jueves, 28 de marzo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Mecánica Cuántica? ¡Una gran disciplina!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

El universo rota?Qué es un cúmulo de galaxias? – astroyciencia: Blog de astronomía y ciencia

Cúmulo estelar | Astropedia | FandomESO capta un cúmulo de estrellas 'hermanas', nacidas del mismo gas y  ligadas por su atracción mutua - EcoDiario.es

 

El Universo es todo lo que existe: Espacio-tiempo y materia “inerte” y “animada”, grandes objetos dinámicos como las estrellas y galaxias, también los mundos, y, en todo ese complejo escenarios de diferentes “cosas”, están las fuerzas fundamentales y las constantes universales que hacen que todo sea como lo podemos observar.

Si la masa del Protón, o, la carga del electrón, variaran aunque sólo fuera una diezmillonésima… ¡La Vida, tal como la conocemos no existiría.

Geometría in 2020 | Nanotechnology, Atom, Atomic structure

La Ciencia nunca ha estado en posesión de la verdad absoluta, ha tenido que ir construyendo un espinoso y doloroso camino de pequeños descubrimientos mediante el experimento y la observación que nos ha situado en un nivel aceptable para poder dar el salto para poder desvelar los secretos de la Naturaleza que se nos resisten en todas las disciplinas del saber humano. Sabemos que las preguntas siguen siendo más abundantes que las respuestas.

La conciencia.Luces de la conciencia imagen de archivo. Imagen de conciencia - 123032347

 

De la Conciencia se ha escrito mucho y sabe muy poco. El funcionamiento de la Conciencia que lo escenificamos con el diablillo que nos habla a la oreja, nos aparece cuando no actuamos bien y nos queda esa amargura de la culpabilidad. También es la consciencia es saber de algo, ver de manera clara y precisa el significado de un todo complejo.

Parece que conciencia tenemos todos y, sin embargo, en unos se deja “ver” más que en otros que la tienen acomodaticia y apegada a sus propios intereses. Otros, no podemos soportar esas molestas voces en nuestro interior que recriminan un acto.

De la otra Consciencia, la que se refiere a la comprensión, es muy cara y no todos hemos podido desarrollar un intelecto que nos permite comprender algunas cuestiones complejas, y,. cuando eso pasa… divagamos y planteamos conjeturas de lo que podría ser.

Predicciones de Zuckerberg, Bezos y Gates sobre el futuro del mundo en el  2030Viaje interestelar - Wikipedia, la enciclopedia libreHoteles donde nos alojaremos en el futuro

Cobots, los compañeros de trabajo en el futuro - Cepymenews

¡El Futuro! Un Tiempo por venir, que no existe, y, cuando llega… ¡Se ha convertido en Presente! Ahora mismo, mientras escribo ésta línea de mis pensamientos, estoy en el Presente que, de inmediato… ¡Se ha ido al Pasado! Y, lo que escribiré en el Futuro sólo existe en mi imaginación que cuando sea plasmado en la superficie en blanco, será de nuevo Presente.

Estamos confinados en un Eterno Presente que recuerda el Pasado e imagina el Futuro incierto, ese tiempo que nunca podremos conocer, sólo imaginarlo podemos y, sin ninguna certeza de lo que pueda ser, ya que, las variantes son infinitas y, también el Azar, está ahí.

La fascinación que desde siempre ha producido el Tiempo en los grandes Pensadores ha sido grande, y, ninguno de ellos pudo reflejar (con acierto pleno) lo que el Tiempo es.

El “principio antrópico”

 

¿Estaría programada la presencia de los seres vivos inteligentes en el Universo?

Por fuerza la cosmología conduce a cuestiones fronterizas entre ciencia experimental, filosofía y religión. No es solo el caso de los sabios antiguos. También los físicos de hoy se plantean preguntas de esa clase, sobre todo a propósito del llamado “principio antrópico”. A partir de los conocimientos actuales, este principio señala que las leyes y magnitudes físicas fundamentales parecen cuidadosamente afinadas para que la formación y el desarrollo del universo pudieran dar lugar a la vida en la Tierra y en otros planetas idóneos para acogerla.

