sábado, 05 de diciembre del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El colapso del núcleo de las estrellas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Higgs-Kibble

Higgs-Kibble II

Resultado de imagen de Superconductores

Lo único que no resulta ser lo mismo cuando se mira a través del microscópico electrónico (o, en la jerga de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través del microscopìo y, por lo tanto, la masa de la partícula parece ser menor. Nótese que esta situación es la opuesta a la que se presenta en vida corriente donde un grano de arena parece mayor -¿más pesado, por lo tanto?- cuando se observa con un microscopio.

Granos de arena bajo el microscopio por Gary Greenberg

                                                    Granos de arena vistos al microscópico electrónico

Una consecuencia de todo esto es que en una teoría de Yang-Mills el termino de masa parece desaparecer se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se observar directamente el potencial vector de Yang-Mills? Parece que puede observa4rse en el mundo de las cosas grandes, no en el mundo de lo pequeño. Esto es una contradicción y es una raz´`on por la que ese esquema nunca ha podido funcionar adecuadamente.

    En el mundo cuántico se pueden contemplar cosas más extrañas

 

Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.

 

  

 

 

 

 

 

 

Hay pruebas de que laspartículas alfa producidas por sustancias radiactivas en el suelo constituyen el origen del helio en los pozos de gas natural. Si la partícula alfa es helio, su masa debe ser cuatro veces mayor que la del hidrógeno. Ello significa que la carga positiva de éste último equivale a dos unidades, tomando como unidad la carga del hidrogenión.

 Hacia 1.900 se sabía que el átomo no era una partícula simple e indivisible, como predijo Demócrito, pues contenía, al menos, un corpúsculo subatómico: el electrón, cuyo descubridor fue J. J. Thomson, el cual supuso que los electronesse arracimaban como uvas en el cuerpo principal del átomo de carga positiva que era el núcleo descubierto por Rutherford.

Poco tiempo después resultó evidente que existían otras subpartículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas. Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó rayos alfa, y denominó rayos beta a la emisión de electrones.

Pero el trabajo de hoy se titula: El colapso del núcleo de las estrellas

En la imagen podemos contemplar  lo que se clasifica NGC 3603,  es un cúmulo abierto de estrellas en una vasta zona estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 años-luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.

NGC 3603 alberga miles de estrellas de todo tipo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas  supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.

Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de la otra una vez cada 3,77 días, era la estrella más masiva conocida en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Hay que decir que la máxima máxima de las estrellas está calculada en 120 masas solares, ya que, a partir de ahí, su propia radiación las destruiría.

http://2.bp.blogspot.com/-fWPPIW7k_fo/T0pqRfSgyHI/AAAAAAAAH4k/hXIelt94QAg/s1600/sn1987a_hst.jpg

En el centro de la imagen podemos contemplar ese “collar de diamantes” que es el resultado evolucionado de aquella tremenda explosión estelar contemplada en 1987, cuando una estrella supermasiva, habiendo agotado todo su combustible nuclear de fusión, se contrae sobre sí misma al quedar sin defensa, en “manos” de la Gravedad que ya no se ve frenada por la inercia explosiva de la fusión que tendía a expandir la estrella.

Imagen relacionadaResultado de imagen de Una estrella supermasiva llega al final de su vida y eyecta las capas exteriores al espacio

Las capas exteriores son eyectadas al Espacio Interestelar con violencia para formar una nebulosa, mientras el grueso de la masa de la estrella se contrae más y más para formar una estrella de neutrones o un agujero negro dependiendo de su masa.

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios.  Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.

Las observaciones de SN 1987A, hechas en los últimos 20 años por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.

Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Arriba podemos contemplar observaciones realizadas en distintas fechas que nos muestran la evolución de los anillos de SN 1987 A. ¿Qué pudo causar los extraños anillos de esta Supernova.Hace 28 años se observó en la Gran Nube de Magallanes la supernova más brillante de la historia contemporánea.

Der Emissionsnebel NGC 3603 aufgenommen vom Hubble-Weltraumteleskop (Echtfarben). Sher 25 ist der helle Stern links oberhalb des Sternenhaufens

El clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20,000 . ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A.

Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.

