martes, 03 de febrero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Los científicos frente al Eco del Big Bang

Autor por Emilio Silvera    ~    Archivo Clasificado en Ecos del Big Bang    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

marzo 20, 2014 Sin comentarios Ciencia
Jhon Ellis, físico del CERN, habla del Big Bang
Los físicos cruzan los dedos para que el satéilite Planck confirme el eco del Bib Bang. Veámos el reportaje de Enrique Sacristán.

Enrique Sacristán_SINC / “En el primer instante de la historia del nuestro universo, hace unos 13.800 millones de años, ocurrió algo extraordinario: surgió el espacio-tiempo y se expandió a una velocidad superior a la de luz. Todo sucedió en alrededor de 10-32 segundos, un periodo cortísimo conocido como inflación, marcado por fluctuaciones cuánticas que generaron ondas gravitatorias, la pistola humeante del Big Bang.

Unos 380.000 años más tarde, se enfría el plasma caliente generado por la gran explosión y surge la radiación de fondo de microondas (CMB, por sus siglas en inglés), que desde entonces se observa de forma uniforme por cualquier parte del cielo que miremos.

La huella que dejaron las ondas gravitatorias primigenias en esta radiación CMB es lo que ha observado ahora el telescopio BICEP2 desde la Antártida. Científicos del Centro de Astrofísica Harvard-Smithsonian, en EE UU, han anunciado esta semana este descubrimiento que ha revolucionado a los físicos.

History of the Universe_edited

“¡Es un gran hallazgo!”, exclama a Sinc el carismático John Ellis, físico teórico del CERN y actual profesor en el King’s College de Londres. “Es la primera detección directa de las ondas gravitatorias o gravitacionales, pero mucho más que eso: su origen es intrínsecamente cuántico, así que estamos viendo gravedad cuántica a escala cosmológica”.

“Además, el hecho de que su magnitud sea relativamente grande –continúa– significa que tenemos una ventana al universo temprano, cuando las energías eran de unos 1016 gigaelectronvoltios (GeV), muchos órdenes de magnitud más allá de lo que alcanzará el LHC (operará a 14.000 GeV como máximo) o cualquier acelerador de partículas que podamos imaginar”.

Para Enric Verdaguer, catedrático de Física Teórica de la Universidad de Barcelona, “el nuevo descubrimiento es comparable al del higgs en el año 2012: “Así como el bosón de Higgs era la última predicción robusta del modelo estándar de partículas, la existencia de radiación gravitacional generada por un período inflacionario es la última predicción robusta del modelo inflacionario que todavía no se había observado”.

“Estamos viendo gravedad cuántica a escala cosmológica”, destaca un científicoEl catedrático explica que lo que realmente se ha medido en la radiación de fondo es el modo B, un tipo de polarización con aspecto rotacional o de rizo muy característico que solo pueden producir las ondas gravitacionales. “Estas son de escalas gigantescas y no se conoce ningún otro mecanismo que las pueda producir que la amplificación que produce inflación”, añade.

Desde el otro lado del Atlántico, el astrofísico Scott Dodelson del Fermilab (EE UU) coincide en comparar el hallazgo con el del higgs y destaca emocionado sus grandes posibilidades: “Esto abre una nueva ventana, toda una nueva área de investigación. Las altas energías de la época inflacionaria permiten comprobar algunas ideas de la teoría de cuerdas, que muchos asumieron que no se iban a poder testar. Es una nueva zona de juegos donde todo el mundo podrá empezar a poner a prueba sus teorías”.

“Es una nueva zona de juegos donde todo el mundo podrá poner a prueba sus teorías”Pero como otros científicos, Dodelson sabe que todavía no se puede confirmar al cien por cien que los resultados sean correctos y no se deban a algún artefacto técnico o estadístico, o que la señal pueda proceder de una fuente inesperada: “La gente es escéptica, somos así, por lo que habrá que esperar a que otros instrumentos lo confirmen. Existen al menos media docena de experimentos que continúan buscando la polarización modo B, como SPTPol en un telescopio del Polo Sur o ACTPol desde el desierto chileno de Atacama. Sus datos concretarán o refutarán el hallazgo”.

La investigadora Olga Mena del Instituto de Física Corpuscular (CSIC-Universidad de Valencia) enumera otros proyectos competidores dedicados también a la detección de los modos B: ABS también en Atacama, POLARBEAR, el experimento E –otro tipo de polarización pero radial– y B (EBEX) y CLASS. Cualquiera de ellos podría ser el segundo en detectar el hallazgo, “y cuando ocurra será uno de los mayores descubrimientos en cosmología, sobre todo por confirmar inflación y la naturaleza cuántica del espacio tiempo”.