 

Origen del sistema solar - Resumen cortoTodo Astronomía (3) – La base del Sistema Solar se creó en 4 millones de  años - El Corso | Revista Cultural OnlineEl origen del sistema solar - Ciencia y educación en Taringa!Origen del Sistema Solar | Astronomia
Explosión supernova que dejó en el Espacio Interestelar una Nebulosa molecular gigante. Surgió una anomalía gravitatoria que formó un inmenso grumo de materia que giraba y atraía más material condensando en el centro que adquirió una enorme temperatura haciendo “nacer” la proto-estrella. Se formó la estrella y todo aquel ingente material se transformó en plasma que, los giros violentos, comenzaron a eyectar “pedazos” que se alejaban del nuevo Sol, y, se situaban a diferentes distancias según la masa que tenían,
Cuando aquellos “pedazos” comenzaron a enfriarse, rotando sin cesar sobre sí mismo y alrededor de la nueva estrellas, se convirtieron en los mundos que ahora conocemos, y, el tercero a partir del Sol es el nuestro, la Tierra que cayó en la zona habitable para que ahora os lo pueda contar.
El Baúl de la Astronomía: CARACTERÍSTICAS GENERALES LOS PLANETAS DEL  SISTEMA SOLAR
En realidad, si alguien nos preguntara: ¿De dónde salió nuestro Sistema Solar?, no lo tendríamos nada fácil para dar una respuesta satisfactoria (por cierta) y, nos tendríamos que limitar a especular conforme a los conocimientos astronómicos que tenemos, sobre lo que aquí pudo pasar hace ahora de ello unos 5.000 millones de años. Por aquel entonces (un poco antes quizás), la región brilló intensamente, una Supernova explotó y dejó tras ella una Nube de Gas y Polvo que se contrajo con la ayuda de la fuerza de Gravedad y, giró y giró mientras se contraía más y más hasta que, en su centro, la presión y la temperatura hicieron surgir una proto-estrella a partir de la cual surgieron los planetas y demás objetos que conforman todo el Sistema que es nuestra casa.

http://4.bp.blogspot.com/-JyhAR0zp1qc/TWP7JR75EcI/AAAAAAAAGyw/zStnLGdUshA/s1600/AURORABOREALNORUEGA.jpg

 

El universo de las partículas es fascinante. Cuando las partículas primarias chocan con átomos y moléculas en el aire, aplastan sus núcleos y producen toda clase de partículas secundarias. En esta radiación secundaria (aún muy energética) la que detectamos cerca de la Tierra, por los globos enviados a la atmósfera superior, han registrado la radiación primaria. Esa radiación, al chocar con los elementos que envuelven nuestro planeta y su atmósfera, en algunos lugares de la Tierra producen las fascinantes auroras boreales y australes.

Esta espectacular aurora boreal fue captada sobre la aldea de Ersfjordbotn cerca de Tromso, en el norte de Noruega, en el amanecer del 21 de febrero. Las auroras son causadas por la interacción entre las partículas energéticas cargadas del Sol y las moléculas de gas en la atmósfera superior de la Tierra, a unos 100 kilómetros de altura.El viento solar exhalado por el sol con especial volumen hace poco a una velocidad de aproximadamente 500 kilómetros por segundo colaboró en la espectacularidad en este caso.

Trayectorias de las partículas cargadas en un campo magnético — Cuaderno de  Cultura Científica

Trayectorias de las partículas cargadas en un campo magnético — Cuaderno de Cultura Científica

Al llegar a la Tierra, las partículas cargadas son atraídas por el campo magnético terrestre en los polos, donde chocan con las moléculas de gas en la atmósfera superior, haciendo que emitan luz.

El físico estadounidense Robert Andrews Millikan, que recogió una gran cantidad de información acerca de esta radiación (y que le dio el nombre de rayos cósmicos), decidió que debería haber una clase de radiación electromagnética. Su poder de penetración era tal que, parte del mismo, atravesaba muchos centímetros de plomo. Para Millikan, esto sugería que la radiación se parecía a la de los penetrantes rayos gamma, pero con una longitud de onda más corta.

Arthur Compton - Wikipedia, la enciclopedia libreQué son los rayos cósmicos y cómo nos afectan?Radiación cósmica - Wikipedia, la enciclopedia libre

Otros, sobre todo el físico norteamericano Holly Compton, no estaban de acuerdo en que los rayos cósmicos fuesen partículas. Había un medio para investigar este asunto; si se trataba de partículas cargadas, deberían ser rechazadas por el campo magnético de la Tierra al aproximarse a nuestro planeta desde el espacio exterior. Compton estudió las mediciones de la radiación cósmica en varias latitudes y descubrió que en realidad se curvaban con el campo magnético: era más débil cerca del ecuador magnético y más fuerte cerca de los polos, donde las líneas de fuerza magnética se hundían más en la Tierra.