 Agotado su combustible nuclear de fusión, la Gravedad comienza a comprimir a la estrella masiva que eyecta sus capas exteriores al Espacio interestelar, el resto de su masa, se densifica más y más hasta que, el principio de Exlusión de Pauli hace que los Fermiones se degeneren y pueda frenar, con su movimiento frenético, a la Gravedad. De todas las maneras, si se trata de una estrella muy masiva, ni eso la puede frenar y el final es: ¡Un Agujero Negro!

 

Así que, si una estrella llega al final de sus días, el núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutronesconstituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene (a veces) con la presión de degeneración del gas de neutrones (Principio de exclusión de Pauli) compensa el empuje  hacia adentro de la Gravedad. El proceso completo hasta que todo ese ingente material se transmuta en la estrella de neutrones dura muy poco tiempo, es un proceso vertiginoso.

                    Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.

Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.

Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.

Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes ahora acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.

 El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.

La densidad de estas estrellas es increiblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra. Los púlsaresfueron descubiertos en 1970 y hasta hoy sólo se conece unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nustros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).

Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)

 Por ahora se conoce que de cada diez supernovas una se convierte en magnetar,  si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.

Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.

Las estrellas mueren cuando dejan la secuenbcia principal, es decir, cuando no tienen material de fusión y quedan a merced de la fuerza de gravedad que hace comprimirse a la estrella más y más, en algunos casos, cuando son supermasivas, llegan a desaparecer de nuestra vista, y, su único destino es convertirse en temibles Agujeros Negros.

La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.

                                   El remanente estelar después de la explosiòn puede ser muy variado

Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!

foto

 ¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

Hadrones: Bariones y Mesones y sus componentes

Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.

emilio silvera

El Universo y… ¿Nosotros?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

"Planeta Tierra"

La Tierra es el único planeta del sistema solar que alberga vida (hasta donde podemos saber). Desde el espacio se ve azul y verde con un poco de brillo: el azul es agua, el verde los bosques con su clorofila y el brillo proviene de la luz reflejada  por la atmósfera que la rodea. La existencia de vida en la Tierra depende de factores físico-químicos que a su vez son el resultado de la distancia de la Tierra al Sol y su tamaño, el cual determina su masa.

"Sistema Solar"

                                             La distancia que nos separa del Sol

Nuestro planeta no está ni lejos ni cerca del sol. Eso hace que la temperatura media del planeta sea de 15º C, eso hace que podamos encontrar agua en estado líquido. El agua es imprescindible para la vida, en ella se realizan la totalidad de las reacciones químicas de nuestro metabolismo. Es tan importante que su falta ocasiona la muerte o falta de vida.

La influencia del tamaño

Resultado de imagen de El Ozono que nos protege

Si la Tierra fuera más pequeña, su masa no podría atraer por gravedad a su atmósfera protectora y además sería tan espesa y densa que no dejaría pasar la luz del sol. La atmósfera deja pasar la luz visible, con la que se realizan los procesos vitales para los vegetales y sin embargo atrapa las radiaciones de alta energía por su composición rica en un isótopo del oxígeno (el ozono). La atmósfera es rica en oxígeno, lo cual facilita el proceso vital de la respiración (común a todos los seres vivos animales y vegetales).

El Origen de la Vida

Resultado de imagen de El origen de la Vida

Para explicar el origen de la vida, se suele aceptar la teoría de la sopa primitiva. Esta teoría describe como la vida se debió originar en los océanos, donde se dieron las condiciones adecuadas para que aparecieran moléculas sencillas en el agua y éstas se unieran formando compuestos más complejos en una especie de sopa o caldo. Estas moléculas entre las cuales estaban: proteínas, ácidos, azúcares, sales, grasas… se fueron más tarde uniendo en estructuras que fueron ensayos de lo que más tarde darían las células. Estos ensayos como esferas llenas de moléculas se llamaron coacervados. El autor de esta teoría fue Oparin pero muchos años más tarde ha sido comprobada en el laboratorio por otros científicos como Miller, Urey y Juan Oró.

Resultado de imagen de El origen de la Vida

Pero nos seguimos preguntando: ¿De donde surgió la vida? ¿Qué circunstancias se dieron para que hacerla posible? ¿Es la materia verdaderamente inerte?. Creo que todas las cosas están en camino hacia alguna parte.

Ante estas complejas cuestiones, el hecho mismo de que estemos aquí para plantearlas, como seres racionales y pensantes, es un auténtico milagro, ya que significa que deben haber ocurrido, necesariamente, complejas secuencias de sucesos para que a partir de la materia “inerte”, la mezcla de materiales complejos en condiciones excepcionales, hiciera surgir la vida.

