jueves, 18 de septiembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Quieren construir una ciudad de plástico en Marte

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ASTRONOMíA, CREATIVIDAD, TECNOLOGíA
https://www.youtube.com/watch?time_continue=3&v=CvBkrGMEFUI (ver video)

Noticia de prensa El País

 

Manuel Álvarez-Monteserín

Manuel Álvarez-Monteserín

Arquitecto

 

Así es la gran ciudad de plástico para vivir en Marte

 

#ElFuturoEsApasionante #EsApasionante #Vodafone

 

Resultado de imagen de Con el plástico de los océanos se construirá una ciudad en Marte

 

 

Incluso si los plazos más optimistas se cumplen, ya llevamos algunos años de retraso con respecto a las predicciones de la ciencia ficción. Porque, por ejemplo, según Desafío total, uno de los títulos que elevaron a Arnold Schwarzenegger a la categoría de estrella global del cine de acción, en el año 2084 Marte ya debería estar colonizado y con un buen número de edificaciones construidas en su superficie. Tanto es así que el Planeta Rojo se muestra como un atractivo destino vacacional para el protagonista de esta película basada en un relato corto del maestro Philip K Dick. Para ver algo parecido, sin embargo, habrá que esperar por lo menos un siglo, que será cuando esté terminada (si se construye) la futurista ciudad que ha diseñado el arquitecto español Manuel Álvarez-Monteserín, proyecto con el que ha ganado un concurso convocado por la NASA y HP.

1vistapajaroz

                                 Proyecto ganador del premio de Taiwan

Álvarez-Monteserín no es nuevo en esto de afrontar proyectos gigantescos. Para comprobarlo merece la pena leer el reportaje de la revista Yorokubu titulado Las increíbles aventuras de unos arquitectos españoles que ganaron un proyecto de 100 millones de dólares en Taiwán, en el que se cuenta la historia de su triunfo (junto a sus socios) en un concurso para construir un complejo en la ciudad asiática. Pero si sus vivencias en Taiwan son dignas de un thriller de David Fincher (alguien debería hacer una película con ellas) el fenomenal reto en el que ahora anda inmerso haría las delicias de un Ron Howard. “El proyecto consistía en imaginarse una ciudad de un millón de habitantes en el futuro en Marte” explica Álvarez-Monteserín. Y para ese futuro el arquitecto español, en un proyecto coordinado por el IED Innovation Lab, planteó junto a un grupo de alumnos del centro una imagen tan vanguardista como implicada con la defensa del medio ambiente en nuestro planeta. Una paradoja hermosa: para colonizar otros lugares es imprescindible cuidar nuestra casa. Porque la idea con la que Álvarez-Monteserín y su equipo ganaron el concurso fue recoger los plásticos que ahora contaminan los océanos para transportarlos al Planeta Rojo y, una vez allí, ser utilizados como materia prima para la construcción de edificios.

Resultado de imagen de Manuel Álvarez-Monteserín Proyecto para colonizar Marte

“Todas las tecnologías que íbamos encontrando que nos parecían atractivas para montar una sociedad en Marte las íbamos estudiando e incorporando” explica Álvarez-Monteserín, quien imagina la colonización de este planeta como una forma de crear nuevos modelos urbanos. En Algi, nombre que le han dado a la ciudad por las microalgas que su proyecto incorpora como método de defensa frente a la radiación solar, sus habitantes disponen de amplios espacios públicos y comunitarios. “En todo momento lo hemos estado pensando para que aquello que utilicemos para colonizar Marte también sirva a la Tierra en paralelo” asegura el arquitecto. Y esto es porque a medida que se conoce su idea de ciudad marciana, queda claro que detrás de el proyecto arquitectónico hay más; hay una intención que busca mejorar la sociedad.

Convivimos con ellas sin prestarles atención I

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

Existen inesperadas conexiones entre los cuerpos celestes y los patrones que rigen la Vida en el Planeta Tierra, No pocas de las secuencias que podemos observar, son la consecuencia directa de dichas conexiones, a las que, la mayoría de las veces, no le prestamos la menor atención.

Merece la pena examinar esos vínculos que, situados a niveles diferentes, pueden comenzar en puntos temporales subyacentes en el entorno terrestre y terminar con las respuestas  que los seres vivos, donde sólo los Humanos, aprendieron a dar al reino astronómico el valor y la conexión que en todo ello tenían.

Estas respuestas (aunque a veces nos parezcan ancestrales), aún se manifiestan en nuestra organización social, y también subyacen a muchas de nuestras respuestas metafísicas y emocionales del Universo.

Hemos estado tentados a ver las estrellas como dioses, como demonios, como la mejor guía para la naves viajeras, como la profesía de la mala suerte, o, lo que es peor, como gobernantes de cada una de nuestras acciones.

CONCIENCIA CAMBIOS SOLARES

Descubrimos también que hemos sido tremendamente afortunados por el simple hecho de que, la forma de vida que representamos, vino a caer, por razones del Azar, dentro de un entorno celeste que influye significativamente en el alcance y dirección de cualquier investigación científica del Universo que, en nuestra pacífica Región, se hace totalmente posible al estar alejados de lugares turbulentos y emisiones de inmensas energías que impedidirían cualquier clase de observación y estudio fiable.