Página del Saber: Protuberancias solares

                 Rayos cósmicos contra las células cuando se producen grandes erupciones solares

Las partículas cósmicas primarias, cuando entran en nuestra atmósfera, llevan consigo unas energías fantásticas, muy elevadas. En general, cuanto más pesado es el núcleo, más raro resulta entre las partículas cósmicas. Núcleos tan complejos como los que forman los átomos de hierro se detectaron con rapidez; en 1.968, otros núcleos como el del uranio. Los núcleos de uranio constituyen sólo una partícula entre 10 millones. También se incluirán aquí electrones de muy elevada energía.

Descubierta la primera fuente de rayos cósmicos

Ahora bien, la siguiente partícula inédita (después del neutrón) se descubrió en los rayos cósmicos. A decir verdad, cierto físico teórico había predicho ya este descubrimiento. Paul Adrien Dirac había aducido, fundándose en un análisis matemático de las propiedades inherentes a las partículas subatómicas, que cada partícula debería tener su antipartícula (los científicos desean no sólo que la naturaleza sea simple, sino también simétrica). Así pues, debería haber un antielectrón, salvo por su carga que sería positiva y no negativa, idéntico al electrón; y un antiprotón, con carga negativa en vez de positiva.

La ecuación más bonita. – Vasos Comunicantes

La ecuación de Dirac que predijo la existencia del Positrón

En 1.930, cuando Dirac expuso su teoría, no llamó demasiado la atención en el mundo de la ciencia. Pero, fiel a la cita, dos años después apareció el antielectrón. Por entonces, el físico americano Carl David Anderson trabajaba con Millikan en un intento por averiguar si los rayos cósmicos eran radiación electromagnética o partículas. Por aquellas fechas, casi todo el mundo estaba dispuesto a aceptar las pruebas presentadas por Compton, según las cuales, se trataría de partículas cargadas; pero Millikan no acababa de darse por satisfecho con tal solución.

Arriba una imagen que ilustra a la Heliosfera, la parte del espacio que está directamente afectada por el Sol a través del viento solar. Es la estructura magnética del viento solar quien hace de escudo contra las enérgicas partículas de los rayos cósmicos. Las variaciones en el viento solar (o en la actividad solar) cambia el flujo de los rayos cósmicos que llegan hasta la Tierra.

Detectores de la radiación e instrumentación

Anderson se propuso averiguar si los rayos cósmicos que penetraban en una cámara de ionización se curvaban bajo la acción de un potente campo magnético. Al objeto de frenar dichos rayos lo suficiente como para detectar la curvatura, si la había, puso en la cámara una barrera de plomo de 6’35 mm de espesor. Descubrió que, cuando cruzaba el plomo, la radiación cósmica trazaba una estela curva a través de la cámara; y descubrió algo más. A su paso por el plomo, los rayos cósmicos energéticos arrancaban partículas de los átomos de plomo. Una de esas partículas dejó una estela similar a la del electrón. ¡Allí estaba, pues, el antielectrón de Dirac! Anderson le dio el nombre de positrón. Tenemos aquí un ejemplo de radiación secundaria producida por rayos cósmicos. Pero aún había más, pues en 1.963 se descubrió que los positrones figuraban también entre las radiaciones primarias.

Positrón - EcuRedDefinición de positrón - Qué es, Significado y Concepto

“Un positrón es una partícula de tipo elemental (ya que no existen evidencias de que esté compuesta por otras partículas más simples) cuya carga eléctrica resulta igual a la que posee el electrón, aunque positiva. Por esta característica, se dice que el positrón es la antipartícula de esta partícula subatómica.”

Abandonado a sus propios medios, el positrón es tan estable como el electrón (¿y por qué no habría de serlo si el idéntico al electrón, excepto en su carga eléctrica?). Además, su existencia puede ser indefinida. Ahora bien, en realidad no queda abandonado nunca a sus propios medios, ya que se mueve en un universo repleto de electrones. Apenas inicia su veloz carrera (cuya duración ronda la millonésima de segundo), se encuentra ya con uno.

