas de la teoría de cuerdas
Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. Este es el origen de la décima dimensión que exige la teoría. La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente. Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda. Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende. Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio-tiempo sea diez.
En el análisis final, el origen de la teoría deca-dimensional es tan misterioso como el propio Ramanujan. Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “no lo sé”. Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una cuánticamente auto-consistente), pero no sabemos por qué se seleccionan estos números concretos.
Godfrey Harold Hardy
G. H. Hardy, el mentor de Ramanujan, trató de estimar la capacidad matemática que poseía Ramanujan. Concedió a David Hilbert, universalmente conocido y reconocido uno de los mayores matemáticos occidentales del siglo XIX, una puntuación de 80. A Ramanujan le asignó una puntuación de 100. Así mismo, Hardy se concedió un 25.
Por desgracia, ni Hardy ni Ramanujan parecían interesados en la psicología a los procesos de pensamiento mediante los cuales Ramanujan descubría estos increíbles teoremas, especialmente cuando diluvio material brotaba de sus sueños con semejante frecuencia. Hardy señaló:
“Parecía ridículo importunarle sobre como había descubierto o ese teorema conocido, cuando él me estaba mostrando media docena cada día, de nuevos teoremas”.
Ramanujan
Hardy recordaba vivamente:
-”Recuerdo una vez que fui a visitarle cuando estaba enfermo en Putney. Yo había tomado el taxi 1.729, y comenté que el numero me parecía bastante feo, y que esperaba que no fuese mal presagio.”
– No. -Replicó Ramanujan postrado en su cama-. Es un número muy interesante; es el número más pequeño expresa una suma de dos cubos en dos formas diferentes.
(Es la suma de 1 x 1 x 1 y 12 x 12 x 12, y la suma de 9 x 9 x 9 y 10 x 10 x 10).
Era capaz de recitar en el acto teoremas complejos de aritmética cuya demostración requeriría un ordenador moderno. En 1.919 volvió a casa, en la India, donde un año más tarde murió enfermo.
El legado de Ramanujan es su obra, que consta de 4.000 fórmulas en cuatrocientas páginas que llenan tres volúmenes de notas, todas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario o, lo que es más frustrante, sin ninguna demostración. En 1.976, sin embargo, se hizo un nuevo descubrimiento. Ciento treinta páginas de borradores, que contenían los resultados del último año de su vida, fueron descubiertas por casualidad en una caja en el Trinity Collage. Esto se conoce ahora con el de “Cuaderno Perdido” de Ramanujan.

Comentando cuaderno perdido, el matemático Richard Askey dice:
“El de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”. Lo que él consiguió era increíble. Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.
Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna, la única capaz de unir la mecánica quántica y la Gravedad.
Fórmula de Ramanujan determinar los decimales de pi
Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca vísto, él trabajaba otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie. Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro. Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.
Como saben los físicos, los “accidentes” no aparecen sin ninguna razón. Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente. Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego. Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

Nuestro mundo asimétrico hermosas simetrías
Aquí es precisamente donde entra el trabajo de Ramanujan. Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan. ¡Increíble! Pero, cierto.

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan su punto más débil. Cualquier teoría, afirman, debe ser verificable. Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡La teoría de cuerdas no es realmente una teoría!
El principal problema, es teórico más que experimental. Si fuéramos suficientemente inteligentes, podríamos resolver exactamente la teoría y encontrar la verdadera solución no perturbativa de la teoría. Sin embargo, esto no nos excusa de encontrar algún medio por el que verificar experimentalmente la teoría, debemos esperar señales de la décima dimensión.