La mayoría de estos telescopios e instrumentos están situados en los polos o en lo alto de montañas desérticas donde la atmósfera es más limpia y sin interferencias, pero hay un lugar todavía mejor para realizar las observaciones: el espacio. Si hay unos resultados que los físicos están deseando conocer son los del satélite Planck de la Agencia Espacial Europea (ESA). El experimento de BICEP2 solo ha analizado un área del firmamento relativamente pequeña, pero Planck ofrecerá los datos de polarización para toda la esfera celeste.

Los datos del satélite Planck sobre la polarización para toda la esfera celeste prontó estarán disponibles. / ESA - C. Carreau

 

Los datos del satélite Planck sobre la polarización para toda la esfera celeste prontó estarán disponibles. / ESA – C. Carreau

“Este satélite ha efectuado un mapa completo del CMB durante el tiempo que ha estado operativo entre 2009 y 2013”, explica Pablo Cerdá-Durán, investigador del departamento de Astronomía y Astrofísica de la Universidad de Valencia. “El análisis de la ingente cantidad de datos generados durante la misión no está completado, y en particular falta el análisis de las medidas de polarización, que muy probablemente puedan confirmar o descartar los resultados de BICEP2”.

El científico apunta, como otros colegas, en que esta detección será relevante por evidenciar de forma indirecta la existencia de las ondas gravitatorias, como predijo Einstein a principios del siglo XX, y la inflación, predicha por Alan Guth en 1980.

El satélite Planck podría confirmar o refutar el hallazgo en pocos mesesRespecto al momento de un posible segundo anuncio, “el satélite Planck debería comunicar sus análisis de datos de polarización en pocos meses”, adelanta José L. F. Barbón, miembro del Instituto de Física Teórica (Universidad Autónoma de Madrid-CSIC). “De hecho, existe una cierta tensión entre las mediciones anteriores de Planck y las de BICEP2, así que hay que ser cautos hasta que el resultado sea confirmado por un segundo instrumento”.

Por su parte y de camino al centro Goddard de la NASA, el profesor Fernando Atrio de la Universidad de Salamanca recuerda que, aunque las ondas gravitacionales produzcan polarización modo B, también generan otros efectos, “como la correlación de las anisotropías (cualidad física dependiente de la dirección en que se mide) en temperatura o los denominados espectros de potencia de temperatura”, que también convendría determinar.

“Cuando se verifique será un descubrimiento muy importante porque extiende el modelo del Big Bang y servirá para contrastar con observaciones la validez del paradigma inflacionario”, señala Atrio, algo en lo que coincide Barbón, quien reconoce que la detección de ondas gravitatorias en sí misma tampoco reviste ninguna sorpresa: “De hecho ya se concedió el premio Nobel a Hulse y Taylor por ‘medir’ indirectamente las ondas gravitacionales en el estudio de un púlsar binario”.

“Lo verdaderamente importante –añade­– es que el hallazgo coloca la energía de la inflación muy cerca de la escala de energía de la gravitación cuántica. Esto significa que, midiendo con mucha precisión las propiedades de estas ondas, podríamos acceder a información sobre la física de la gravitación cuántica. Por eso este resultado cambiaría la física fundamental en un sentido histórico, así que vamos a cruzar los dedos para que se confirme”.

“La Ciencia se está dejando llevar por el espectáculo”

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entrevista a Matías Saldarriaga, Cosmólogo

 

Fue pionero en predecir que se podía captar el primer eco del Big Bang, hace 15 años, y, se refería, además de las ondas gravitatorias a las posibles fluctuaciones de vacío. Critica la maquinaria publicitaria detrás de ciertos hallazgos en las mejores universidades.

 

Madrid 7 NOV 2014   (en el Pais)

 

                               Matías Zaldarriaga, antes de la entrevista / Santi Burgos

“Entre el universo actual, con estrellas, galaxias y planetas capaces de albergar vida, y su origen hace 13.700 millones de años, hay enormes lagunas desconocidas. Se ha confirmado hasta la saciedad que todo comenzó con el Big Bang, pero lo que sucedió poco después sigue siendo un misterio. La teoría mayoritaria dice que tras la explosión hubo una etapa de expansión acelerada conocida como inflación que multiplicó el tamaño del cosmos millones y millones de veces en menos de un segundo. Es la teoría más aceptada y este año un equipo de investigadores de EE UU anunció haber encontrado unas señales que confirmarían que la inflación sucedió realmente. Poco después surgieron muchas voces críticas y, el mes pasado, la misión europea Planck echó por tierra el supuesto hallazgo. Un descubrimiento de Nobel se convirtió en una de las mayores polémicas científicas de los últimos años.