 

“Primer Congreso Solvay (1911), financiado por el “rey de la sosa cáustica”, el belga Ernest Solvay y en el que tomaron parte todas las luminarias de la ciencia. Nernst, Poincaré, Langevin, Rutherford, Lorentz, Planck y Marie Curie están en primera fila de la fotografía y no es difícil reconocer a Einstein junto a ellos. Terminado el Congreso, Marie relató a Louis de Broglie los debates sobre el fotón y su naturaleza dual, de onda y partícula.

Ven la luz como onda y partícula a la vez | Ciencia al día

De Broglie, ante los resultados de Compton, se preguntaba en la tesis doctoral que presentó en 1924 si acaso la inversa del efecto Compton sería cierta: si las ondas son partículas ¿no serán ondas las partículas? Al recibir el premio Nobel en 1929, Louis de Broglie diría: “Para ambas, materia y radiación, la luz en especial, es necesario introducir los conceptos de partícula y de onda a la vez. En otras palabras, se tiene que suponer siempre la existencia de partículas acompañadas por ondas.”

Leibniz-Institut fuer Sonnenphysik (KIS): The Magnetic Field of Binary Stars

                                                                       Iguales con carga eléctrica diferentes

Así, durante un momento relampagueante quedaron asociados el electrón y el positrón; ambas partículas girarán en torno a un centro de fuerza común. En 1.945, el físico americano Arthur Edwed Ruark sugirió que se diera el nombre de positronio a este sistema de dos partículas, y en 1.951, el físico americano de origen austriaco Martin Deutsch consiguió detectarlo guiándose por los rayos gamma característicos del conjunto.

Pero no nos confundamos, aunque se forme un sistema positronio, su existencia durará, como máximo, una diezmillonésima de segundo. El encuentro del electrón-positrón provoca un aniquilamiento mutuo; sólo queda energía en forma de radiación gamma. Ocurre pues, tal como había sugerido Einstein: la materia puede convertirse en energía y viceversa. Por cierto, que Anderson consiguió detectar muy pronto el fenómeno inverso: desaparición súbita de rayos gamma para dar origen a una pareja electrón-positrón. Este fenómeno se llama producción en pareja. Anderson compartió con Hess el premio Nobel de Física de 1.936.

 

1936. Victor Franz Hess & Carl David Anderson

Poco después, los Joliot-Curie detectaron el positrón por otros medios, y al hacerlo así realizaron, de paso, un importante descubrimiento. Al bombardear los átomos de aluminio con partículas alfa, descubrieron que con tal sistema no sólo se obtenían protones, sino también positrones. Cuando suspendieron el bombardeo, el aluminio siguió emitiendo positrones, emisión que sólo con el tiempo se debilitó. Aparentemente habían creado, sin proponérselo, una nueva sustancia radiactiva. He aquí la interpretación de lo ocurrido según los Joliot-Curie: cuando un núcleo de aluminio absorbe una partícula alfa, la adición de los dos protones transforma el aluminio (número atómico 13) en fósforo (número atómico 15). Puesto que las partículas alfa contienen cuatro nucleones en total, el número masivo se eleva 4 unidades, es decir, del aluminio 27 al fósforo 31. Ahora bien, si al reaccionar se expulsa un protón de ese núcleo, la reducción en una unidad de sus números atómicos y masivos hará surgir otro elemento, o sea, el silicio 30.

Archivo:Triple-Alpha Process.svg

Arriba teneis el proceso conocido como triple alfa: Una maravilla de la que se vale la Naturaleza para fabricar el Carbono en las estrellas.

Puesto que la partícula alfa es el núcleo del helio, y un protón es el núcleo del hidrógeno, podemos escribir la siguiente ecuación de esta reacción nuclear:

aluminio 27 + helio 4 = silicio 30 + hidrógeno 1

Nótese que los números másicos se equilibran:

27 + 4 = 30 + 1

Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico.

 Frédéric Joliot-Curie - Wikipedia, la enciclopedia libreIrène Joliot-Curie - Wikipedia, la enciclopedia libre

   Joliot – Curie

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1.932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

 Rosetta mide un elevado contenido de deuterio en el cometa 67P | Meteoritos  y ciencias planetarias | SciLogs | Investigación y Ciencia

      núcleos de hidrógeno pesado.

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1.934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.