Si en nuestro entorno explotaran Supernovas y estuvieran presentes Agujeros Negros masivos… ¡Las cosas serían muy diferentes para nosotros, o, incluso, no serían!

Nuestros primeros pasos preconscientes, es decir, los de nuestros ancestros primitivos a lo largo del Sendero Evolutivo, se produjeron en un mundo de alternancia diaria de la noche y el día, una crecida y bajada mensual de las mareas y una variación anuela en las horas diurnas y en el clima. Todos estos cambios de escenarios dejaron su impronta sobre nosotros, los actores en el serial de la Vida.

Resultado de imagen de Las grandes extinciones

GRANDES EXTINCIONES ¿Qué sabemos de ellas?

Algunos seres vivos pudieron sobrevivir mejor porque variaciones fortuitas les dieron ritmos corporales que reflejaban con precisión el pulso de cambios ventajosos en el entorno que pudieron ser aprovechados por ellos, tanto en las plantas como en los animales de todo tipo. Unos pudieron adaptarse y otros no.

Esos otros, sintieron directa y vivamente en su propios metabolismos aquellos cambios que los ritmos celestes imponían y a los que ellos, no se pudieron adaptar, y, de esa manera, sus especies perecieron y dejaron de existir.

El mundo está lleno de Plantas y Animales que han crecido sensibles al ciclo de la noche y el día, el cielo estacional del calor del Sol y la variación mensual de las mareas. Las mareas oceánicas provocadas por las feses de la Luna influyeron en la evolución de los crustáceos y los anfibios.

La formación de regiones con grandes diferencias entre mareas vivas y muertas, con alternancia de períodos de inmersión y períodos secos, puede haber animado la disfunción de la vida del mar a la tierra. Las condiciones cambiantes estimulan la evolución de un tipo de complejidad que lleva a la vida porque crea condiciones en las que la variación supone una diferencia en las perspectivas de supervivencia (adaptarse o morir).

Existen huellas claras de un período anual en los ciclos vitales de las plantas y de los demás seres vivos de que, han favorecido su adaptación evolutiva y han hecho posible la supervivencia  y crecimientos de las especies y sus “relojes” innatos que hace coincidir, en no pocos casos, el nacimiento de sus crías con momentos en los que la posibilidad de supervivencia es mayor, especialmente, en las regiones templadas, donde las estaciones cambian de manera más abruptas.

Resultado de imagen de Peces que desovan y entierran los huevos

En la manera que hemos podido llegar a descubrir, de cómo desovan algunos y como tienen en cuenta el momento de la Luna nueva o Luna llena , y los peces desoven después de enterrar la mitad de sus cuerpos en la arena. De esta manera les da tiempo a que las mareas no puedan arrastrarlos para evitar su puesta.

Los animales sienten el cambio de las Estaciones por una respuesta a la duración de la Luz diurna. Hay ejemplos notables de la precisión de esta sensibilidad, que optimiza la fertilidad de las hembras para que coincida con el equinoccio de primavera.

Parece que la actividad de apareo se desencadena cuando la duración de la Luz diurna alcanza un valor crítico. Los experimentos muestran que pueden haber dos fases:

– Amor a la Luz

– Amor en la Oscuridad

En la primera fase, cuando la luz cae en el cuerpo estimula el crecimiento y la actividad; en la segunda fase, estas cosas se inhiben. En días largos, más luz estimula las respuestas bioquímicas más fuertes.

Pero la situación no es siempre tan sencilla. Las criaturas pueden poner a cero sus relojes internos exponiéndolos a entornos artificiales.

El día y el Año son las más simples de nuestras de nuestras divisiones temporales. La longitud del día está determinada por el Tiempo que tarda la Tierra en dar una vuelta alrededor de su eje. El día sería mucho más largo si la Tierra rotara más lentamente, y las variaciones diurnas no existirían en absoluto si la Tierra no tuviera rotación. En este caso, los seres vivos estarían, divididos entre trtes poblaciones diferentes:

– Los que vivirían en el lado oscuro

– Los que vivirían en el lado luminoso

– Los que vivirían en la Zona Corpuscular intermedia

Está claro que hay un límite en lo que se refiere a que el día sea más corto o más largo, todo dependerá de los factores que en ello puedan intervenir. El día no podría ser mucho más corto porque hay un límite en la rápido que puede girar un cuerpo antes de que empiece a despedir a todos los objetos que estén sibre su superficie y, más tarde, a desintegrarse. De hecho, la longitud del día está alargándose muy lentamente, aproximadamente dos milésimas de segundo cada siglo, debido a la atracción de la Luna.

Seguramente, algunos de ustedes, al leer “…dos milésimas de segundo cada siglo…”, hayan podido pensar: Qué tontería, y, qué puedo eso influir en nada.

Lo cierto es que, durante los enormes períodos necesarios para un cambio Geológico o Biológico destacable, ese infinitesimal aumento adquiere una importancia vital.