Volviendo a Ramanujan…
Es innegable lo sorprendente de su historia, un muchacho pobre con escasa preparación y arraigado como pocos a sus creencias y tradiciones, es considerado como una de los mayores genios de las matemáticas del siglo XX. Su legado a la teoría de números, a la teoría de las funciones theta y a las series hipergeométricas, además de ser invaluable aún sigue estudiándose por muchos prominentes matemáticos de todo el mundo. Una de sus fórmulas más famosas es la que aparece más arriba en el lugar número 21 de las imágenes expuestas y utilizada para realizar aproximaciones del Pi con más de dos millones de cifras decimales. Otra de las sorprendentes fórmulas descubiertas por Ramanujan es un igualdad en que era “casi” un número entero (la diferencia era de milmillonésimas). De hecho, durante un tiempo se llegó a sospechar que el número era efectivamente entero. No lo es, pero este hallazgo sirvió de base la teoría de los “Cuasi enteros”. A veces nos tenemos que sorprender al comprobar hasta donde puede llegar la mente humana que, prácticamente de “la nada”, es capaz de sondear los misterios de la Naturaleza para dejarlos al descubierto ante nuestros asombros ojos que, se abren como platos ante tales maravillas.
Publica: emilio silvera
”Algunas personas buscan un significado a la vida a través del beneficio, a través de las relaciones personales, o a través de experiencias propias. Sin embargo, creo que el estar bendecido con el intelecto para adivinar los últimos secretos de la naturaleza da significado suficiente a la vida”.
Dic
5
El Horizonte de los Agujeros Negros
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
La técnica de la interferometría de muy larga base a longitudes de onda milimétricas (mm-VLBI) ha permitido obtener imágenes de los motores centrales de las galaxias activas con una resolución angular de decenas de microsegundos de arco. Para aquellos objetos más cercanos (M87, Sagitario A) se obtienen resoluciones lineales del orden de las decenas de Radios de Schwarzschild, lo que permite estudiar con detalle único la vecindad de los agujeros negros super-masivos.

Al sintonizar hacia el centro de la Vía Láctea, los radio-astrónomos exploran un lugar complejo y misterioso donde está Sagitario A que…¡Esconde un Agujero Negro descomunal! Las observaciones astronómicas utilizando la técnica de Interferometría de muy larga base, a longitudes de onda milimétricas proporcionan una resolución angular única en Astronomía.
De este modo, observando a 86 GHz se consigue una resolución angular del orden de 40 microsegundos de arco, lo que supone una resolución lineal de 1 año-luz para una fuente con un corrimiento al rojo z = 1, de 10 días-luz para una fuente con un corrimiento al rojo de z = 0,01 y de 10 minutos-luz (1 Unidad Astronómica) para una fuente situada a una distancia de 8 Kpc (1 parcec = 3,26 años-luz), la distancia de nuestro centro galáctico. Debemos resaltar que con la técnica de mm-VLBI disfrutamos de una doble ventaja: por un lado alcanzamos una resolución de decenas de microsegundos de arco, proporcionando imágenes muy detalladas de las regiones emisoras y, por otro, podemos estudiar aquellas regiones que son parcialmente opacas a longitudes de onda más larga.
Las galaxias activas tienen núcleos que brillan tanto, que pueden llegar a ser más luminosos que las galaxias que los alberga. Estas galaxias activas se caracterizan porque en sus núcleos ocurren procesos no-térmicos que liberan enormes cantidades de energía que parece provenir de una región muy pequeña y brillante situada en el corazón de la galaxia.
Son muchos los indicios que favorecen la hipótesis de que tales objetos son agujeros negros muy masivos (del orden de 100-1000 millones de veces la masa del Sol), con un tamaño de 1 minuto-luz o varios días-luz. La enorme fuerza gravitatoria que ejercen estos agujeros negros atrae el gas y las estrellas de las inmediaciones, formando el denominado disco de acrecimiento que está en rotación diferencial en torno al objeto masivo.
El modelo de “Agujero Negro + disco de acrecimiento” es el más satisfactorio hoy día para explicar las propiedades de los núcleos activos de galaxias. Un aspecto muy destacado en la morfología de las regiones compactas de los núcleos activos es la presencia de una intensa emisión radio en forma de chorros (los denominados Jets relativistas), que están formados por un plasma de partículas relativistas que emanan del núcleo central y viajan hasta distancias de varios mega-parsec.
Jet relativista de un AGN. Creditos: Pearson Education, Inc., Upper Saddle River, New Jersey
Estos Jets son los aceleradores de partículas más energéticos del Cosmos. Sin embargo, todavía se desconoce como se generan, aceleran y coliman, si bien a través de simulaciones magneto-hidrodinámicas se conoce que el campo magnético juega un papel fundamental en estos procesos. La técnica de mm-VLBI proporciona imágenes directas y nítidas de las regiones nucleares de las galaxias activas y acotan tanto el tamaño de los núcleos como la anchura de los chorros en la vecindad del agujero negro super-masivo. De hecho, las resoluciones angulares proporcionadas por mm-VLBI corresponderían a escalas lineales del orden de miles, centenares y decenas de Radios de Schwarzschild dependiendo de la distancia y la masa del agujero negro.
Existen algunos casos espectaculares, las imágenes obtenidas con mm-VLBI trazan los chorros relativistas a escalas del sub-parsec, cartografiando los motores centrales de las fuentes compactas con una resolución lineal tal que nos permite acercarnos a la última órbita estable en torno al agujero negro super-masivo. Podemos mencionar algunos casos espectaculares que han dejado asombrados a propios y extraños.