Nuclear FusionFusión Nuclear

Reacciones de fusión nuclear

Reacciones de deuteriotritio:

 

Esta es una de las dos reacciones de fusión nuclear más básicas que se conocen: en ella intervienen como reactivos un núcleo de deuterio (D) y uno de tritio (T). Si dichos reactivos se aproximan entre sí a velocidades adecuadas, se unen formando un núcleo compuesto (centro), que es inestable y se desintegra rápidamente produciendo un núcleo de helio (He) y un neutrón. El proceso de formación del núcleo compuesto se denomina fusión nuclear (de deuterio y tritio en el caso que estamos considerando). El tritio es radioactivo, el deuterio no. Esta es una de las dos reacciones de fusión nuclear más básicas que se conocen: en ella intervienen como reactivos un núcleo de deuterio.

El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión a 20’5º K.

 Qué es la fusión nuclear? Energías como Bienes Comunes

Reacciones de deuteriodeuterio:

En ella, dos núcleos de deuterio se fusionan formando un núcleo compuesto inestable (centro) que rápidamente decae siguiendo uno de dos posibles caminos: el ilustrado en la parte superior, que produce un núcleo de helio y un neutrón; y el indicado en la parte de abajo, donde se produce un núcleo de tritio y un protón. El camino que seguirá el núcleo compuesto para decaer, es impredecible con exactitud. Sólo puede afirmarse que el 50% de las veces, la naturaleza sigue el de arriba, y el 50% restante, el de abajo.

Reactores de fusión nuclear - Wikipedia, la enciclopedia libreReactores de fusión nuclear - Wikipedia, la enciclopedia libre

                                                                          Reactor de fusión Tokamaka

Instalaciones donde se produce la fusión nuclear: Lograr fusión nuclear en la Tierra es complicado: se requieren reactores especiales.

Como es mi costumbre, me desvío del tema y sin poderlo evitar, mis ideas (que parecen tener vida propia), cogen los caminos más diversos. Basta con que se cruce en el camino del trabajo que realizo un fugaz recuerdo; lo sigo y me lleva a destinos distintos de los que me propuse al comenzar. Así, en este caso, me pasé a la química, que también me gusta mucho y está directamente relacionada con la física; de hecho son hermanas: la madre, las matemáticas, la única que finalmente lo podrá explicar todo.

Libro digital interactivo

Estamos hablando de las partículas y no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-Dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

 http://farm5.static.flickr.com/4140/4745204958_afd02b2486.jpg

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.

The Bose-Einstein Distribution

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.

La CONSTANTE de PLANCK: definición sencilla - ¡¡RESUMEN FÁCIL!!

Los bosones tienen un momento angular nh/2π, donde n es 0 o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

El Spín

Danzad, danzad malditas (3) | Lleida.comPrecesión de los equinoccios - Wikipedia, la enciclopedia libre

El Spín es una propieded intrínseca de las partículas elementales, es una propiedad física, esta propiedad fué introducidad por Ulembeck y Gouldsmith, descubrieron el spín del electrón, que hace referencia a sus propiedades de giro. Su valor está cuantizado, es decir solo puede tener como valor números enteros o semienteros. Para electrones, protones y neutrones este valor es de 1/2. Existen otros valores para otras partículas elementales, las matrices de Pauli nos dicen conceptos del spin del electrón.

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Qué es el principio de exclusión de Pauli? - 100CIA | Principio de exclusión  de pauli, El principito, Mecanica cuantica

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

 

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas.

FÍSICA SEM EDUCAÇÃO: O que são antipartículas?

AMIGOS PARA SIEMPRE: FÍSICA DE PARTÍCULAS

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.

Ciencia Bizarra: Conociendo la Antimateria

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.

emilio silvera

¡¡Pudimos llegar hasta los Quarks!!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Ahora todos hablamos del LHC. Sin embargo, la historia de los aceleradores no comenzó con éste moderno y complejo conglomerado de sofisticadas estructuras que hacen posible que visitemos lugares muy lejanos en el “corazón” de la materia. Tendríamos que recordar al acelerador lineal también llamado LINAC (linear acelerator) es un tipo de acelerador que le proporciona a la partícula subatómica cargada pequeños incrementos de energía cuando pasa a través de una secuencia de campos eléctricos alternos.

     Generador de Van de Graaff.                                El generador sin la esfera de metal.

“El generador de Van de Graaff, es un aparato electrostático creado por Robert Van de Graaff y que utiliza una cinta móvil para acumular grandes cantidades de carga eléctrica en el interior de una esfera metálica hueca. Las diferencias de potencial así alcanzadas en un generador de Van de Graaff moderno pueden llegar a alcanzar los cinco megavoltios.”