Imagen relacionada

El día habría sido 11 horas más corto hace ahora 2.000 millones de años, cuando vivían las antiguas bacterias fósiles conocidas y halladas en las rocas más antiguas de la Tierra en Warradona (Australia). Se han hallado pruebas directas de este cambio impresos en los seres vivos en algunas arrecifes de las Bahamas.

https://activatuocio.files.wordpress.com/2010/10/las-exumas-unas-de-las-islas-mas-atractivas-de-las-bahamas.jpg

En el coral se depositan bandas de crecimiento anual (similares a los anillos de los árboles), y contando cuantas bandas diarias hay en cada banda anual se puede determinar cuantos ciclos diarios había en un año. El crecimiento coral contemporáneo muestra unas trescientas sesenta y cinco bandas por cada año, aproximadamente lo que se esperaba, mientras que los corales de hace 350 millones de años, muestran unos cuatrocientos anillos diarios en cada banda anual, lo que nos indica que el día era entonces de sólo 21,9 horas.

Si hacemos un viaje al pasado, para tratar de contemplar la evolución terrestre desde su formación, podríamos contemplar cómo, la Tierra jóven podría haber tenido días de tan sólo 6 horas. Así pués, si la Luna no existiera nuestro día sería (probablemente) dee sólo un cuarto de su longitud actual. Esto también hubiera tenido consecuencias para el campo magnético de la Tierra. Con un día de sólo 6 horas, la rotación más rápida de partículas cargadas dentro del planeta produciría un campo terrestre tres veces más intenso que el actual.

¿Qué ocurrirá cuando cambie el campo magnético de la Tierra?

La sensibilidad magnética sería una adaptación más económica  para los seres vivos de un mundo semejante.Sin embargo, los efectos ambientales de más largo alcance de un día más corto serían seguidos de vientos más fuertes, mucho más fuertes que azotarían que azotarían la superficie en rotación del planeta.

El grado de erosión por el viento y las olas sería muy grande. Habría presión selectiva hacia árboles más pequeños y para que las plantas desarrollaran hojas más pequeñas y más fuertes que fueran menos susceptibles de ser arrancadas. Esto podría alterar el curso de la evolución  de la atmósfera terrestres al retrasar la conversión de su primitiva atmósfera de dióxido de Carbono en Oxígeno por acción de la Fotosíntesis.

El año está determinado por el Tiempo que tarda la Tierra en completar una órbita alrededor del Sol. Este período de Tiempo no es en modo alguno aleatorio. Las temperaturas y emisiones de energía de las estrellasd estables están fijadas por las intensidades invariantes de las fuerzas de la naturaleza.

En un planeta sólo puede haber una actividad Biológica si su temperatura superficial no es extrema. Demasiado calor y las moléculas se frien; demasiado frío, y se congelan; pero en medio, hay un rango de temperaturas en el que pueden multiplicarse y crecer en complejidad los seres vivos.

Existe un estrecho rango dentro del cual el agua puede mantenerse líquida y ese estado es el óptimo para la evolución expontánea de la vida. El agua ofrece un ambiente maravilloso para la evolución de la Química compleja porque aumenta tanto la movilidad como la acumulación de grandes concentraciones de moléculas que se pueden transformar en estructuras complejas.

Estas limitaciones a las temperaturas garantizan a los seres vivos que su biología les exige estar situados en planetas que no estén demasiado cerca de su estrella madre, ni tampoco, demasiado lejos de su luz y su calor. Es lo que llamamos estar situados en la Zona habitable de una estrella para que, en los planetas allí situados, la vida pueda florecer.

Otra cuestión importe es que, esos planetas, tengan órbitas casi circulares, si queremos que dichos planetas permanezcan en esa Zona habitable, ya que, si la órbita es elíptica se saldría de ella y, la vida, tendría muchos problemas para poder mantenerse estable.

Resultado de imagen de Esta animación muestra algunas órbitas elípticas con diferentes excentricidades. Así mismo, muestra cómo está el Sol durante el foco de una elipse, y algo de la matemática que hay tras las órbitas elípticas. Animación de Randy Russell (miembro del equipo de Ventanas al Universo).Resultado de imagen de Esta animación muestra algunas órbitas elípticas con diferentes excentricidades. Así mismo, muestra cómo está el Sol durante el foco de una elipse, y algo de la matemática que hay tras las órbitas elípticas. Animación de Randy Russell (miembro del equipo de Ventanas al Universo).

https://i1.wp.com/www.letraherido.com/images/imagenes%20estrellas/binarias%201.gif?w=604

Esta animación muestra algunas órbitas elípticas con diferentes excentricidades. Así mismo, muestra cómo está el Sol durante el foco de una elipse, y algo de la matemática que hay tras las órbitas elípticas. Animación de Randy Russell (miembro del equipo de Ventanas al Universo).

Las órbitas elípticas llevarían al planeta a puntos con diferentes distancias y temperaturas con lo cual, la vida tendría muchos problemas para poder resistir cambios tan drásticos que, por lo general, serían mortales para los seres vivos de aquel planeta.

La Tierra en su deambular alrededor del Sol, describe una órbita elíptica pero, poco pronunciada. Su máxima distancia del Sol es de 1,017 veces la distancia media, y su mínima distancia es sólo de 0,983 veces la distancia media que sería la de 1 UA.

Como veréis, la ligera variación hace de la órbita “casi” un círculo perfecto y la variación anuela es aproximadamente de un 7% en el flujo de energía que la superficie de la Tierra recibe del Sol. La cercanía de la órbita de la Tierra a un círculo, tiene una importancia evidente.

