domingo, 19 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Los materiales para la vida! Y, de los mundos

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

plasma vivo? ¿De dónde venimos?

¿Será así la espuma cuántica?

                   Los elementos se crean en las estrellas y en las explosiones supernovas

¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del estado estacionario, etc.

Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferenters de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.

Una de las cosas que siempre me han llamado poderosamente la atención, han sido las estrellas y las transformaciones que, dentro de ellas y los procesos que en su interior se procesan, dan lugar a las transiciones de materiales sencillos hacia materiales más complejos y, finalmente, cuando al final de sus vidas expulsan las capas exteriores al espacio interestelar dejando una extensa región del espacio interestelar sembrada de diversas sustancias que, siguiendo los procesos naturales e interacciones con todo lo que en el lugar está presente, da lugar a procesos químicos que transforman esas sustancias primeras en otras más complejas, sustancias orgánicas simples como, hidrocarburos y derivados que, finalmente, llegan a ser los materiales necesarios para que, mediante la química-biológica del espacio, den lugar a moléculas y sustancias que son las propicias para hacer posible el surgir de la vida.

La Química de los Carbohidratos es una parte de la Química Orgánica que ha tenido cierta entidad propia desde los comienzos del siglo XX, probablemente debido a la importancia química, biológica (inicialmente como sustancias de reserva energética) e industrial (industrias alimentaria y del papel) de estas sustancias. Ya muy avanzada la segunda mitad del siglo XX han ocurrido dos hechos que han potenciado a la Química de Carbohidratos como una de las áreas con más desarrollo dentro de la Química Orgánica actual.

Todos los animales, plantas y microbios están compuestos fundamentalmente, por las denominadas sustancias orgánicas. Sin ellas, la vida no tiene explicación (al menos que sepamos). De esta manera, en el primer período del origen de la vida tuvieron que formarse dichas sustancias, o sea, surgimiento de la materia prima que más tarde serviría para la formación de los seres vivos.

La característica principal que diferencia a las sustancias orgánicas de las inorgánicas, es que en el contenido de las primeras se encuentra como elemento fundamental el Carbono.

En las sustancias orgánicas, el carbono se combina con otros elementos: hidrógeno y oxígeno (ambos elementos juntos forman agua), nitrógeno (este se encuentra en grandes cantidades en el aire, azufre, fósforo, etc. Las distintas sustancias orgánicas no son más que las diferentes combinaciones de los elementos mencionados, pero en todas ellas, como elemento básico, siempre está el Carbono.

EDUCACIÓN AMBIENTAL PARA EL TRÓPICO DE COCHABAMBA

En el primer nivel (abajo) están los productores, o sea las plantas como maíz, frijol, papaya, cupesí, mora, yuca, árboles, hierbas, lianas, etc., que producen hojas, frutas, raíces, semillas, que comen varios animales y la gente.

En el segundo nivel están los primeros consumidores, que comen hierbas, hojas (herbívoros) y frutas (frugívoros). Estos primeros consumidores incluyen a insectos como hormigas, aves como loros y mamíferos como ratones, urina, chanchos, chivas, vacas.

En el tercer nivel están los segundos consumidores (carnívoros), es decir los que se comen a los animales del segundo nivel: por ejemplo el oso bandera come hormigas, el jausi come insectos y la culebra come ratones.

Nosotros, los humanos, somos omnívoros, es decir comemos de todo: plantas y animales. Algunos de los carnívoros comen, a veces, plantas también, como los perros. Otros, como el chancho, comen muchas plantas y a veces también carne.

Las sustancias orgánicas más sencillas y elementales son los llamados hidrocarburos o composiciones donde se combinan el Oxígeno y el Hidrógeno. El petróleo natural y otros derivados suyos, como la gasolina, el keroseno, etc., son mezcolanzas de varios hidrocarburos. Con todas estas sustancias como base, los químicos obtienen sin problemas, por síntesis, gran cantidad de combinados orgánicos, en ocasiones muy complejos y otras veces iguales a los que tomamos directamente los seres vivos, como azúcares, grasas, aceites esenciales y otros. Debemos preguntarnos como llegaron a formarse en nuestro planeta las sustancias orgánicas.

Está claro que, para los iniciados en estos temas, la cosa puede parecer de una complejidad inalcanzable, nada menos que llegar a comprender ¡el origen primario de las sustancias orgánicas!

Es nuestro planeta y el único habitado (hasta donde podemos saber). Está en la ecosfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida. Claro que, ¡son tantos los mundos! Cómo vamos a ser nosotros nos únicos que poblemos el Universo? ¡Que despercidicio de espacio!

 

 

La observación directa de la Naturaleza que nos rodea nos puede facilitar las respuestas que necesitamos. En realidad, si ahora comprobamos todas las sustancias orgánicas propias de nuestro mundo en relación a los seres vivos podemos ver que, todas, son producidas hoy día en la Tierra por efecto de la función activa y vital de los organismos.

Las plantas verdes absorben el carbono inorgánico del aire, en calidad de anhídrido carbónico, y con la energía de la luz crean, a partir de éste, sustancias orgánicas necesarias para ellas. Los animales, los hongos, también las bacterias y el resto de organismos, menos los de color verde, se alimentan de animales o vegetales vivos o descomponiendo estos mismos, una vez muertos, pueden proveerse de las sustancias orgánicas que necesitan. Con esto, podemos ver como todo el mundo actual de los seres vivos depende de los dos hechos análogos de fotosíntesis y quimiosíntesis, aplicados en las líneas anteriores.

Incluso las sustancias orgánicas que se encuentran bajo tierra como la turba, la hulla o el petróleo, han surgido, básicamente, por efecto de la acción de diferentes organismos que en un tiempo remoto se encontraban en el planeta Tierra y que con el transcurrir de los siglos quedaron ocultos bajo la maciza corteza terrestre.