Acelerador de partículas - Wikipedia, la enciclopedia libreQué es el ciclotrón? - 100CIA

Mientras que el generador de Van de Graaff proporciona energía a la partícula en una sola etapa, el acelerador lineal y el ciclotrón proporcionan energía a la partícula en pequeñas cantidades que se van sumando. El acelerador lineal, fue propuesto en 1924 por el físico sueco Gustaf Ising. El ingeniero noruego Rolf Wideröe construyó la primera máquina de esta clase, que aceleraba iones de potasio hasta una energía de 50.000 eV.

Durante la Segunda Guerra Mundial se construyeron potentes osciladores de radio frecuencia, necesarios para los radares de la época. Después se usaron para crear aceleradores lineales para protones que trabajaban a una frecuencia de 200 MHz, mientras que los aceleradores de electrones trabajan a una frecuencia de 3000 MHz.

Acelerador lineal - Wikiwand

El acelerador lineal de protones diseñado por el físico Luis Alvarez en 1946, tenía 875 m de largo y aceleraba protones hasta alcanzar una energía de 800 MeV (800 millones). El acelerador lineal de la universidad de Stanford es el más largo entre los aceleradores de electrones, mide 3.2 km de longitud y proporciona una energía de 50 GeV (50 billones). En la industria y en la medicina se usan pequeños aceleradores lineales, bien sea de protones o de electrones.

El SLAC, ubicado al sur de San Francisco, acelera electrones y positrones a lo largo de algo más de tres kilómetros hacia varios blancos, anillos y detectores ubicados en su finalización. Este acelerador hace colisionar electrones y positrones, estudiando las partículas resultantes de estas colisiones. Construido originalmente en 1962, se ha ido ampliando y mejorando para seguir siendo uno de los centros de investigación de física de partículas mas avanzados del mundo. El centro ha ganado el premio nobel en tres ocasiones. Y, una vez recordada de manera breve la historia, pasaremos directamente al tema que en realidad nos ha traído aquí: ¡El descubrimiento de los Quarks!

El LHC descubre el pentaquark | Ciencia | EL PAÍSEl CERN descubre una nueva categoría de partículas, los pentaquarks

                                                                     Y el LHC descubrió el Pentaquark

Ahora los medios con los que cuentan los físicos del LHC son inmensamente más eficaces y están más adelantados que aquellos viejos aceleradores que, sin embargo, fueron los pioneros y los que hicieron posible adquirir conocimientos que nos han traído hasta el moderno LHC.

En 1967 se emprendió una serie de experimentos de dispersión mediante los nuevos haces de electrones del SLAC. El objetivo era estudiar más incisivamente la estructura del protón. Entra el electrón de gran energía, golpea un protón en un blanco de hidrógeno y sale un electrón de energía mucho menor, pero en una dirección que forma un ángulo grande con respecto a su camino original. La estructura puntual dentro del protón actúa, en cierto sentido, como el núcleo con las partículas alfa de Rutherford. Pero el problema era aquí más sutíl.

           Richard Edward Taylor

SLAC antena.jpg

En 1962, la Universidad de Stanford, en Menlo Park, California, cedió un terreno (de 172 Há) situado junto al Campus principal, para la instalación de un Centro de Altas Energías,  operado por Departamento de Energía de la Oficina de la Ciencia de Estados Unidos.

El SLAC es un amplio programa de investigación en física atómica y física del estado sólido. Hasta el año 2008 fue el acelerador lineal más largo del mundo, con 3,2 km subterráneos, situados a 10 metros bajo tierra. Pasa por debajo de una autopista.

“Richard Edward Taylor fue uno de los veintidós científicos que trabajó intensamente en el acelerador lineal de Stanford (SLAC), en una serie de pruebas experimentales que vinieron a demostrar que los protones y los neutrones son poseedores de una estructura interna, lo que a su vez confirma las predicciones teóricas del neoyorquino Murray Gell-Mann (1929- ), acerca de la existencia de los denominados quarks.

Junto con sus colegas de Stanford junto con Jerome I. Friedman y Henry W. Kendall -con los que luego habría de compartir el Nobel-, Taylor investigó sobre la estructura interna de la materia, en su mínima expresión, para lo que partió del modelo teórico de los quarks, postulado por Gell-Mann y -de forma independiente- G. Zweig.