La regularidad de la Tierra que viene dada por la intensidad de energía que nos envía el Sol, desde 150 millones de kilómetros, y, la intensidad está amortiguada por la rica y densa atmósfera terrestre, y, los seres vivos, tienen un escudo contra las radiaciones nosivas.

Dejémos aquí la primera parte.



En la segunda parte seguiremos hablando de la importancia que tiene la Luna para nosotros y explicaremos el por qué de las Estaciones en nuestro planeta.

La Fuente: “El Universo como Obra de Arte” JOHN D. BARROW.

A veces cuesta pero… Se consigue!

Autor por Emilio Silvera    ~    Archivo Clasificado en Matemáticas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Un alarde de erudicción para “resolver” la hipótesis de Riemann

 

La función zeta de Riemann

Resultado de imagen de La función Z de Riemann

 

 

La posible resolución de la hipótesis de Riemann

 

Los días pasados un terremoto recorría el mundo matemático: este lunes, 24 de septiembre, Sir Michael Atiyah, uno de los matemáticos más laureados y respetados de la historia anunciaba en el abstract de su conferencia en el Laureate Forum de Heilderberg, que había demostrado de una manera sencilla la hipótesis de Riemann.

https://www.abc.es/ciencia/abci-numeros-primos-y-posible-solucion-hipotesis-riemann-201809250914_noticia.html

El abstract decía textualmente: ”Es un conocido problema matemático sin resolver desde el año 1859. Yo presentaré una prueba simple utilizando una perspectiva radicalmente nueva. Está basada en los trabajos de Von Neumann (1936), Hirzebruch (1954) y Dirac (1928)”.

Si el anuncio fuese de otra persona, el revuelo no hubiera sido de esta envergadura, pero Michael Francis Atiyah, de 89 años, es medallista Fields en 1966 y Premio Abel en 2004 (entre otras muchas distinciones). La duda sobre esta supuesta prueba surgió enseguida, aludiendo a su edad y a otros anuncios fallidos previos, y también a la singularidad de la ocasión, cuando hace poco más de un mes, Atiyah impartió una conferencia en el Congreso Internacional de Matemáticos de Río de Janeiro.

      ¿Qué pinta π aquí?

¿Y qué dice esta famosa conjetura? Viene de una de esas extrañas relaciones internas de las matemáticas, entre los números primos y una función entre los números complejos llamada precisamente función zeta de Riemann, de manera que los ceros de esta función (los valores donde se anula) tienen todos parte real 1/2. Así que probar la conjetura de Riemann nos da una buena idea de cómo se distribuyen los números primos, que sabemos desde Euclides que son infinitos. Y los números primos son los ladrillos con los que se construyen todos los demás, piezas claves en muchas aplicaciones como en la criptografía.

Imagen relacionada

Las pistas que daba Atiyah en su abstract, se referían a tres trabajos: el de John von Neumann titulado On an algebraic generalization of the quantum mechanical formalism, esencial para la formulación matemática de la mecánica cuántica; uno segundo titulado Arithmetic genera and the Theorem of Riemann-Roch, clásico en geomería algebraica, escrito por el matemático alemán Hirzebruch, y cuyo resultado principal está basado en la teoría del cobordismo de René Thom; y otra obra clásica del premio Nobel P.A.M. Dirac, The Quantum Theory of the Electron, en el que introduce la ecuación de onda del electrón unificando la mecánica cuántica y la relatividad especial.

Sólo un genio como Atiyah podría ser capaz de presentar un abstract basado en estas tres piezas maestras de tres maestros y decirnos que así ha probado de manera sencilla la hipótesis de Riemann. Sin embargo, tras una muestra de erudición matemática y física (implicando incluso a la famosa constante de estructura fina de Arnold Sommerfeld), nos hemos quedado con la miel en los labios. Atiyah usa la función de Todd (llamada sí en honor de su antiguo profesor John Arthur Todd) para obtener una contradicción, pero las dudas surgen. Por una parte, hay cuestiones técnicas sobre las funciones implicadas, y por otra, da la impresión de ser un argumento circular. En cualquier caso, esta presentación ha servido para remover el interés sobre las matemáticas y esta extraordinaria conjetura, uno de los problemas del milenio. Sabremos más en los próximos días sobre la veracidad o no de la prueba de Atiyah.

 

 

 

¡¡Quásares!! Extraños objetos de inusitado brillo y energía

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

File:Artist's rendering ULAS J1120+0641.jpg

 

           Una composición artísdtica del quásar  brillante descubierto hasta el momento: ULAS J1120+064.

Los quásares son galaxias distantes muy luminosas, alimentadas por un agujero negrosupermasivo en su centro. Su brillo los convierte en poderosos faros que pueden ayudar a investigar la época en que se formaron las primeras estrellas y galaxias.Son útilespara ir comprendiendo cómo se formó el universo al revelar el estado de ionización del medio intergaláctico que tuvo lugar unos mil millones de años después del Big Bang. Parece que ULAS J1120+064 es es quásar más distante descubierto hasta el momento. Situado a más de doce mil millones de años-luz de nuestra Galaxia, está cerca de los limites del universo visible. La masa del agujero negro situado en el centro de ULAS J1120+0641 equivale a dos mil millones de veces la masa del Sol.

Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres. Los quasáres son objetos distantes de gran energía. El quasar de arriba a la izquierda está a 1.4 mil millones de años luz de la Tierra. La imagen a la derecha muestra un quasar que puede ser el resultado del choque de dos galaxias viajando a 1 millón de millas por hora. Esta galaxia está a 3 mil millones de años luz de distancia. En la foto del centro un quasar se une con una galaxia.
STScI.

Los quásares han sido identificados históricamente en estudios ópticos, insensibles a fuentes de desplazamiento al rojo más allá de 6,5. Con el estudio de ULAS J1120+0641 se ha podido compronbar que tiene un acercamiento de 7,085, lo que significa 770 millones de años después del origen del universo. El quásar más cercano a este punto observado hasta el momento tenía un desplazamiento de 6,44 (100 millones de años más joven que este). Estudiar la distancia entre los dos “faros” servirá para arrojar algo de luz a una época de la que los científicos no tienen mucha información. Para la ciencia no es fácil poder explicar cómo, en una fase tan temprana del universo, se pudo crear un objeto con una masa tan inmensa que derriba las actuales teorías sobre el crecimiento de los agujeros negrossupermasivos que predicen un crecimiento lento a medida que “el monstruo” atrae materia hacia sí desde la región circundante.

La imagen  de arriba es otra representación artística de un Quásar, las auténticas los las seis fotografías  que más arriba podéis ver y que representan -al menos eso es lo que parece- una apariencia estelar, muy similar a una estrella común tomada en la lejanía. Sin embargo el análisis detallado y profundo nos delatan algunas peculiaridades que rodean a esta clase de objetos y que los define en su singularidadpropia que los hace muy diferents a las estrellas comunes al tener estructuras muy complejas. El descubrimiento de los quásares se debió a que son intensos emisores de radio ondas y también fuentes de rayos X, radiación ultravioleta, luz visible e infrarroja, es decir, la emisión de los cuásares recorre todo el espectro electromagnético.

File:3C273 Chandra.jpg

                        Imagen de 3C273 recogida por el telescopio espacial Chandra

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los cálculos lo ubicaron a unos 2.000 millones de años-luz. Posteriormente, se comprobó que elcorrimiento al rojo de todos los quásares es mayor que el de las galaxias conocidas; por lo tanto, se encuentran más distantes que cualquiera de ellas. Esta evidencia confirmaría que se trata de los objetos más lejanos del universo conocido.

Así, las luces brillantes de los cielos que parecían estrellas, pero que eran demasiado luminosas para serlo, comenzaron a ser conocidas como objetos casi-estrellas o, resumiento, quasares. La extraordinaria luminosidad de los quasares era sólo una de entre sus poco frecuentes propiedades. Todavía era más extraño el hecho de que esa enorme efusión de energía parecía proceder de una región del espacio notablemente pequeña, más pequeña, de hecho, que nuestro Sistema solar.

Comparando las dos imágenes, aunque sean tan distitas y representan realidades tan opuestas, lo cierto es que uno se hace una idea de lo inmensamente rica que es la diversidad del Universo con todas las formas y objetos que contiene. Un simple paisaje de nuestro planeta y un quásar lejano y, sin embargo, todo lo que está presente en ambos lugares está hecho de la misma cosa, Quarks y Leptones que se conforman de manera distinta para dar resultados diferentes y diferentes propiedades que han partido de una fuente común.

Resultado de imagen de Estas fotos del Telescopio Espacial Hubble muestra diversos quasáres

Lo asombroso de los quásares está en una pregunta  que se hacen todos los astrónomos: ¿Cómo puede un objeto tan “pequeño” como un sistema solar producir la energía de cientos de miles de millones de estrellas? Y, sin embargo, el espacio que ocupan no tiene lugar para contener tántas estrellas como serían necesarias para emitir esa enorme energía. Lo cierto es que no se sabe si existe alguna fuerza desconocida para  la ciencia que pueda generar la energía de los quásares. Una fuerza incluso más poderosa que la nuclear que es la que genera la energía que irradian las estrellas.

El misterio fue desvelado a base de observaciones y cálculos y más comprobaciones: Los quásares eran, en realidad, enormes agujeros negros situados en el centro de las galaxias más lejanas del Universo que, habían tenido el tiempo suficiente para hacerse tan inmensamente grandes que, dominaban la galaxia que los contenían y eran una gran parte de ella. Otros postulan que son galaxias jovenes que tienen un agujero negro central. Lo cierto es que, saber, lo que se dice saber lo que son los quásares, nadie lo sabe con exactitud milimétrica y todos son aproximaciones y conjeturas más o menos acertadas como otros muchos misterios que rodean las cosas del Universo que no hemos llegado a comprender.

Arriba podemos contemplar la simulación por ordenador de Joshua Barnes de la Universidad de Hawai. Abajo la escenificación artística del corazón de un quásar, un agujero negro masivo que absorbe una estrella en un vórtice de gas. Los astrónomos e Hawai creen que el Quásar brilla debido a que una galaxia gigante con un agujero negro colisiona con otra galaxia rica en gas que alimenta al agujero negroSegún todos los síntomas y datos que podemos poner sobre la mesa de estudio, la conclusión que podría ser la más acertada nos lleva a pensar que, los quásares, son inmensos agujeros negros alojados en los núcleos de grandes galaxias ricas en gas y numerosas estrellas que rodean al masivo objeto que, de manera gradual va describiendo una espiral de materia que atrae hasta él. A medida que cada estrella se acerca lo suficiente al agujero negro, su cuerpo gaseoso se desprende…

… debido a la fuerza de gravedad que genera el agujero negro y que es totalmente irresistible para la estrella que, inevitablemente, se espaguetiza y cae en las fauces del monstruo para engrosar su increíble y densa masa que lo hace más y más poderoso a medida que engulle materia de todo tipo que por las cercanias pueda pasar.