Todo esto fue causa de que muchos científicos de finales del siglo XIX y principios del XX, afirmaran que era imposible que las sustancias orgánicas produjeran en la Tierra, de forma natural, solamente mediante un proceso biogenético, o sea, con la única intervención de los organismos. Esta opinión predominante entre los científicos de hace algunas décadas, constituyó un obstáculo considerable para hallar una respuesta a la cuestión del origen de la vida.

Para tratar esta cuestión era indispensable saber cómo llegaron a constituirse las sustancias orgánicas; pero ocurría que éstas sólo podían ser sintetizadas por organismos vivos. Sin embargo, únicamente podemos llegar a esta síntesis si nuestras observaciones no van más allá de los límites del planeta Tierra. Si traspasamos esa frontera nos encontraremos con que en diferentes cuerpos celestes de nuestra Galaxia se están creando sustancias orgánicas de manera abiogenética, es decir, en un ambiente que excluye cualquier posibilidad de que existan seres orgánicos en aquel lugar.

    Estrella de carbono (estrella gigante roja) R. Lepori

Con un espectroscopio podemos estudiar la fórmula química de las atmósferas estelares, y en ocasiones casi con la misma exactitud que si tuviéramos alguna muestra de éstas en el Laboratorio. El Carbono, por ejemplo, se manifiesta ya en las atmósferas de las estrellas tipo O, que son las que están a mayor temperatura, y su increíble brillo es lo que las diferencia de los demás astros (Ya os hablé aquí de R. Lepori, la estrella carmesí, o, también conocida como la Gota de Sangre, una estrella de Carbono de increíble belleza).

En la superficie de las estrellas de Carbono existe una temperatura que oscila los 20.000 y los 28.000 grados. Es comprensible, entonces, que en esa situación no pueda prevalecer aún alguna combinación química. La materia está aquí en forma relativamente simple, como átomos libres disgregados, sueltos como partículas minúsculas que conforman la atmósfera incandescente de estos cuerpos estelares.

La atmósfera de las estrellas tipo B, característica por su luz brillante blanco-azulada y cuya corteza tiene una temperatura que va de 15.000 a 20.000 grados, también tienen vapores incandescentes de carbono. Pero aquí este elemento tampoco puede formar cuerpos químicos compuestos, únicamente existe en forma atómica, o sea, en forma de pequeñísimas partículas sueltas de materia que se mueven a una velocidad de vértigo.

Sólo la visión espectral de las estrellas Blancas tipo A, en cuya superficie hay una temperatura de unos 12.000º, muestras unas franjas tenues, que indican, por primera vez, la presencia de hidrocarburos –las más primitiva combinaciones químicas de la atmósfera de estas estrellas. Aquí, sin que existan antecedentes, los átomos de dos elementos (el carbono y el hidrógeno) se combinan resultando un cuerpo más perfecto y complejo, una molécula química.

Observando las estrellas más frías, las franjas características de los hidrocarburos son más limpias cuando más baja es la temperatura y adquieren su máxima claridad en las estrellas rojas, en cuya superficie la temperatura nunca es superior a los 4.000º.

Es curioso el resultado obtenido de la medición de Carbono en algunos cuerpos estelares por su temperatura:

  • Proción: 8.000º
  • Betelgeuse: 2.600º
  • Sirio: 11.000º
  • Rigel: 20.000º

Como es lógico pensar, las distintas estrellas se encuentran en diferentes períodos de desarrollo. El Carbono se encuentra presente en todas ellas, pero en distintos estados del mismo.

Las estrellas más jóvenes, de un color blanco-azulado son a la vez las más calientes. Éstas poseen una temperatura muy elevada, pues sólo en la superficie se alcanzan los 20.000 grados.

Los científicos descubrieron una enorme cantidad de silicatos cristalinos e hidrocarburos policíclicos aromáticos, dos sustancias que indican la presencia de oxígeno y de carbono, respectivamente. Así todos los elementos que las componen, incluido el Carbono, están en forma de átomos, de diminutas partículas sueltas. Existen estrellas de color amarillo y la temperatura en su superficie oscila entre los 6.000 y los 8.000º. En estas también encontramos Carbono en diferentes combinaciones.

El Sol, pertenece al grupo de las estrellas amarillas y en la superficie la temperatura es de 6.000º. El Carbono en la atmósfera incandescente del Sol, lo encontramos en forma de átomo, y además desarrollando diferentes combinaciones: Átomos de Carbono, Hidrógeno y Nitrógeno, Metino, Cianógeno, Dicaerbono, es decir:

  1. Átomos sueltos de Carbono, Hidrógeno y Nitrógeno.
  2. Miscibilidad combinada de carbono e hidrógeno (metano)
  3. Miscibilidad combinada de carbono y nitrógeno (cianógeno); y
  4. Dos átomos de Carbono en combinación (dicarbono).

En las atmósferas de las estrellas más calientes, el carbono únicamente se manifiesta mediante átomos libres y sueltos. Sin embargo, en el Sol, como sabemos, en parte, se presenta ya, formando combinaciones químicas en forma de moléculas de hidrocarburo de cianógeno y de dicarbono.

Para hallar las respuestas que estamos buscando en el conocimiento de las sustancias y materiales presentes en los astros y planetas, ya se está realizando un estudio en profundidad de la atmósfera de los grandes planetas del Sistema solar. Y, de momento, dichos estudios han descubierto, por ejemplo, que la atmósfera de Júpiter está formada mayoritariamente por amoníaco y metano. Lo cual hace pensar en la existencia de otros hidrocarburos. Sin embargo, la masa que forma la base de esos hidrocarburos, en Júpiter permanece en estado líquido o sólido a causa de la abaja temperatura que hay en la superficie del planeta (135 grados bajo cero). En la atmósfera del resto de grandes planetas se manifiestan estas mismas combinaciones.