Mrk 501: Es una radio-galaxia situada a un corrimiento al rojo de z = 0.oo34. La masa del agujero negro central es del orden de mil millones de masas solares, por lo que el tamaño del radio de Schwarzschild es de 0,12 días-luz. Las observaciones con mm-VLBI a 86 GHz, muestra que su núcleo es muy compacto. El tamaño del núcleo de la radiofuente se puede establecer en 0,03 pc.
M87: La galaxia M87 está situada a la una distancia de 16,75 Mpc tiene un agujero negro situado en la región nuclear con una masa del orden de los 3.000 millones de masas solares, lo que implica que el tamaño del Radio de Schwarzschild es de 0,34 días-luz, Las observaciones inter-ferométricas a 45 y 43 GHz han mostrado la presencia de un chorro relativista, en la que se observan dos fenómenos muy relevantes: i) en la base del jet, el ángulo de apertura es muy grande, lo que indicaría que el chorro vuelve a recolimarse a una cierta distancia del Agujero Negro central; ii) el chorro presenta fuerte emisión en sus bordes (fenómeno conocido como “edge brightening”, mientras que presenta emisión muy débil en su interior.
Todo esto lleva consigo una serie de implicaciones y parámetros de tipo técnicos que no son al caso destacar aquí.

Las observaciones de VLBI a longitudes de onda centimétricas han mostrado que SgrA, la radiofuente compacta en el centro de nuestra Galaxia, tiene un tamaño angular que escala con la longitud de onda al cuadrado, resultado que se interpreta físicamente considerando que la estructura que detectamos para SgrA no es su estructura intrínseca sino la imagen resultado de la interacción de su emisión de radio con sus electrones interestelares de la región interna de la Galaxia (lo que técnicamente se conoce como el “disco de scattering”. Las observaciones con mm-VLBI a 86 GHz han permitido determinar por primera vez el tamaño intrínseco de SgrA que ha resultado ser de 1,01 Unidades Astronómicas.
Considerando que SgrA se encuentra a una distancia de 8 Kpc y que su masa es de 4 millones de masas solares, este tamaño lineal corresponde a 12,6 Radios de Schwarzschild. Con todo esto, vengo a decir que estamos ya en la misma vecindad de los agujeros negros y, lo único que tenemos que despejar es la incognita que nos pueda crear el efecto del que nos habla la Relatividad General cuando establece que la raqdiación proveniente de una superficie esférica a una cierta distancia del agujero negro, sufriría un proceso de lente gravitacional amplificadora dandonos un tamaño mayor que el real. Así, cualquier objeto emisor con un tamaño intrínseco inferior a 1,5 Radios de Schwarzschild tendría un diámetro aparente mayor que 5,2 R de Schwarzschild.
¡Es todo tan complejo!
emilio silvera
Dic
5
Un año más… ¡Un año menos!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
A finales del pasado año, os dejaba aquí nuestros buenos deseos que, desgraciadamente, no se están cumpliendo y, cada día, podemos ver el deterioro al que se ha llegado en muchas naciones: el paro y la pobreza inundan las casas de muchas familias, llevando la humillación y la desesperación a padres de familia que, impotentes, contemplan a la clase política que continúan disfrutando de sus privilegios. ¿Cómo podríamos revertir ésta nefasta situación?
Con el mayor deseo de bienestar para todos, os decíamos: Unas felices fiestas en familia
Este año en muchos hogares la reunión familiar será más triste, muchos se fueron para siempre
Los artífices de este humilde lugar, Shalafi como Administrador y experto informático y emilio silvera como “obrero” imaginativo de la divulgación científica, no tienen más remedio que, desde aquí, mostrar su agradecimiento a los muchos amigos que nos han distinguido con su presencia en tan humilde y sencillo lugar desde el que hemos tratado (no siempre con acierto) de llevar a todos, un poco del conocimiento del mundo, del saber del Universo, de los secretos de la Naturaleza, de las complejidades de la Mente, del origen de la Vida y, de nuestro destino en las estrellas.
Que vuelva la normalidad y la felicidad en todos los hogares
A nuestros amigos de habla hispana, a los que están más allá del atlántico y se entienden en otras lenguas, a todos ellos, les quedamos muy agradecidos por habernos hecho compañía y haber compartido con nosotros sus pensamientos y, para aquellos que nunca alzaron su voz pero nos leyeron en silencio, que sepan y estén seguros, de que son parte de este lugar por derecho propio, a todos ellos, sin excepción, les enviamos desde aquí, el más sincero deseo de felicidad para ellos y sus familias, y, sobre todo… ¡Que la salud les acompañe!
La mejor manera de pasar las fiestas, en familia
Sí, puede que sólo sea un año más. Sin embargo, seguimos estando aquí para ser testigos de las muchas cosas que se verán durante los próximos doce meses. En todos los ámbitos del saber humano: Física, Astronomía, Biología y Química y tantas otras disciplinas, todas ellas (sin excepción) apoyadas en las Matemáticas, las raíces del árbol de la Ciencia, las otras son las ramas que salen y crecen sin cesar hasta llegar…¡A las estrellas!