Los átomos de materia gaseosa situados en el interior de la estrella que, literalmente se desintegra, tomando gran velocidad por la fuerza de atracción que sobre ella ejerce el agujero negro, se mueve cada vez más rápidamente, como deseosa de llegar a su fatal destino. Cuando los átomos se aproximan a los límites del agujero negro, chocan unos con otros. Estas colisiones elevan la temperatura del gas, y este gas caliente irradia energía al espacio. Esta energía es la que detectan nuestros ingenios cuando estamos observando a un quásar lejano.

Nuestro Universo nos puede mostrar maravillas y cosas tan extrañas que durante muchos años no llegamos a comprender. El intenso estudio y las repetidas observaciones que en los distintos lugares del mundo se llevan a cabo sobre estos exóticos objetos, poco a poco, van generando datos que, unidos, nos llevan hacia la comprensión de lo que allí sucede, de cómo se pudieron generar algunos de estos extraños cuerpos masivos, o, pongamos por caso, cuál es el origen de las beiznas luminosas de gas plasmático que podemos contemplar en el remanente de una explosión supernova. La materia, amigos míos, puede adoptar tan extrañas y exóticas formas que, algunas, nos resultan desconcoidas y misteriosas.

La teoría prevé que el diámetro de un agujero negro es proporcional a la cantidad de materia que hay en su interior. De esta manera, cada vez que un agujero negro se encuentra con otro y lo absorbe, el agujero negro resultante es mucho mayor. Al ser mucho más grande, ese mismo agujero negro tiene más posibilidad de chocar con otros objetos al atraerlos gravitacionalmente y, los engulle para hacerce más y más grande. A partir de cierto momento, la capacidad de ese agujero negro de seguir absorbiendo más y más masa, se hace imparable y entra en un proceso sin fin en el que, cuanto mayor sea el agujero negro, más probabilidades tendrá de seguir consumiendo la materia que -pobre de ella- pase por sus dominios gravitatorios. De estos agujeros negros gigantes, han sido detectados -al menos así lo parecen los efectos de radiación y otros muy específicos que han sido comprobados- una buena cantidad en diversas galaxias más o menos lejanas.

Cuando un agujero negro engulle a una estrella, al ginal del proceso, se emite una inmensa explosión de energía. Estas explosiones de energía que se siguen unas a otras a medida que las estrellas más cercanas al agujero negro son consumidas por él, alimentan la extraordinaria cantidad de energía del quásar. Así que, resulta que el quásar es una galaxia que tiene un agujero negro gigante en el centro.

La deslumbrante radiación del quásar se crea a partir de las estrellas que, una por una, van alimentando al agujero negro gigante. Cada vez que el agujero negro gigante captura una estrella, vemos como el quásar tiene un fulgor como cuando arrojamos otro leño al fuego -guardando las distancias-. Al principio,  el fuego resplandece con gran fulgor porque el agujero negro gigante tiene a su alcance un amplio suministro de estrellas disponibles para alimentar su insaciable voracidad.

Hemos podido llegar tan lejos gracias a que la Ciencia de la Astronomía y la Astrofísica no ha dejado de avanzar desde aquellos rudimentarios datos observacionales de los sumerios, y babilonios, o, los chinos los griegos y los árabes hasta llegar a Galileo y Kepler, Tycho Brahe y tantos otros que, enamorados de las maravillas del Universo, entregaron sus vidas al estudio de la Naturaleza del espacio infinito.

Así, hemos podido llegar a saber que, pasando el tiempo, muchas estrellas de la zona interior de las galaxias han ido desapareciendo al ser engullidas por esos monstruosos gigantes que llaamamos agujeros negros. Después de un intervalo de tiempo relativamente corto, quizá de unos cientos de millones de años, quedan ya muy pocas estrellas. Al quedar sin fuente de energía, el quásar se va oscureciendo y allí, donde antes resplandecía un fulgurante quásar, sólo queda ahora una galaxia de apariencia normal que, eso sí, en su interior aloja a un monstruo que está al acecho de lo que por allí pueda pasar para devorarlo.

Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273 como el objeto más alejado entre todas las galaxias conocidas en ese entonces: los …

Se conocen más de 200.000 cuásares. Todos los espectros observados tienen un corrimiento al rojo considerable, que va desde 0,06 hasta el máximo de 6,4. Por tanto, todos los quasares se sitúan a grandes distancias de la Tierra, el más cercano a 240 Mpc  (780 millones de años luz) y el más lejano a 6 Gpc  (13.000 millones de años luz). La mayoría de los quasares se sitúan a más de 1 Gpc de distancia; como la luz debe tardar un tiempo muy largo en recorrer toda la distancia, los cuasares son observados cuando existieron hace mucho tiempo, y el universo como era en su pasado distante.