Ha sido especialmente importante el estudio de los meteoritos, esas “piedras celestes” que caen sobre la Tierra de vez en cuando, y que provienen del espacio interplanetario. Estos han representado para los estudiosos los únicos cuerpos extraterrestres que han podido someter a profundos análisis químico y mineralúrgico, de forma directa. Sin olvidar, en algunos casos, los posibles fósiles.

Estos meteoritos están compuestos del mismo material que encontramos en la parte más profunda de la corteza del planeta Tierra y en su núcleo central, tanto por el carácter de los elementos que los componen como por la base de su estructura. Es fácil entender la importancia capital que tiene el estudio de los materiales de estas piedras celestes para resolver la cuestión del origen de las primitivas composiciones durante el período de formación de nuestro planeta que, al fin y al cabo, es la misma que estará presente en la conformación de otros planetas rocosos similares al nuestro, ya que, no lo olvidemos, en todo el universo rigen las mismas leyes y, la mecánica de los mundos y de las estrellas se repiten una y otra vez aquí y allí, a miles de millones de años-luz de nosotros.

Así que, se forman hidrocarburos al contactar los carburos con el agua. Las moléculas de agua contienen oxígeno que, combinado con el metal, forman los hidróxidos metálicos, mientras que el hidrógeno del agua mezclado con el carbono forman los hidrocarburos.
Los hidrocarburos originados en la atmósfera terrestre se mezclaron con las partículas de agua y amoníaco que en ella existían, creando sustancias más complejas. Así, llegaron a hacerse presentes la formación de cuerpos químicos. Moléculas compuestas por partículas de oxígeno, hidrógeno y carbono.

Todo esto desembocó en el saber sobre los Elementos que hoy podemos conocer y, a partir de Mendeléiev (un eminente químico ruso) y otros muchos…se hizo posible que el estudio llegara muy lejos y, al día de hoy, podríamos decir que se conocen todos los elementos naturales y algunos artificiales que, nos llevan a tener unos valiosos datos de la materia que en el universo está presente y, en parte, de cómo funciona cuando, esas sustancias o átomos, llegan a ligarse los unos con los otros para formar, materiales más complejos que, aparte de los naturales, están los artificiales o transuránicos.

Aquí en la Tierra, las reacciones de hidrocarburos y sus derivados oxigenados más simples con el amoníaco generaron otros cuerpos con distintas combinaciones de átomos de carbono, hidrógeno, oxígeno y nitrógeno (CHON) en su moléculas llamadas paras la vida una vez que, más tarde, por distintos fenómenos de diversos tipos, llegaron las primeras sustancias proteínicas y grasas que, dieron lugar a los aminoácidos, las Proteínas y el ADN y RDN que, finalmente desembocó en eso que llamamos vida y que, evolucionado, ha resultado ser tan complejo y, a veces, en ciertas circunstancias, peligroso: ¡Nosotros!

emilio silvera

De vez en cuando…¡Hay que relajarse!

Autor por Emilio Silvera    ~    Archivo Clasificado en Belleza sí    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Mix – Celtic Woman The Voice Lisa Kelly

 

Lisa Kelly

 

 


May it Be – Lisa Kelly – YouTube

 


May it Be – Lisa Kelly – YouTube

 

 

 


Chloe Agnew – Nella Fantasia – YouTube


No sólo de pan vive el hombre, y, de vezx en cuando nos debemos retirar y, en soledad, disfrutar viendo de lo que somos capaces los seres humanos que, dotados de especiales dotes, podemos transportarnos a otros mundos sin salir de este, simplemente con oir una bella canción.

emilio silvera

En busca de las partículas más esquivas del universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Física en…

El Español

 

Cientos de partículas teóricas esperan su confirmación real en experimentos.

Un trabajador en el CERN. CERN

 

 

 

 

Reportaje: Javier Peláez
 

 

“Estimados, y radioactivos, señores y señoras… He encontrado una manera desesperada para salvar la Ley de conservación de la energía si suponemos que en el núcleo existen otras partículas sin carga eléctrica…”. De esta forma, curiosa y humorística, comenzaba Wolfgang Pauli en 1930 una de las cartas más célebres de la Historia de la Ciencia. En ella, y para resolver un problema pendiente de la Física de su época, proponía un nuevo tipo de partícula a la que hoy conocemos como neutrinos.

Pauli tuvo que esperar 26 años hasta que una mañana de junio de 1956 recibió un telegrama de dos investigadores, Reines y Cowan, en el que le anunciaban que por fin habían conseguido detectar por primera vez en un experimento sus ansiados neutrinos. Al día siguiente, el científico les respondió: “Gracias por la noticia. Todo llega a quien sabe esperar”

Telegrama de Reines y Cowan.

Telegrama de Reines y Cowan.

Algo muy similar ocurrió con el célebre bosón de Higgs. En la década de 1960, no sólo Peter Higgs, sino un nutrido grupo de físicos, comenzaron a especular con la posibilidad de que las partículas fundamentales adquiriesen su masa mediante la interacción con un campo cuántico presente en todo el universo. Desde la formulación teórica del Higgs hasta el reciente anuncio de su detección en 2012 ha tenido que pasar casi medio siglo.

La Física de partículas tiene un grave problema. El ritmo de aparición de nuevas y extrañas partículas teóricas es muy superior a nuestra capacidad tecnológica para comprobar si realmente existen. Para detectar neutrinos necesitamos instalaciones cada vez más sofisticadas y costosas, como el Super Kamiokande en Japón o el Telescopio Ice Cube en la Antártida. Para atrapar el bosón de Higgs hemos tenido que diseñar la mayor máquina jamás creada por el hombre: un supercolisionador de hadrones con 27 kilómetros de circunferencia.

La caza de las siguientes partículas teóricas, asociadas a la Supersimetría, la Materia oscura o la Energía oscura, se plantea como el siguiente paso natural de la Física moderna. Desde EL ESPAÑOL hemos contactado con tres científicos españoles para conocer el mayor desafío al que se enfrenta la Física moderna: ¿Qué hacer con las nuevas, y cada vez más esquivas, partículas que quedan por descubrir? ¿Cómo podemos confirmar que existen?