Reparando en estas coincidencias cósmicas, el físico Freeman Dyson escribió en cierta ocasión:

Cuando miramos en el universo e identificamos los muchos accidentes de la física y la astronomía que han colaborado en nuestro beneficio, casi parece que el universo debe haber sabido, en cierto sentido, que nosotros íbamos a venir“.

 

 

Imagen relacionada

 

 

Particularmente, creo que la vida llegó a este planeta por una serie de circunstancias muy especiales: tamaño, temperatura y distancia al Sol (idónea para no morir congelados o asados por una temperatura extrema), su atmósfera primitiva, las chimeneas marinas, la mezcla de elementos, y su transformación evolutiva, el oxígeno, la capa de ozono, los mares y océanos ¡el agua!, etc, etc.

Dada la inmensidad de nuestro universo, nuestro mismo caso (un sistema solar con planetas entre los que destaca uno que contiene vida inteligente), se habrá dado en otros muchos mundos similares o parecidos al nuestro, tanto en nuestra misma galaxia, la Vía Láctea, como en otras más lejanas. Me parece una estupidez que se pueda pensar que estamos solos en el universo; la lógica nos dice todo lo contrario.

Próxima b se encuentra dentro de la «zona habitable» de su estrella

                                        Proxima b se encuentra en la zona habitable

Este mundo rocoso orbita alrededor de la estrella vecina Próxima Centauri, a solo cuatro años luz. Los investigadores creen que puede albergar agua en su superficie y, quizás, ser apto para la vida

Nuestro Sol, gracias al cual podemos existir, es una de las cien mil millones de estrellas que contiene nuestra galaxia. Existen miles de millones de sistemas solares compuestos por estrellas y planetas como los nuestros. ¿En verdad se puede pensar que somos los únicos seres vivos inteligentes de la galaxia?

                          Planetas inimaginables ¿que formas de vida acogerán?

La pregunta que se plantea encima de la imagen de arriba tiene una fácil contestación: SÍ, hay otras formas de vida en el Universo, en planetas parecidos o iguales que la Tierra. Si no fuese así, la lógica y la estadística dejarían de tener sentido.

Un problema básico de esta ciencia, es la cantidad de datos disponibles, de sujetos de estudio. No conocemos más vida que la existente en la Tierra y ésta nos sirve de referencia para cualquier paso en la búsqueda de otras posibilidades. La astrobiología trata por ello de analizar la vida más primitiva que conocemos en nuestro planeta así como su comportamiento en los ambientes más extremos que encontremos para estudiar los límites de su supervivencia y adaptabilidad. Por otro lado, busca y analiza las condiciones necesarias para la aparición de entornos favorables a la vida, o habitables, en el Universo  mediante la aplicación de métodos astrofísicos y de astronomía planetaria. Naturalmente, si identificáramos sitios en nuestro sistema solar con condiciones de habitabilidad sería crucial la búsqueda de marcadores biológicos que nos indiquen la posible existencia de vida presente o pasada más allá de la distribución de la vida en el Universo o, en caso negativo, acotaríamos aún más los límites de la vida en él.

Marte es uno de los planetas con más posibilidades de haber albergado vida. (Efe)

El planeta Marte nos ha brindado imágenes que nos llevan a pensar que allí, en el pasado, se daban las condiciones para albergar la vida. El problema radica en que es difícil coincidir en el tiempo y en las enormes distancias que nos pueden separar de esos otros lugares que han tenido, tienen o tendrán vida.

El tiempo y el espacio nacieron juntos cuando surgió el universo en el Big Bang, llevan creciendo unos 13.500-18.000 millones de años y, tanto el uno como el otro, son enormes, descomunalmente grandes para que nuestras mentes lo asimilen de forma real.

Resultado de imagen de El Sistema Alfa Centauri

La estrella más cercana a nosotros, Alfa Centauri, está situada a una distancia de 4’3 años luz. El año luz es la distancia que recorre la luz, o cualquier otra radiación electromagnética, en un año trópico a través del espacio. Un año luz es igual a 9’4607×1012 Km, ó 63.240 unidades astronómicas, ó 0’3066 parsecs.