Resultado de imagen de Bosones

Resultado de imagen de Bosones

Resultado de imagen de Bosones

Resultado de imagen de Bosones

Resultado de imagen de Bosones
Los bosones W y Z son las partículas mediadoras de la interacción nuclear débil, una de las cuatro interacciones fundamentales de la naturaleza. Son dos tipos de partículas fundamentales, muy masivas, que se encargan en general de cambiar el sabor de otras partículas, los leptones y los quarks.
Gluón - EcuRed

“El gluon o gluón (de la voz inglesa glue ‘pegamento’, derivada a su vez del latín glūten a través del francés gluer ‘pegar’) es el bosón portador de la interacción nuclear fuerte, una de las cuatro fuerzas fundamentales. No posee masa ni carga eléctrica, pero sí carga de color, por lo que además de transmitir la interacción fuerte también la sufre.

La teoría que postula la existencia de los gluones y describe su dinámica se denomina cromodinámica cuántica.”

 

 

Holograma del Fotón
                                  Holograma del Fotón
Físicos crean una nueva fuente de luz: el súper fotón

“En física moderna, el fotón (en griego φῶς phōs (gen. φωτός) ‘luz’, y -ón) es la partícula elemental responsable de las manifestaciones cuánticas del fenómeno electromagnético. Es la partícula portadora de todas las formas de radiación electromagnética, incluidos los rayos gamma, los rayos X, la luz ultravioleta, la luz visible, la luz infrarroja, las microondas y las ondas de radio.”

El fotón tiene una masa invariante cero,​ y viaja en el vacío con una velocidad constante c. Como todos los cuantos, el fotón presenta tanto propiedades corpusculares como ondulatorias

1°- Partículas Fundam. - 2 - Desde el Fotón al UniversoVen la luz como onda y partícula a la vez | Ciencia al día

Tras sus descubrimientos experimentales en el acelerado lineal de Stanford, Taylor perfeccionó dicho modelo añadiéndole la existencia de unas subpartículas desconocidas hasta entonces, que luego fueron denominadas leptones; además, introdujo en el modelo teórico de Gell-Mann otras partículas no estructurales, sino de intercambio de fuerza, a las que en Stanford comenzaron a llamar bosones.”

James Bjorken.jpg

James Bjorken.

Ciencia es creer en la ignorancia de los científicos (Richard P.Feynman) |  Mente abierta, Mente, Mecanica cuanticaRichard Feynman, el físico que no entendía sus propias teorías | OpenMind

                             Richard Feynman y sus diagramas

Los dos últimos párrafos los he tomado prestados de www.mcnbiografias.com., que es lo que se explica de este tema en casi todas partes. Sin embargo, pocos cuentan que, el equipo de Stanford, dirigido por el físico del SLAC por Richard Taylor y los otros dos físicos del MIT, Jerome Friedman y Henry Kendall, tuvieron la gran suerte de que, Richard Feynman y James Bjorken, metieran sus narices en el proyecto llevados por la curiosidad y como habían prestado  su energía y su imaginación a las interacciones fuertes  y se preguntaban: ¿que habrá dentro del protón?

Ambos, Feynman y Bjorken visitaban con frecuencia Stanford desde su base en el  Cal Tech, en Pasadena. Bjorken, teórico de Stanford, estaba muy interesado en el proyecto experimental y en las reglas que regían unos datos aparentemente incompletos. Estas reglas, razonaba Bjorken, serían indicadoras de las leyes básicas (dentro de la “caja negra”) que controlaba la estructura de los hadrones.

Simulación por computadora de los cuatro experimentos del LHC: ATLAS, CMS, LHCb y ALICE.Créditos: CERN.
Demócrito - Fundación Sonría
Demócrto de Abdera, el filósofo que ríe y hablaba del átomo como la parte invisible e indivisible de la materia.

No estaría mal echar una mirada hacia atrás en el tiempo y recordar, en este momento, a Demócrito que, con sus postulados, de alguna manera venía a echar un poco de luz sobre el asunto, dado que él decía que  para determinar  si algo era un á-tomo habría que ver si era indivisible. En el modelo de los quarks, el protón, en realidad, un conglomerado pegajoso de tres quarks que se mueven rápidamente. Pero como esos quarks están siempre ineludiblemente encadenados los unos a los otros, experimentalmente el protón aparece indivisible.