Observatorio de neutrinos Superkamiokande.

 

Observatorio de neutrinos Superkamiokande.

 

Para Mario Herrero, miembro del Instituto de Física Teórica UAM/CSIC que en la actualidad prepara su tesis doctoral precisamente sobre gravedad cuántica, este problema es más serio de lo que parece no solo por la velocidad con la que se proponen nuevas partículas sino porque para detectar experimentalmente algunas de ellas necesitaríamos colisionadores que trabajasen a energías increíblemente superiores a las que podemos conseguir en el LHC.

Para visualizar mejor lo que significaría un posible artefacto de estas características, y salvo que se descubran nuevas tecnologías de detección, tendríamos que pensar que el anillo de colisiones bien podría tener el tamaño de la órbita de Urano…

Partículas supersimétricas

 

A la pregunta de qué viene después del Higgs el físico del IFT lo tiene claro: “Ahora vamos a por la Supersimetría”. Según esta teoría, además de las partículas que ya conocemos, en el universo deberían existir otras partículas, una especie de compañeras supersimétricas, que aún no hemos detectado y que podrían ser observadas en el nuevo rango de energías con el que ha empezado a trabajar el LHC. Esto significaría tener un completo zoológico de partículas, con características diferentes a las habituales y entre las que se incluirían, por ejemplo, nuevos tipos de bosones de Higgs.

Partículas Supersimétricas

Partículas Supersimétricas

 

Enrique Fdez. Borja, doctor en Física Teórica y docente en el Departamento de Matemática Aplicada de la Universidad de Sevilla, reconoce que hay muchos científicos nerviosos. El LHC debería haber detectado ya partículas supersimétricas pero aún siguen escondiéndose, lo que lleva a los más optimistas a pensar que están en otro rango de energías, y a los más pesimistas a considerar que no existen.

La Historia de la Física nos ha enseñado que todo lo que puede suceder termina sucediendo. Sin embargo, siempre puede aparecer una excepción que derrumbe la teoría supersimétrica. En marzo el gran colisionador de hadrones del CERN volverá a ponerse en marcha y trabajará a energías más altas que nunca, que deberían ser suficientes para detectar estas partículas.

Si aun así no aparecen va a ser complicado justificar por qué no las hemos visto ya, y problemas como el de la baja masa del Higgs deberán empezar a explicarse con otras teorías diferentes (e incluso más fascinantes) como la posibilidad de dimensiones extras.

Materia oscura

Es una de las grandes cuestiones aún pendientes en la Física. Estamos ante un tipo extraño de materia que no aún hemos podido ver, puesto que no emite radiación electromagnética, pero que sí tiene importantes consecuencias gravitatorias en objetos masivos como galaxias o cúmulos de galaxias.

¿De qué está hecha? La respuesta sincera es que aún no lo sabemos, pero la hipótesis más extendida afirma que estaría compuesta de partículas masivas que interactúan débilmente (WIMP, por sus siglas en inglés). Estas partículas no emiten luz ni tienen carga eléctrica pero, como su propio nombre nos indica, sí actuarían en la fuerza nuclear débil… es una interacción muy pequeña, pero medible al fin y al cabo.

En cierto modo las WIMP son muy similares a los neutrinos que propuso Pauli. Si existen, el universo entero debería estar repleto de ellas y literalmente billones de ellas atravesarían nuestro cuerpo cada segundo. Puesto que, al igual que los neutrinos, apenas interactuarían con la materia, serian extremadamente difíciles de detectar.

Francis Villatoro, físico, matemático y profesor en la UMA, nos explica que actualmente estamos explorando tres caminos que nos podrían conducir a detectar la presencia de estas partículas WIMP. El primero de ellos sería el método directo: una de estas partículas, procedente del espacio, chocaría como una bola de billar contra el núcleo de un átomo en alguno de los muchos detectores repartidos por el mundo.

La segunda técnica es indirecta. Dado que estas partículas WIMP son iguales que sus correspondientes antipartículas, podrían aniquilarse en ocasiones entre ellas en galaxias lejanas, lo que produciría fotones -es decir, luz-, y eso es algo que podríamos ver mediante telescopios espaciales.

Estos dos métodos requieren de paciencia y mucha suerte, por lo que en lugar de esperar a detectar una de esas colisiones, también existe una tercera opción: generar una partícula de materia oscura en el CERN. En el LHC chocan protones contra protones y estas colisiones pueden producir un bosón de Higgs de alta energía que podría desintegrarse en una pareja de partículas WIMP.

Son las tres vías que actualmente se están probando para detectar esta teórica partícula de la que estaría formada la materia oscura, algo que no es insignificante puesto que, recordemos, supone una gran parte de toda la materia que compone el universo.

La energía oscura y su particular camaleón

 

Dicen que permea todo el Universo pero… ¿dónde está?

 

Todos hemos escuchado alguna vez que el universo se expande. Esta expresión es correcta pero incompleta, puesto que deberíamos decir que se expande de manera acelerada. La explicación a esa aceleración que resulta más coherente con nuestro actual modelo estándar es la denominada energía oscura.

Imagina que lanzas una pelota al aire y ésta no solo no desciende, sino que se eleva cada vez más rápido. Algo debe de estar empujándola y eso es precisamente lo que ocurre en nuestro universo, en donde se ha calculado que algo más del 70% del total de la energía/masa que existe corresponde a energía oscura. Ese enorme porcentaje representa un gran problema para los físicos que aún no saben qué partícula es la responsable de esa fuerza de aceleración del universo.