Cuando profundizamos en las maravillas que el Universo contiene, cuando llegamos a comprender el por qué de los sucesos que podemos observar en el espacio profundo, cuando el estudio y la obervación ilumina nuestras mentes y el inmenso resplandor del saber nos inunda, entonces, y sólo entonces, llegamos a comprender la materia, la energía, los objetos estelares y cosmológicos que pueblan el Cosmos, todo ello, se rige por una serie de normas que son inalterables: Las cuatro fuerzas fundamentales y las constantes universales que, no sólo hacen posible la existencia de Quásares lejanos alentados por la presencia de agujeros negros gigantes, sino que también, esas mismas leyes y normas, hacen posible la existencia de las estrellas y los mundos y, en ellos, de la vida y de la inteligencia que todo lo vigila y de todo quiere saber.

Claro que, esa inteligencia a la que me refiero podría estar plasmada de muchas formas e incluso, algunas, aíun teniéndolas junto a nosotros ni la podríamos ver. La vida en el Universo, aunque la única que conocemos es la que está presente en el planeta Tierra, de cuya diversidad nos asombramos cada día -sólo tenemos que recordar que de las formas de vida que han estado presente en nuestro planeta, simplemente el uno por ciento pervive y está presente en estos momentos, el resto se entinguió por uno u otro motivo-, y, si la diversidad es tan grande en un redudico espacio como la Tierra… ¿Qué no habrá por ahí fuera?

emilio  silvera

La Historia de la estrella que nos alumbra

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

NACIMIENTO, VIDA Y MUERTE DEL SOL

 

Antes de dar comienzo a la charla sobre el tema propuesto hoy,  os quiero decir que estamos rodeados de cosas maravillosas en las que, inmersos en nuestros problemas cotidianos, no prestamos atención.

Viajamos en una “nave espacial” llamada Tierra que se mueve y gira sobre sí misma a 1.700 Km/h., viajando alrededor del Sol a 107.000 Km/h., no sentimos ningún movimiento debido a que estas velocidades son constantes, ni se aceleran ni desaceleran.

Todo en nuestro Universo nace con tiempo determinado de vida que, que de no ocurrir algún percance inesperado, se cumplirá:

Una mosca vive entre 2 y 4 semanas, un elefante 60 años, una tortuga galápago más de 150 años, nosotros sobre los 80 años, y, una estrella (dependiendo de su masa puede vivir millones o miles de millones de años.

Ya lo dijo Einstein, el Tiempo es relativo y no pasa de la misma manera para todos. Una hora no será medida de la misma manera para quién la pase junto a la persona amada al que ese espacio de tiempo le parecerá efímero, y, el enfermo aquejado de dolores en la cama de un Hospital que medirá la misma hora como si fuera eterna.

Nosotros, aunque nunca hemos sabido explicar lo que es el Tiempo, sí que hemos sabido dotarlo de espacios que, en nuestras Sociedades, nos han servido para calcular momentos determinados durante el día y la noche, hora de levantarse, ir al trabajo, comer, ver la tele o hacer las tareas, dormir…

Sobre todo, hemos querido clasificarlo según para qué, y, lo hemos dividido en tres grupos:

PASADO: (El Tiempo que se fue, lo que ya no está, lo que tenemos que rememorar y fijarnos en los aciertos para repetirlos y mejorarlos y en los fracasos para no volver a caer de nuevo en ellos).

PRESENTE: (Que está cargado de ese pasado que fue), es el Tiempo en el que estamos viviendo y, su nombre lo dice, es como un regalo que debemos disfrutar mientras podamos, y, desde luego, sacar de él todo el fruto posible dentro de los límites que marcan las Normas sociales. Lo que no hagamos durante el presente… ¡Nunca podremos hacerlo!

       El Tiempo que se va y no regresa

FUTURO: Hablamos mucho de él sabiendo que nunca podremos estar allí. El futuro es lo que aún no ha pasado, lo que está por venir, lo incierto. Como no tenemos ningún elemento de juicio para decir como será, lo que hacemos es conjeturar y teorizar sobre lo que podría ser.

        Lo que podría ser y que nunca podremos saber si esas escenas serán realidad “mañana”

Es curioso que durante toda la vida estemos hablando del pasado y del futuro, en uno ya estuvimos y sólo lo podemos recordar, el otro nunca será nuestro. Lo que nosotros llamamos nuestro futuro en realidad, será el Tiempo de otros que detrás de nosotros llegarán pero, para ellos… ¡También será presente!

Estamos condenados a vivir en un Eterno presente. Bueno, se me vino a la mente el Tiempo al estar pensando que, hace ahora 4.600 millones de años que nació el Sol en una Nebulosa molecular gigante.

 

 

 

En una nebulosa como la que arriba podemos contemplar, se formó un disco protoplanetario del que nació el Sol y los planetas, igual que otras muchas estrellas se condensan a partir de ingentes cantidades de material de éstas nebulosas y, con ayuda de la fuerza de Gravedad se condensan inmensos grumos y, en el núcleo llegan a fusionarse los átomos de Hidrógeno formándose la estrella que, a partir de ahí entran en la Secuencia Principal en la que, durante miles de millones de años estarán fusionando elementos sencillos en otros más complejos.

 

 

La explicación más aceptada para la formación del Sistema solar es la hipótesis nebular. Según ella, el Sol y los planetas y todos los objetos del Sistema solar se formaron a partir del material nebulosa hace ahora miles de millones de años.