Boscovich y la teoría atómica

         Roger Joseph Boscovich 


“El mundo eslavo ha contribuido a la ciencia con personajes de la talla de Copérnico, Lovachevski y Mendelejev. No obstante ser poco conocido, Boscovich representa una importante aportación eslava al conocimiento científico; su teoría sobre la estructura de la materia es fundamental para la física contemporánea.

Así que, acordémonos aquí de que Boscovich decía que, una partícula elemental, o un “á-tomo”, tiene que ser puntual. Y, desde luego, esa prueba, no la pasaba el protón. El equipo del MIT y el SLAC, con la asesoría de Feynman y Bjorken, cayó en la cuenta de que en este caso el criterio operativo era el de los “puntos” y no el de la indivisibilidad. La traducción de sus datos a un modelo de constituyentes puntuales requería una sutileza mucho mayor que el experimento de Rutherford.

blogger de fisica: Hadrones, leptones y teoría electrodébilHadrón, partícula subatómica — Astronoo

Precisamente por eso era tan conveniente fue tan conveniente para Richard Edward Taylor y su equipo, tener a dos de los mejores teóricos del mundo en el equipo aportando su ingenio, agudeza e intuición en todas las fases del proceso experimental. El resultado fue que los datos indicaron, efectivamente, la presencia de objetos puntuales en movimiento dentro del protón.

En 1990 Taylor, Friedman y Kendall recogieron su premio Nobel por haber establecido la realidad de los quarks. Sin embargo, a mí lo que siempre me ha llamado más la atención es el hecho cierto de que, este descubrimiento como otros muchos (el caso del positrón de Dirac, por ejemplo), han sido posible gracias al ingenio de los teóricos que han sabido vislumbrar cómo era en realidad la Naturaleza.

A todo esto, una buena pregunta sería: ¿como pudieron ver este tipo de partículas de tamaño infinitesimal, si los quarks no están libres y están confinados -en este caso- dentro del protón?  Hoy, la respuesta tiene poco misterio sabiendo lo que sabemos y hasta donde hemos llegado con el LHC que, con sus inmensas energías “desmenuza” un protón hasta dejar desnudos sus más íntimos secretos.

El LHC comienza las colisiones entre iones de plomo y protones | CPAN -  Centro Nacional de Física de Partículas, Astropartículas y NuclearEl LHC colisiona protones con iones pesados por primera vez | CPAN - Centro  Nacional de Física de Partículas, Astropartículas y Nuclear

                    Este es, el resultado ahora de la colisión de protones en el LHC

Lo cierto es que, en su momento, la teoría de los Quarks hizo muchos conversos, especialmente a medida que los teóricos que escrutaban los datos fueron imbuyendo a los quarks una realidad creciente, conociendo mejor sus propiedades y convirtiendo la incapacidad de ver quarks libres en una virtud. La palabra de moda en aquellos momentos era “confinamiento”. Los Quarks están confinados permanentemente porque la energía requerida para separarlos aumenta a medida que la distancia entre ellos crece. Esa es, la fuerza nuclear fuerte que está presente dentro del átomo y que se encarga de transmitir los ocho Gluones que mantienen confinados a los Quarks.

Así, cuando el intento de separar a los Quarks es demasiado intenso, la energía se vuelve lo bastante grande para crear un par de quark-anti-quark, y ya tenemos cuatro quarks, o dos mesones. Es como intentar conseguir un cabo de cuerda. Se corta y… ¡ya tenemos dos!

Muere Murray Gell-Mann, co-creador de la teoría de quarks y gluones y del  modelo estándar [ENG]Gabriele Veneziano - Wikipedia, la enciclopedia libreJohn Schwarz | Gerald R. Ford School of Public PolicyFrases de Edward Witten

Gell – Mann, Veneziano, John Schwarz y Edward Witten. éste último culminó el trabajo de cuerdas unificando todas las teorías y construyó el Modelo de la Teoría M

¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va desde los quarks de Gell-Mann, hasta las cuerdas de Veneziano y   y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y  momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar.

¿Cuántas veces no habré pensado, en la posibilidad de tomar el elixir de la sabiduría para poder comprenderlo todo? Sin embargo, esa pócima mágica no existe y, si queremos saber, el único camino que tenemos a nuestro alcance es la observación, el estudio, el experimento… ¡La Ciencia!, que en definitiva, es la única que nos dirá como es, y como se comporta la Naturaleza y, si de camino podemos llegar a saber, por qué lo hace así…¡mucho mejor!

emilio silvera