 

Infografía con la expansión acelerada del Universo desde el Big Bang

Se han propuesto numerosas teorías con la existencia de varios tipos de campos; unos los llaman campos camaleón, otros campos fantasmas, pero todos ellos estarían asociados a un tipo de partículas que se comportan de manera verdaderamente extraña. De hecho, una de sus denominaciones, camaleón, hace referencia a la capacidad de variar su fuerza y su masa en función de la materia que tengan cerca.

En palabras sencillas, los físicos que defienden esta teoría tratan de explicar la energía oscura como resultado de cierto tipo de partículas que generan una extraña interacción dependiendo de la cantidad de masa que les rodea. Para disgusto de los teóricos, este tipo de partículas camaleón ejercerían una interacción mayor cuando tienen poca materia cerca de ellas, por ejemplo en el espacio exterior… un comportamiento paradójico que hace que su detección sea muy difícil.

Además, y para empeorar las cosas, no se pueden detectar en el colisionador de Ginebra ya que la masa de esta hipotética partícula de energía oscura sería del orden de un billón de veces la energía de un protón, demasiado hasta para nuestro gran LHC.

Para intentar detectarlas deberíamos salir de la galaxia para realizar experimentos cosmológicos en zonas menos densas que nuestra Vía Láctea, algo que se antoja aún muy lejano.

Cada vez es menor la capacidad de asombrarnos

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Sabemos del Universo que no sabemos cómo surgió, si está sólo o acompañado, si es cíclico y se reproduce una y otra vez, si cada vez que surge también viene acompañado por los mismos procesos que nos llevan hacia la vida…

La imagen de arriba tomada por el Telescopio Espacial  Hubble, fue cedida en su día por la NASA y, en ella, podemos contemplar la inmensidad de un Universo que no hemos llegado a conocer y, como nos pasa en tantas otras cuestiones, nos tenemos que conformar construyendo Modelos que nos aproximen a lo que pudo ser y que no reflejan, necesariamente, lo que fue.

Nuestro Sol, esa estrella mediana, amarilla del tipo  G2V que, nos calienta y hace posible que la vida en el planeta Tierra esté presente. Ese suceso de la vida consciente en un planeta idóneo para la evolución de la materia hacia niveles de impensables rendimientos como, de hecho, son las ideas y los pensamientos, nos llevan a pensar que, nuestro Universo, “parece” que tenía un plan predeterminado para nosotros. Bueno, al menos eso nos gusta pensar para sentirnos más importantes.

Sólo conocemos el Universo que nos ha dejado ver la luz, esa radiación electromagnética a la que es sensible el ojo humano, y, otras de ondas más cortas que mediante telescopios hemos podido captar, son las referencias visuales que del Universo tenemos y, hay que decir que, cuando podamos captar las ondas gravitatorias que emiten los Agujeros Negros, podremos ver un Universo nuevo.

Muchas son las maneras en las que hemos querido representar y “ver” a nuestro Universo. El concepto de un universo holográfico no es nada nuevo. Los sufíes del siglo XII llegaron a la conclusión de que “el macrocosmos es el microcosmos”. El Profeta egipcio Hermes Trismegisto dijo que la cuna de la comprensión universal es la clave y está en comprender que “el pequeño es como el grande”. Los alquimistas medievales tenían otro lema: “Como es arriba, es abajo”. Con el paso de los tiempos se han establecido unas claves para entender la realidad en que vivimo.

Claro que, para nosotros, no será fácil saber si, nuestra realidad, es la auténtica realidad del Universo. Estamos inmerso en nuestro “propio mundo”, el mundo de nuestros sentidos que nos hacen ver y sentir un universo propio, particular y supeditado a las potestades que dichos sentidos puedan tener… A partir de ahí… ¿Quién sabe?

¡Se dicen tantas cosas! ¡Nos cuentan tantas historias!

http://4.bp.blogspot.com/-c8LlQD5zrgk/UMeDw1UdHNI/AAAAAAAALX4/lAR0W6cg3iQ/s1600/telescopio_magallanes.jpg

Por ahí he podido leer que: “Hoy en día los superordenadores utilizan una técnica llamada “cuadrícula de cromodinámica cuántica, una técnica que funciona a partir de las leyes físicas que rigen el Universo, capaz de simular con cierto grado de éxito pequeñas porciones del mismo en una escala de una billonésima de metro, un poco más grande que el núcleo de un átomo.

Para los investigadores, con el tiempo las simulaciones más potentes serán capaces de modelar en la escala de una molécula, luego de una célula e incluso de un ser humano. Para ello dicen que deberán pasar varias generaciones de equipos cada vez más potentes, tanto, que podrían simular porciones del Universo lo suficientemente grandes como para entender las limitaciones a las que se verían sometidos los procesos físicos que conocemos. Estas limitaciones serían la prueba de que, como dice Bostrom, vivimos en una simulación informática.”

Lo único cierto es, que nadie sabe “la verdad” de en qué estamos inmersos y, sin embargo, todo el mundo habla y, como un profetas, nos dicne lo que fue, lo que es y hasta se atreven con lo que será… ¡Ilusos! De ilusión también se vive pero…, la cruda realidad vendrá de manos de la Naturaleza que, como debemos saber, siempre impone su ley.

Lo prudente es seguir avanzando y procurando desvelar “el saber del mundo”, y, mientras tanto, cuando queramos explicar alguna cosa decir: Por ejemplo, referido al átomo. Parece que el átomo se comporta como si, en su interior, tuviera protones y neutrones que, a su vez, pueden estar conformados por Quarks y, ese núcleo, parece estar rodeado por partículas denominadas electrones que hacen el conjunto atómico que. unidos, llegan a formar moléculas y estas la materia.

Spiral clocks and space time Stock Photo - 10279206Family tree, relatives Stock Photo - 5942701

Ni conocemos el reloj (para nosotros eterno) del Universo, ni tampoco conocemos ese árbol del que tanto hablamos, el de la vida que resulta ser algo que nosotros mismos representamos y que no podemos explicar. ¿Se habrá visto mayor paradoja?