La luz viaja por el espacio a razón de 299.792.458 m/s, una Unidad Astronómica es igual a 150 millones de Km (la distancia que nos separa del Sol). El pársec es una unidad galáctica de distancias estelares, y es igual a 3’2616 años luz o 206.265 unidades astronómicas. Existen para las escalas galácticas o intergalácticas, otras medidas como el kiloparsec (Kpc) y el megaparsec (Mpc).

Dibujo del nuevo sistema planetario descubierto por el telescopio  Kepler .

              Kepler ha descubiertos nuevos sistemas planetarios

Nos podríamos entretener para hallar la distancia que nos separa de un sistema solar con posibilidad de albergar vida y situado a 118 años luz de nosotros. ¿Cuándo llegaríamos allí?

Nuestros ingenios espaciales que enviamos a las lunas y planetas vecinos, viajan por el espacio exterior a 50.000 Km/h. Es una auténtica frustración el pensar lo que tardarían en llegar a la estrella cercana Alfa Centauro a más de 4 años luz.

Desde el observatorio La Silla y gracias al High Accuracy Radial Velocity Planet Searcher (HARPS) un grupo de científicos descubrió un planeta similar a la Tierra con características que permitirían que sobre él existiera vida. Denominado HD85512b, gira alrededor de una enana naranja en la constelación de Vela. Lo malo del caso es que está situado a 36 años luz de nosotros. ¿Cómo llegar hasta allí y cuánto podríamos tardar con nuestra tecnología actual?

Así que la distancia es la primera barrera infranqueable (al menos de momento). La segunda, no de menor envergadura, es la coincidencia en el tiempo. Es decir, que en el momento de llegar (imaginemos que es posible), el planeta halla podido desarrollar allí la vida inteligente. Se piensa que una especie tiene un tiempo limitado de existencia antes de que, por una u otra razón, desaparezca. Algunos lo datan en 1.000 millones de años, aunque todo es relativo y dependerá de la capacidad intelectual de la especie para conocer los secretos de la vida que la haga perdurable en el Tiempo.

Si comparamos el Tiempo que llevamos los humanos en el planeta y lo comparamos con el Tiempo del Universo, nuestra estancia aquí supondría menos de un parpadeo, y, a pesar de ello, creemos que sabemos… ¡Ilusos!

Así que, si pensamos en el tiempo estelar o cósmico, llevamos aquí una mínima fracción de tiempo. Dadas las enormes escalas de tiempo y de espacio, es verdaderamente difícil coincidir con otras civilizaciones que, probablemente, existieron antes de aparecer nosotros o vendrán después de que estemos extinguidos. Por otra parte, el desplazarse por esas distancias galácticas de cientos de miles de millones de kilómetros, no parece nada fácil, si tenemos en cuenta la enorme barrera que nos pone la velocidad de la luz. Esta velocidad, según demuestra la relatividad especial de Albert Einstein, no se puede superar en nuestro universo.

Resultado de imagen de Universos paralelosImagen relacionada

Tendremos que idear otras maneras de viajar por el Espacio para poder visitar lugares muy lejanos sin que el viaje pueda durar lo que muchas generaciones. Se habla del Hiperespacio y de Agujeros de Gusano.

Con este negro panorama por delante habrá que esperar a que un día en el futuro, venga algún genio matemático y nos de la fórmula para burlar esta barrera de la velocidad de la luz, para hacer posible visitar otros mundos poblados por otros seres. Por ahora, el único panorama creíble (dadas nuestras limitaciones físicas), está en los robots que, sin lugar a ninguna duda, serán la avanzadilla de la Humanidad en los viajes espaciales y,  ellos serán los primeros en pisar otros mundos. De hecho, ahora mismo tenemos a Mars Phoenix investigando el suelo y la atmósfera de Marte y buscando vestigios de vida pasada o presente.

Resultado de imagen de Los robots del futuro sí visitarán otros mundosResultado de imagen de Extraterrestres que nos visitan

Claro que cabe la posibilidad de que finalmente construyamos Robots inteligentes de última generación que vayan por nosotros a otros mundos y, también cabe esperar que sean ellos (seres extraterrestres) los más adelantados, nos visiten a nosotros. Esta última posibilidad me gusata menos.