Hace más de 15 años, el físico teórico argentino Matías Zaldarriaga predijo cómo detectar esas señales, conocidas como ondas gravitacionales, mientras aún era un joven físico teórico en el Instituto Tecnológico de Massachusetts (EE UU). Actualmente trabaja en el Instituto de Estudios Avanzados de Princeton, donde Einstein fue a trabajar huyendo del nazismo. Él también habla como un exiliado de su Argentina natal, donde, dice, no podría hacer el tipo de ciencia que hace en EEUU, y confiesa que “no es un buen país para vivir”. En un receso de unas jornadas sobre los orígenes del universo organizadas por la Fundación Ramón Areces en Madrid, el físico ofrece una entrevista a Materia en la que habla del futuro de la cosmología, la búsqueda de nuevos “fósiles del Big Bang” y critica la maquinaria publicitaria de las mejores universidades del mundo.

Pregunta. ¿De qué podemos estar seguros sobre el origen del universo?

Respuesta. De que hubo un Big Bang, de que el universo comenzó siendo muy caliente, hay tantas observaciones que no se puede negar. La pregunta es qué había antes de ese universo caliente. Ahí, la explicación usual es que hubo ese periodo de inflación. Pero no hemos medido tantas cosas como para estar completamente seguros. Es como si alguien encuentra un hueso grande. De ahí a decir que hubo dinosaurios y que tenían la cabeza así o asá, para eso hay que encontrar muchas más cosas. Por ahora sabemos que es un hueso, que es muy viejo y que no es de un perro, pero para decir que la Tierra estaba llena de estos bichos gigantescos nos faltan datos. Por eso queremos encontrar más cosas.

“El anuncio del primer eco del Big Bang fue una vergüenza”
(El pasado mes de marzo el equipo del telescopio BICEP2, liderado por Estados Unidos, dijo que había encontrado un patrón en el cielo producido por la rápida expansión del espacio sólo unas fracciones de segundo después del Big Bang.)

P. Usted fue muy crítico con los datos de BICEP2, el experimento de EE UU que anunció el primer eco del Big Bang, ¿qué detectaron realmente?

R. Yo fui una de las personas que propuso la existencia de los modos B [las señales que demostrarían la presencia de ondas gravitacionales]. Por eso estaba muy contento de que BICEP2 los hubiera descubierto. Pero no pasó un mes para que me diera cuenta de que los datos estaban contaminados por otras emisiones. Creo que esto ya está confirmado para toda la comunidad científica.La saga de BICEP 2 es una vergüenza. Lo peor es que el experimento es el mejor que tenemos por el momento. Claramente dominaban el campo y si hubieran hecho un estudio más conservador serían vistos hoy con gran admiración. En mi opinión hicieron algo que nos perjudica a todos. Perdimos credibilidad. Sin la evidencia suficiente salimos a decir pavadas, básicamente.

P. ¿Usted trabajó con ellos?

El instrumento BICEP2, en la Antártida

El instrumento BICEP2, en la Antártida / S.R./Harvard

R. No, pero los respetaba mucho. Y los respeto. Creo que es una muestra del mundo en el que vivimos hoy, en el que la presión por conseguir dinero y fama llegó hasta la astronomía. Que en astronomía nos guiemos tanto por la fama y los premios como para jugarte una reputación de tanto tiempo y echarla a perder en un minuto, no lo entiendo. Claramente no solo es su culpa. Cuando se anunció el resultado salió un vídeo en Youtube donde llamaban a la puerta de Andrei Linde, una especie de reality TV muy profesional hecho por el departamento de prensa de la Universidad de Stanford. También invitaron a todo el mundo a una conferencia de prensa en la Universidad de Harvard con los padres de la inflación, eso no lo hicieron los físicos, sino los departamentos de relaciones públicas. Es parte de la maquinaria que tienen las universidades para hacerse publicidad. Vivimos en ese contexto y es difícil decir: “no quiero hacer todo este circo”.

“La presión por conseguir dinero y fama ha llegado a la astronomía”

P. ¿Se dejaron llevar?

R. Sí. La ciencia se está dejando llevar por el espectáculo. Ahora hay premios de física que parecen la entrega de los Oscar. Por un lado puede pensar uno que es bueno que la ciencia sea reconocida. Es una forma de mirarlo. Pero por otra parte también influye la forma en la que anunciamos nuestros resultados, la forma en la que en definitiva se reparte el dinero y se contrata gente. No creo que sean cambios para bien. No creo que lo podamos cambiar, es como un tren que va en ese sentido y es muy difícil pararlo.