Y si no estamos sólos, ¿por qué no están aquí? Bueno, seguramente por la misma razón por la que nosotros tampoco podemos estar allí. La Empresa nos sobrepasa y, seguramente, también a “ellos”, les viene grande. ¡Distancias inauditas! ¡Velocidades inalcanzables! ¡Tiempo de evolución de miles de millones de años! Todo eso junto, conforma la imposibilidad en la que nos encontramos de poder, estrechar la mano de esos seres que, como nosotros, pensarán en ese día que, cuando llegue (si es que llega), marcará un hito universal.

¡Los hemos imaginado de tantas maneras! Lo hemos intentado y continuamos en el empeño pero… Las cosas no serán fáciles para poder, algún día, decir que no estamos solos en el inmenso Universo.

Muchos antes que nosotros han intentado descubrir nuestro lugar en el mundo, los secretos que la Naturaleza esconde, el por qué el Universo nos muestra cosas que no siempre llegamos a comprender, y, seguimos intentando llegar a esa “verdad” que incansables perseguimos. Y, mientras tanto conseguimos saber donde estamos, de donde venimos y hacia donde vamos, seguimos enredados cuestiones tales como:

“La Paradoja de Olbers en acción. A medida que se consideran las estrellas situadas en capas y capas más lejanas a la Tierra el cielo debería verse más y más luminoso.”

 

http://3.bp.blogspot.com/-H3d5nIBnzBI/TvMB8jtquYI/AAAAAAAAG-4/6zHBb8dJt_E/s1600/La-foto-imposible-del-universo_gallery_lightbox.jpg

Sí, somos conscientes -al menos algunos- de nuestras limitaciones y, sabiendo eso, no cedemos en el empeño de saber, lo que el Universo es,  y,  de paso, si podemos captar algún dato esencial sobre nosotros… ¡mucho mejor!

Incluso tenemos dudas fundadas en saber, a ciencia cierta, en qué clase de universo estamos: ¿Es plano, es abierto, es cerrado? La cantidad de materia que contenga nuestro Universo, eso que llaman Omega y que determina la Densidad Crítica, dirá la última palabra sobre el tema para conocer cómo será el final que aguarda al inmenso universo.

Como las podemos observar, sí podemos explicar su evolución. Sin embargo, si alguien nos pregunta: ¿Cómo se formaron las galaxias? La única respuesta seria que podríamos dar sería… ¡No lo sabemos! Nadie ha podido dar una razón convincente de cómo se pudieron formar las galaxias a pesar de la expansión de Hubble. ¿Qué había allí que generaba Gravedad y retenía la materia el tiempo suficiente para que se formaran? Nadie lo sabe. Sospecho que algo tiene que ver con eso… ¡la sustancia cósmica! o “materia primigenia” surgida en el universo en el primer momento de su existencia y que, aunque no la veámos, está dispersa por todas partes.

Lo que no podemos asegurar es que todos los pensamientos surgidos de las mentes humanas sean constructivos y, como tales, se encaminen en la dirección correcta de construir un mundo más justo y equitativo donde todos (que somos uno). tengan las mínimas posibilidades para vivir de manera digna sea cual fuere su procedencia o condición. La desigualdad en el mundo nos degrada como seres humanos que no han sabido alcanzar la meta de esa Ley no escrita pero que está en la mente de todos: Justicia, igualdad, equidad, y, bienestar para todos los seres del mundo.

Sin embargo, nadie puede negar que formamos parte del Universo. Somos, en realidad, la parte del Universo que puede pensar y generar ideas y pensamientos y… ¡hasta sentimientos! Lo cual, es algo tan inconmensurablemente grande que… ¿No sabemos en que podrá desembocar finalmente!.

¿A qué resultará que no somos tan insignificantes?

emilio silvera

La I.Artificial… ¿Qué nos traerá?

Autor por Emilio Silvera    ~    Archivo Clasificado en I. A.    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                                                  INTELIGENCIA ARTIFICIAL
Nick Bostrom, en el Instituto del Futuro de la Humanidad.
Nick Bostrom, en el Instituto del Futuro de la Humanidad. Tom Pilston Getty Images

    El futuro de la humanidad en sus manos

 

Un equipo de expertos investiga en un Instituto de Oxford los riesgos de extinción del ser humano

 

Necesitamos sabiduría para enfrentar el futuro. Para saber si los progresos tecnológicos de vanguardia van en la dirección adecuada o no; si favorecen al ser humano o todo lo contrario. Para tener una idea de qué hacer si se presentan escenarios que ponen en riesgo la supervivencia de la especie, como los derivados de la amenaza nuclear, la modificación de microbios letales o la creación de mentes digitales más inteligentes que el hombre. A reflexionar sobre este tipo de cuestiones se dedican un puñado de cerebros en un lugar ubicado en Oxford y llamado el Instituto para el Futuro de la Humanidad.

Al frente de un heterodoxo grupo de filósofos, tecnólogos, físicos, economistas y matemáticos se encuentra un filósofo formado en física, neurociencia computacional y matemáticas, un tipo que desde su adolescencia se encontró sin interlocutores con los cuales compartir sus inquietudes acerca de Schopenhauer, un sueco de 42 años que se pasea por las instalaciones del Instituto con un brebaje hecho a base de vegetales, proteínas y grasas al que denomina elixir y que escucha audiolibros al doble de velocidad para no perder un segundo de su preciado tiempo. Se llama Nick Bostrom, y es el autor de Superinteligencia: Caminos, Peligros, Estrategias, un libro que ha causado impacto, una reflexión acerca de cómo afrontar un futuro en que la inteligencia artificial supere a la humana, un ensayo que ha recibido el respaldo explícito de cerebros de Silicon Valley como Bill Gates y Elon Musk, de filósofos como Derek Parfit o Peter Singer, de físicos como Max Tegmark, profesor del Massachusetts Institute of Technology. Un trabajo que, además, se coló en la lista de los libros más vendidos que elabora The New York Times Book Review. La ONU le reclama para que exponga su visión, sociedades científicas como The Royal Society le invitan a dar conferencias, una de sus charlas TED lleva ya contabilizados más de 1.747.000 visionados. Y Stephen Hawking ya ha alertado al mundo: hay que tener cuidado con la Inteligencia Artificial.