Por mi parte, preferiría que seamos nosotros los visitantes. Me acuerdo de Colón, de Pizarro o Hernán Cortes e incluso de los ingleses en sus viajes de colonización, y la verdad, lo traslado a seres extraños con altas tecnologías a su alcance y con el dominio de enormes energías visitando un planeta como el nuestro, y dicho pensamiento no me produce la más mínima gracia. Más bien es gélido escalofrío.

Resultado de imagen de Captando señales de otros mundosResultado de imagen de Captando señales de otros mundos

   Se han construido radiotelescopios de inmensa capacidad y tecnología para poder oir señales lejanas

Según todos los indicios que la ciencia tiene en su poder, no parece que por ahora y durante algún tiempo, tengamos la posibilidad de contactar con nadie de más allá de nuestro sistema solar. Por nuestra parte existe una imposibilidad de medios. No tenemos aún los conocimientos necesarios para fabricar la tecnología precisa que nos lleve a las estrellas lejanas a la búsqueda de otros mundos. En lo que se refiere a civilizaciones extraterrestres, si las hay actualmente, no deben estar muy cerca; nuestros aparatos no han detectado señales que dejarían las sociedades avanzadas mediante la emisión de ondas de radio y televisión y otras similares. También pudiera ser, no hay que descartar nada, que estén demasiado adelantados para nosotros y oculten su presencia mientras nos observan, o atrasados hasta el punto de no emitir señales.

Resultado de imagen de Seres de otros mundos más adelantados que nosotros

Cuando llegue ese día nos podemos sorprender de lo que podamos encontrar en otros mundos que, diferentes a la Tierra pueden haber podido desarrollar formas de vida distintas a las nuestras, aunque, de todas las maneras creo que, también estarán basadas en el Carbono, el material más idóneo para adaptarse a diversas formas de vida.

De cualquier manera, por nuestra parte, sólo podemos hacer una cosa: seguir investigando y profundizando en el conocimiento del universo para desvelar sus misterios y conseguir algún día (aún muy lejano), viajar a las estrellas, única manera de escapar del trágico e inevitable final de nuestra fuente de vida, el Sol. Dentro de unos 4.000 millones de años, como ya he dicho antes (páginas anteriores), el Sol se transformará en una estrella gigante roja cuya órbita irá más allá de Mercurio, Venus y seguramente la Tierra. Antes, la temperatura evaporará toda el agua del planeta Tierra, la vida no será posible. El Sol explotará como estrella nova y lanzará sus capas exteriores al espacio exterior para que su viejo material forme nuevas estrellas.  Después, desaparecida la fuerza de fusión nuclear, la enorme masa del Sol, quedara a merced de su propio peso y la gravedad que generará estrujará, literalmente, al Sol sobre su núcleo hasta convertirla en una estrella enana blanca de enorme densidad y minúsculo diámetro (en comparación con el original). Más tarde, la estrella se enfriará y pasará a engrosar la lista de cadáveres estelares.

Resultado de imagen de Una Humanidad avanzada que llegó a otros mundos

Para cuando ese momento este cercano, la humanidad, muy evolucionada y avanzada, estará colonizando otros mundos, tendrá complejos espaciales y ciudades flotando en el espacio exterior, como enormes naves-estaciones espaciales de considerables dimensiones que dará cobijo a millones de seres, con instalaciones de todo tipo que hará agradable y fácil la convivencia.

Modernas naves espaciales surcarán los espacios entre distintos sistemas solares y, como se ha escrito tantas veces, todo estará regido por una confederación de planetas en los que tomarán parte individuos de todas las civilizaciones que, para entonces, habrán contactado.

Imagen relacionada

      El cerebro evoluciona imparable

El avance en el conocimiento de las cosas está regida por la curiosidad y la necesidad. Debemos tener la confianza y la tolerancia, desechar los temores que traen la ignorancia, y, en definitiva, otorga una perspectiva muy distinta de ver las cosas y resolver los problemas. En tal situación, para entonces, la humanidad y las otras especie inteligentes tendrán instalado un sistema social estable, una manera de gobierno conjunto que tomará decisiones de forma colegiada por mayoría de sus miembros, y se vigilará aquellos mundos en desarrollo que, sin haber alcanzado el nivel necesario para engrosar en la Federación Interplanetaria de Mundos, serán candidatos futuros para ello, y la Federación vigilará por su seguridad y desarrollo en paz hasta que estén preparados.