La conjetura que en su momento fue planteada para la formación del sistema solar, es ahora aceptada como pauta general para la formación de estrellas y planetas por todo el Universo.

El Sol está conformado por Hidrógeno y Helio y tiene trazas de Carbono, Oxígeno, Nitrógeno, Neón… Hierro. El 99,86% de toda la masa del Sistema solar la tiene el Sol.

La Tierra, el planeta que nos acoge, está situado a una distancia de 150.000.000 de kilómetros del Sol, en lo que se llama zona habitable.

Dicha distancia hace posible que, la superficie del planeta no esté ni achicharrada ni congelada y, el agua pueda correr líquida para hacer posible la presencia de la Vida.

 

 

Así que el Sol es la estrella más cercana a nuestro planeta, y, la más próxima a ella es un conjunto llamado Alpha Centauri que está situado a 4.37 años luz de distancia del Sol. Es decir, unos 42 billones de kilómetros.

 

Un año luz está referido a la distancia recorrida por la luz en el vacío del espacio en un año y marcaría la distancia de 9.460.730.472.580.8 Km.

 

 

 

Para viajar al sistema de Alpha Centauri con la tecnología actual, tardaríamos unos 30.000 años. Precisamente eso es lo que hace imposible (de momento) los viajes espaciales a otros mundos).

Nuestro Sol, la estrella que alumbra al planeta Tierra, lleva 4.500 millones de años fusionando Hidrógeno en Helio a razón de 4.654.600 toneladas de Hidrógeno en 4.650.000 toneladas de Helio, y, las 4.600 toneladas perdidas en el proceso, son enviadas al espacio en forma de luz y calor, de lo que, una pequeña fracción, llega a la Tierra para hacer posible el sustento de casi todas las formas de vida que conocemos a través de la fotosíntesis y determina el clima de la Tierra y su meteorología.

La luz del Sol nos llega al planeta en 8 minutos y 20 segundos. Determina el día y la noche al unísono con la rotación del planeta.

En la Tierra, la energía radiada por el Sol es aprovechada por los seres fotosintéticos que constituyen la base de la cadena trófica, siendo la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos.

 

 

 

Como decíamos antes, el Sol supone el 99,86 por ciento de toda la masa del Sistema solar. Aunque sea una estrella enana amarilla de las que, sólo en nuestra Galaxia, la Vía Láctea existen miles de millones como ella, para nosotros, y todos los habitantes del planeta, es la estrella más importante, la que nos suministra la energía y permite que la vida tenga sus hábitats proliferando por los más dispares lugares que imaginarnos podamos.

 

 

El Sol lleva brillando en la secuencia Principal 4.500 Millones de años, y, todavía le quedan 5.000 millones de años hasta que agote su combustible nuclear de fusión. Cuando llegue ese momento, la estrella sufre una serie de procesos que la llevan a convertirse en una Gigante roja que, en el caso del Sol llegará a tener un radio de unos 100 millones de kilómetros, es decir, aumentará hasta engullir a Mercurio y Venus y seguramente la Tierra. Cuando eso suceda, las temperaturas subirán tanto que, los mares y océanos de la Tierra se evaporarán y, la vida, tal como la conocemos dejará de existir en nuestro planeta.

 

El tamaño actual del Sol en comparación con su tamaño máximo (estimado) durante la fase de Gigante roja dentro de unos 5.000 millones de años.

Las capas externas de las gigantes rojas están poco ligadas gravitacionalmente por lo que, expulsa masa para formar (después de un largo tiempo), una Nebulosa planetaria.

 

Así, las capas externas de la gigante roja son eyectadas al Espacio Interestelar para formar una Nebulosa Planetaria que es una nebulosa de emisión consistente en una envoltura brillante en expansión de plasma y gas ionizado, que, como decimos, ha sido expulsado de la fase de rama asintótica gigante que atraviesan las estrellas gigantes rojas al final de sus vidas. Estas Nebulosas tienen forma de anillo o burbujas y, en su centro, aparecerá un puntito blanco que no es otra cosa que, el resto de la masa de la estrella que, una vez liberada de la fusión nuclear que la hacía expandirse, queda a merced de la Gravedad que la contrae, es decir, la condensa más y más, hasta tal punto que alcanzan los 10 ⁶ g/cm³, varias toneladas por centímetro cúbico.

 

 

“A estas densidades entran en juego el principio de indeterminación de Heisenberg y el principio de exclusión de Pauli para los electrones, los cuales se ven obligados a moverse a muy altas velocidades, generando la llamada presión de degeneración electrónica, que es la que efectivamente se opone al colapso de la estrella. Esta presión de degeneración electrónica es un fenómeno radicalmente diferente de la presión térmica, que es la que generalmente mantiene a las «estrellas normales». Las densidades mencionadas son tan enormes que una masa similar a la del Sol cabría en un volumen como el de la Tierra (lo que daría una densidad aproximada de 2 t/cm3), y solamente son superadas por las densidades de las estrellas de neutrones y de los agujeros negros. Las enanas blancas emiten solamente energía térmica almacenada, y por ello tienen luminosidades muy débiles.”

Las estrellas enanas blancas están formadas principalmente de Carbono y Helio viven largo tiempo mientras se enfrían para convertirse en enanas negras.

emilio silvera