El Instituto para el Futuro de la Humanidad —FHI, siglas en inglés— es un espacio con salas de reuniones bautizadas con nombres de héroes anónimos que con un gesto salvaron el mundo —como Stanislav Petrov, teniente coronel ruso que evitó un incidente nuclear durante la Guerra Fría— donde fluyen las ideas, los intercambios de impresiones, donde florecen hipótesis y análisis. Sobre todo, por las tardes-noches: el jefe es, como él mismo confiesa, un noctámbulo; se queda en la oficina hasta las dos de la madrugada.

“En el momento en que sepamos cómo hacer máquinas inteligentes, las haremos”, afirma Bostrom, en una sala del Instituto que dirige, “y para entonces, debemos saber cómo controlarlas. Si tienes un agente artificial con objetivos distintos de los tuyos, cuando se vuelve lo suficientemente inteligente, es capaz de anticipar tus acciones y de hacer planes teniendo en cuenta los tuyos, lo cual podría incluir esconder sus propias capacidades de modo estratégico”. Expertos en Inteligencia Artificial que cita en su libro aseguran que hay un 90% de posibilidades de que entre 2075 y 2090 haya máquinas tan inteligentes como los humanos. En la transición hacia esa nueva era habrá que tomar decisiones. Inocular valores morales a las máquinas, tal vez. Evitar que se vuelvan contra nosotros.

El día que las máquinas lleguen a pensar por sí mismas… ¡La especie Humana habrá llegado al fin!

A analizar este tipo de supuestos y escenarios se dedica este hombre que en estos días lee intensivamente sobre machine learning (aprendizaje automático, rama de la inteligencia artificial que explora técnicas para que las computadoras puedan aprender por sí solas) y economía de la innovación. Para Bostrom el tiempo nunca es suficiente. Leer, leer, leer, asentar conocimientos, profundizar, escribir. “El tiempo es precioso. Es un bien de gran valor que constantemente se nos desliza entre los dedos”.

 

 

 

La gente parece olvidar la guerra nuclear. Un cambio para mal en la geopolítica podría ser un peligro

 

 

 

Estudiar, formular hipótesis, desarrollarlas, anticipar escenarios. Es lo que se hace en este Instituto donde se cultiva la tormenta de ideas y la videoconferencia, un laberinto de salas dominadas por pizarras vileda con diagramas y en cuyo pasillo de entrada cuelga un cartel que reproduce la portada de Un mundo feliz, la visionaria distopía firmada por Aldous Huxley en 1932. Un total de 16 profesionales trabajan aquí. Publican en revistas académicas, hacen informes de riesgos para compañías tecnológicas, para gobiernos (por ejemplo, el finlandés) o para la ONU, que se dispone a crear su primer programa sobre Inteligencia Artificial —uno de cuyos representantes andaba la semana pasada por las oficinas del FHI—. Niel Bowerman, director adjunto, físico del clima y exasesor del equipo político de Energía y Medio Ambiente de Barack Obama, explica que en el instituto siempre estudian cómo de grande es un problema, cuánta gente trabaja en él y cómo de fácil es realizar progresos en esa área para determinar los campos de estudio.

Bostrom es el hombre que comanda el Instituto, el que decide por dónde se transita, el visionario. Desarrolla su labor gracias al impulso filantrópico de James Martin, millonario interesado en las cuestiones de los riesgos existenciales del futuro que impulsó el FHI hace diez años para que se estudie y reflexione en torno a aquellas cosas en las que la industria y los gobiernos, guiados por sus particulares intereses, no tienen por qué pensar.

Al filósofo sueco, que formó parte en 2009 de la lista de los 100 mayores pensadores globales de la revista Foreign Policy, le interesa estudiar, sobre todo, amenazas lejanas, a las que no le gusta poner fecha. “Cuanto más largo sea el plazo”, dice, “mayores son las posibilidades de un escenario de extinción o de era posthumana”. Pero existen peligros a corto plazo. Los que más le preocupan a Bostrom son los que pueden afectar negativamente a las personas como las plagas, la gripe aviar, los virus, las pandemias.

En cuanto a la Inteligencia Artificial y su cruce con la militar, dice que el riesgo más claro lo presentan los drones y las armas letales autónomas. Y recuerda que la guerra nuclear, aunque tiene pocas probabilidades de llegar, sigue siendo un peligro latente. “La gente parece haber dejado de preocuparse por ella; un cambio para mal en la situación geopolítica podría convertirse en un gran peligro”.

 

 

 

“Hay una carrera entre nuestro progreso tecnológico y nuestra sabiduría, que va mucho más despacio

 

La biotecnología, y en particular, la posibilidad que ofrece el sistema de edición genética CRISPR de crear armas biológicas, también plantea nuevos desafíos. “La biotecnología está avanzando rápidamente va a permitir manipular la vida, modificar microbios con gran precisión y poder. Eso abre el paso a capacidades muy destructivas”. La tecnología nuclear, señala, se puede controlar. La biotecnología, la nanotecnología, lo que haga alguien un garaje con un equipo de segunda mano comprado en EBay, no tanto. Con poco se puede hacer mucho daño.

                     Mientras la máquina esté al servicio del humano… ¡Todo irá bien!