Resultado de imagen de Las Naciones de la Tierra se miran con desconfianza las unas a las otras

El falso respeto que imponen las normas… No hay más

También sabemos que el desconocimiento, el torpe egoísmo de unos pocos y sobre todo la ignorancia, es la madre de la desconfianza y, como ocurre hoy en pleno siglo XXI, los pueblos se miran unos a otros con temor; nadie confía a en nadie y en ese estado de tensión (que es el caso que se produce hoy día), a la más mínima salta una guerra que, por razones de religión mal entendida o por intereses, siempre dará el mismo resultado: la muerte de muchos inocentes que, en definitiva, nada tuvieron que ver en el conflicto. Los culpables e inductores, todos estarán seguros en sus refugios mientras mueren sus hermanos.

Es irrefutable esta desgraciada realidad que, sin que lo podamos negar, nos convierte en bárbaros mucho más culpables que aquellos de Atila, que al menos tenían la excusa de su condición primitiva y salvaje guiada por el instituto de la conquista y defensa de sus propias vidas.

Imagen relacionada

 ¿Pero que excusa tenemos hoy? A los que tienen inmensos beneficios no se les cae la cara de verguenza

Enviamos sondas espaciales a las lunas de Júpiter y al planeta Marte para que investiguen sus atmósferas, busquen agua y nos envíen nítidas fotografías de cuerpos celestes situados a cientos de millones de kilómetros de la Tierra.

Se construyen sofisticadas naves que surcan los cielos y los océanos llevando a cientos de pasajeros confortablemente instalados que son transportados de una a la otra parte del mundo.

Podemos transmitir imágenes desde Australia que en segundos pueden ser vistas en directo por el resto del mundo.

Telescopio espacial Hubble

Tenemos en el espacio exterior telescopios como el Hubble, que nos envía constantemente al planeta Tierra imágenes de galaxias y sistemas solares situados a miles de millones de años luz de nosotros, y sin embargo, ¡¡medio mundo muere por el hambre, la miseria, la falta de agua y la enfermedad!!

¿Qué nos está pasando?

Aunque parezca que no tiene conexión alguna, la tiene y mucha, el conocimiento del Universo a través de la Astrofísica y la Astronomía, sin lugar a ninguna duda nos hará mejores, ya que, de ese conocimiento profundo nos vendrán otros relacionados que nos harán comprender también que, lo efímero de nuestras vidas, nos obliga, de alguna manera a ser mejores y que los errores cometidos son irreversibles y tal como marcha el tiempo (siempre adelante) no tenemos la oportunidad de reparar los daños.

Resultado de imagen de La Navaja de Occam

Existe un principio de la física denominado Navaja de Occam, que afirma que siempre deberíamos tomar el camino más sencillo posible e ignorar las alternativas más complicadas, especialmente si las alternativas no pueden medirse nunca.

Para seguir fielmente el consejo contenido en la navaja de Occam, primero hay que tener el conocimiento necesario para poder saber elegir el camino más sencillo, lo que en la realidad, no ocurre. Nos faltan los conocimientos necesarios para hacer las preguntas adecuadas. de Todas las maneras sería prudente racionalizar las inversiones de todo tipo, es decir, lo que nos gastamos en los grandes proyectos (necesarios para nuestro futuro), debe dejar un hueco para paliar el hambre de muchas criaturas en nuestro mundo, y, de esa manera no sentiremos sonrojo al ver algunas escenas.

Resultado de imagen de Alcanzar un mundo futuro mejor para todos

Busquemos un mundo mejor para todos y, también, otros planetas

Así que, siendo así las cosas el camino más aconsejable es el del conocimiento del mundo que nos rodea y del Universo que nos acoge, lo que nos lleva a tener la obligación de aprovechar el Año 2.017 para ser mejores y, sigamos aprendiendo del Universo de la Naturaleza que es siempre la que nos trae las nuevas ideas. Ella tiene todas las respuestas pero, primero de todo eso, seámos Humanos.

emilio silvera

Misterios del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Localizadas las misteriosas señales de fuera de la Galaxia
Localizado el origen de las misteriosas señales de radio de fuera de la Galaxia

Resultado de imagen de Estrella de neutrones descubierta a 3.000 años luz

 

Astrónomos de Estados Unidos afirman que estas emisiones de milisegundos pero de gran potencia provienen de una estrella de neutrones situada a 3.000 millones de años luz, fuera de nuestra Galaxia.