Como en ocasiones anteriores, la Ciencia alejará de nosotros ese mal que nos acecha
La Navidad (así nos lo enseñaron desde nuestra más tierna infancia), es el sentimiento que vuelve al corazón de las personas, la generosidad de compartirla con otros y la esperanza de seguir adelante. Cada uno de nosotros pasará el fin de año a su manera, dentro de las costumbres de su lugar de nacimiento. Sin embargo, en una cosa todos seremos iguales (salvo excepciones por distintos motivos), todos procuraremos estar con los seres queridos y recordaremos a los ausentes, los que se fueron y que, de alguna manera, también estarán en nuestros corazones.

Imágenes como la de arriba dice poco en nuestro favor que lo consentimos
Acordémonos, dentro de lo posible, de los que no tienen tanta suerte. En la imagen de arriba, conforme a los datos que tenemos, podemos contemplar, junto a dos de sus cuatro perros a un sin techo en Santiago de Chile. Le dijo a la autora de la foto, Pilar Almagro Paz, que era español de Carballo, Ourense, Galicia. Curiosamente, a Pilar le costó fotografiarlo, el pudor y la dignidad estaban ahí, como en todos los seres humanos. Como él, muchos otros están repartidos por todas las ciudades del mundo. Al verlo, al pensar que, como todos debe tener una familia…, no sentís un estremecimiento. Nadie sabe las vueltas que el mundo puede dar y, ¿Quién sabe las historias que llevaron a este pobre hombre a tal situación?
No son invisibles y tienen sentimientos
Calladamente y dentro de lo posible, hagamos lo que buenamente podamos por aquellos que no tuvieron tanta suerte como nosotros y, solos, sumidos en la triste soledad en estos días de familia y sin amigos, démosle un poco de lo que tengamos que, de seguro, nos dará más satisfacción que otras “cosas” que no llevarán una carga de humanidad tan profunda como esta que arriba podemos contemplar. ¡Qué barbaridad! Cosas así deberían ser erradicadas para siempre.
Ahí está nuestro hogar pero, unos, estarán más abrigados que otros
Seamos felices haciendo felices a otros. La mayor parte de nuestro tiempo no prestamos atención, la vorágine de la vida moderna nos arrolla, estamos inmersos en un mundo cada vez más deshumanizado y, los sentimientos, se quedan en el reducido ámbito familiar. Pero, la cosa no es tan sencilla y debemos despertar a esa realidad que nos grita: ¡Todos somos uno! Ser Humanos es sentir el dolor ajeno como propio.
Acordémonos de los demás.
¡Felicidades para todos! y, sobre todas las cosas que, ¡La Salud esté con vosotros!
Un abrazo colectivo para esta gran familia.
emilio silvera
















Totales: 81.716.925
Conectados: 52



