Superada su etapa transhumanista —fundó en 1998 junto a David Pearce la Asociación Mundial Transhumanista, colectivo que aboga de modo entusiasta por la expansión de las capacidades humanas mediante el uso de las tecnologías—, Bostrom ha encontrado en la Inteligencia Artificial el terreno perfecto para desarrollar su trabajo. La carrera en este campo se ha desatado, grandes empresas —Google compró en 2014 la tecnológica DeepMind— y Estados pugnan por hacerse con un sector que podría otorgar poderes inmensos, casi inimaginables.

Uno de los escenarios que proyecta en su libro, cuya versión en español publica el 25 de febrero la editorial Teell, es el de la toma de poder por parte de una Inteligencia Artificial (AI, siglas en inglés). Se produce una explosión de inteligencia. Las máquinas llegan a un punto en que superan a sus programadores, los humanos. Son capaces de mejorarse a sí mismas. De desarrollar grandes habilidades de programación, estratégicas, de manipulación social, de hacking. Pueden querer tomar el control del planeta. Los humanos pueden ser un estorbo para sus objetivos. Para tomar el control, esconden sus cartas. Podrán mostrarse inicialmente dóciles. En el momento en que desarrollan todos sus poderes, pueden lanzar un ataque contra la especie humana. Hackear drones, armas. Liberar robots del tamaño de un mosquito elaborados en nanofactorías que producen gas nervioso, o gas mostaza.

Esta es simplemente la síntesis del desarrollo de un escenario. Pero, como decía la crítica de Superinteligencia de la revista The Economist, las implicaciones de la introducción de una segunda especie inteligente en la Tierra merecen que alguien piense en ellas. “Antes, muchas de estas cuestiones, no solo las del AI, solían estar en el campo de la ciencia ficción, de la especulación”, dice Bostrom, “para mucha gente era difícil de entender que se pudiera hacer trabajo académico con ello, que se podían hacer progresos intelectuales”.

El libro también plantea un escenario en que la Inteligencia Artificial se desarrolla en distintos sectores de manera paralela y genera una economía que produce inimaginables cotas de riqueza, descubrimientos tecnológicos asombrosos. Los robots, que no duermen, ni reclaman vacaciones, producen sin cesar y desbancan a los humanos en múltiples trabajos.

— ¿Los robots nos enriquecerán o nos reemplazarán?

No creo que sea nada bueno llegar a construir robots que sepan comprender el átomo

— Primero, tal vez nos enriquezcan. A largo plazo ya se verá. El trabajo es costoso y no es algo deseado, por eso hay que pagar a la gente por hacerlo. Automatizarlo parece beneficioso. Eso crea dos retos: si la gente pierde sus salarios, ¿cómo se mantiene? Lo cual se convierte en una cuestión política, ¿se piensa en una garantía de renta básica? ¿En un Estado del Bienestar? Si esta tecnología realmente hace que el mundo se convierta en un lugar mucho más rico, con un crecimiento más rápido, el problema debería ser fácil de resolver, habría más dinero. El otro reto es que mucha gente ve su trabajo como algo necesario para tener estatus social y que su vida tenga sentido. Hoy en día, estar desempleado no es malo solo porque no tienes dinero, sino porque mucha gente se siente inútil. Se necesitaría cambiar la cultura para que no pensemos que trabajar por dinero es algo que te da valor. Es posible, hay ejemplos históricos: los aristócratas no trabajaban para vivir, incluso pensaban que tener que hacerlo era degradante. Creemos que las estructuras de significado social son universales, pero son recientes. La vida de los niños parece tener mucho sentido incluso si no hacen nada útil. Soy optimista: la cultura se puede cambiar.

Lo que para nosotros es natural, en la A.I. es casi… ¡imposible!

A Bostrom se le ha acusado desde algunos sectores de la comunidad científica de tener visiones demasiado radicales. Sobre todo, en su etapa transhumanista. “Sus visiones sobre la edición genética o sobre la mejora del humano son controvertidas”, señala Miquel-Ángel Serra, biólogo que acaba de publicar junto a Albert Cortina Humanidad: desafío éticos de las tecnologías emergentes. “Somos muchos los escépticos con las propuestas que hace”. Serra, no obstante, deja claro que Bostrom está ahora en el centro del debate sobre el futuro de la Inteligencia Artificial, que es una referencia.

— ¿Proyecta usted una visión demasiado apocalíptica en su libro de lo que puede ocurrir con la humanidad?

— Mucha gente puede quedarse con la impresión de que soy más pesimista con la AI de lo que realmente soy. Cuando lo escribí parecía más urgente tratar de ver qué podía ir mal para asegurarnos de cómo evitarlo.

— Pero, ¿es usted optimista con respecto al futuro?

¿Avanzar? Sí, pero sin caer en aberraciones antinaturales

— Intento no ser pesimista ni optimista. Intento ajustar mis creencias a lo que apunta la evidencia; con nuestros conocimientos actuales, creo que el resultado final puede ser muy bueno o muy malo. Aunque tal vez podríamos desplazar la probabilidad hacia un buen final si trabajamos duramente en ello.

— O sea, que hay cosas que hacer. ¿Cuáles?

— Estamos haciendo todo lo posible para crear este campo de investigación de control problema. Hay que mantener y cultivar buenas relaciones con la industria y los desarrolladores de Inteligencia Artificial. Aparte, hay muchas cosas que no van bien en este mundo: gente que se muere de hambre, gente a la que le pica un mosquito y contrae la malaria, gente que decae por el envejecimiento, desigualdades, injusticias, pobreza, y muchas son evitables. En general, creo que hay una carrera entre nuestra habilidad para hacer cosas, para hacer progresar rápidamente nuestra capacidades tecnológicas, y nuestra sabiduría, que va mucho más despacio. Necesitamos un cierto nivel de sabiduría y de colaboración para el momento en que alcancemos determinados hitos tecnológicos, para sobrevivir a esas transiciones.

Fuente: El Pais

PD.

Sólo algunas imágenes y comentarios que la acompañan han sido añadidas respetando el reportaje original, con la intención de hacerla más amena.