 

 

La antenas del Very Large Array (VLA), en EE UU.

                           La antenas del Very Large Array (VLA), en EE UU. Cordon Press

Un equipo de astrónomos ha conseguido localizar el origen de unas potentes señales de radio que llevan años intrigando a muchos expertos. Se trata de un fenómeno conocido como estallido rápido de radio (FRB en inglés), que libera en unas fracciones de segundo tanta energía como el Sol en varios días.

Resultado de imagen de el radiotelescopio Parkes, en Australia

     Radiotelescopio Parkes, en Australia

En 2007, David Narkevic, un estudiante de física y ciencias políticas en la Universidad de Virginia Occidental (EE UU), fue el primero en descubrir una de estas señales entre los datos recogidos seis años antes por el radiotelescopio Parkes, en Australia. Desde entonces se han detectado otros estallidos similares. Todos duran apenas milisegundos, por lo que ha sido muy difícil aclarar de dónde vienen y qué los produce. Esta incertidumbre ha dado lugar a todo tipo de teorías sobre su origen, desde algunas fundadas como que se trata de cataclismos como el colapso de estrellas de neutrones o la evaporación de agujeros negros, a otras menos probables, como que sean mensajes de civilizaciones alienígenas, ya que algunas parecen seguir una lógica matemática.

“Si nuestros ojos fueran sensibles a las ondas de radio, veríamos iluminarse el cielo [por estas señales] unas dos veces por minuto”, escribe el astrónomo de la Universidad Radboud Heino Falcke hoy en Nature, que le ha dedicado su portada esta semana a este descubrimiento. La dispersión de estas señales de radio a su paso por el espacio indica que los FRB vienen de fuera de la Vía Láctea y que, antes de alcanzar la Tierra, viajan por el universo durante miles de millones de años , lo que los convierte en las señales de radio “más distantes y brillantes, del universo conocido”, resalta Falcke.

Resultado de imagen de Resultado de imagen de Misteriosos estallidos producidos por una estrella de neutrones

Los FRB “han sido objeto de un gran misterio” durante los últimos 10 años que parece una “historia de detectives”, reconoce Joe Lazio, científico del Laboratorio de Propulsión a Chorro de la NASA. Lazio es uno de los 25 astrónomos que acaban de escribir el último capítulo de la saga al estudiar el FRB más enigmático de todos. Se detectó por primera vez en 2012 y, al contrario que el resto de las señales conocidas, que solo se producen una sola vez, esta se ha repetido en varias ocasiones, pero sin un patrón claro. La existencia de este tipo de estallido cuestiona la teoría de que su origen esté en eventos destructivos que suceden una sola vez.

grupo local
La fuente de estos estallidos está en una galaxia enana y poco brillante

 

 

El equipo de Lazio usó la red de telescopios VLA de EE UU para intentar captar de nuevo la señal descubierta en 2012. Después de detectarla recurrieron a la red de telescopios europea VLBI y una similar en EE UU para situar su origen con más precisión que ningún otro estudio anterior. Sus resultados, publicados hoy en Nature y en Astrophysical Journal Letters, muestran que la fuente de estos estallidos está en una galaxia enana y poco brillante, nada parecido a un gran cataclismo cósmico

“Gracias al espectro medido con los telescopios Gemini [instrumentos ópticos], hemos comprobado que esta galaxia” está “a unos 3.000 millones de años luz de nosotros”, resalta Shami Chatterjee, astrónomo de la Universidad Cornell (EE UU) y coautor de los estudios. “Esto supone que estos estallidos son excepcionalmente potentes, y que han atravesado el medio intergaláctico durante 3.000 millones de años”, añade.

Resultado de imagen de Estallido desconocido desde fuera de nuestra Galaxia

Los investigadores aún no saben qué objeto dentro de esta galaxia está produciendo las señales. “Posiblemente se trata de un fenómeno asociado con un núcleo de galaxia activo o, más probablemente, los enormes pulsos emitidos por un magnetar, una estrella de neutrones joven con un campo magnético extraordinario”, explica Chatterjee. En cualquier caso, “es enormemente improbable que se trate de señales artificiales”, añade. Su objetivo ahora es aclarar el origen exacto de los estallidos analizados y buscar una nueva fuente de FRB repetidos que ayude a zanjar las preguntas sobre el origen de estos fenómenos.

Fuente: El Pais