P. ¿Puede que después de todo parte de la señal sea genuina?

“Las posibilidades que tengo para hacer ciencia en EEUU no están en Argentina”

R. Lo que no pueden probar es que vieron ninguna cosa que no sea polvo. Dentro de esa señal puede haber un poco de ondas gravitacionales pero con los datos que tenemos no se puede saber. Harán falta otros experimentos.

P. En tiempos de crisis y elevado paro a veces es difícil explicar por qué hay que gastar miles de millones de euros en instrumentos científicos ¿Cómo lo ve usted?

R. Hay que ponerlo en contexto. Esas sumas de dinero parecen muy grandes, pero comparado con todo el presupuesto de un país es una cifra menor, muy menor. Es como cuando una familia se da un gusto y se va a comer fuera aunque las cosas estén mal. Lo lindo de la vida es ese tipo de cosas, no solo trabajar. Es lo mismo para la sociedad. La ciencia, el arte, es parte de lo increíble del ser humano, de las cosas que puede hacer.

P. ¿Quiere volver a Argentina a trabajar algún día?

R. No, es ridículo. Mi familia vive allí, pero las posibilidades que tengo para hacer ciencia en EE UU no están en Argentina. Y además en Argentina, desde que yo existo, desde que existen mis padres, no ha habido un periodo de ni siquiera 10 años en el que se haya comportado como un país razonable. Prefiero que mis hijos crezcan en un país donde tengan más oportunidades y no se tengan que estar preocupando de si todo explota o si sus ahorros desaparecen. No es un buen lugar para vivir Argentina.

P. Volviendo a la física, ¿cuál es su nuevo objetivo?

R. Yo soy teórico y siempre pensamos en cosas que los experimentales creen que no van a poder comprobar. Me interesan mucho los principios del universo, intentar entender lo que pasó. Una opción es mirar la radiación de fondo de microondas y otra es medir con más detalle las propiedades de otro fósil que quedó de la época de la inflación. Son las fluctuaciones tras el Big Bang que dieron origen a todas las estructuras que vemos en el universo, por ejemplo las galaxias. Si no encontramos las ondas gravitacionales, otra posibilidad es estudiar en más detalle propiedades más difíciles de medir que se llaman no gausianidades. Si queremos entender lo que pasó hay que encontrar más claves, más cosas que las que tenemos. En mi opinión no alcanza con lo que observamos para estar seguros de lo que pasó.

P. ¿Qué experimentos harían falta para detectar esos otros fósiles?

Presentados los primeros resultados de la Misión Planck, que revela nuevos datos sobre el origen del universo

“La misión Planck ha visto anomalías que algunos interpretan como multiversos”

R. La radiación de fondo usa dos dimensiones, es como una foto. Para tener más información necesitamos un mapa en tres dimensiones. Va a haber muchos nuevos experimentos que van en esta dirección. Por ejemplo mucha gente que quiere entender el tema de la energía oscura está haciendo este tipo de experimentos de medir la distribución de materia en el universo. Son telescopios que sacan fotos del cielo, encuentran todas las galaxias y dicen a qué distancia están. Pero para tener un mapa con gran volumen hacen falta telescopios grandes, más allá de la tecnología que tenemos hoy. Probablemente la próxima generación de este tipo de experimentos llegue donde Planck llegó con la radiación de fondo. Saber más nos llevará 20 años.

P. Una de las posibilidades de la inflación es que haya muchos universos ¿lo podremos confirmar algún día?

R. Tiene que quedar claro que esa es una especulación muy grande. Está fundamentada, pero tiene que ver con lo que pasó antes de la inflación. Son preguntas de las que no tenemos datos. Es muy difícil encontrar algo en nuestro universo que nos dé indicaciones de esto. Por eso parece una cosa más filosófica, que nunca sabrás si es verdad o no. Una posibilidad es que, si hay multiversos, estos sean como una burbuja en agua hirviendo. A veces las burbujas chocan y hacen una más grande. En este caso cada una es un universo. Si eso es así, si hemos chocado con otro universo, posiblemente se vean señales en la radiación de fondo, como círculos en el cielo, la intersección de la colisión de dos esferas. Los estuvimos buscando pero nadie los encontró. Planck ha visto anomalías que algunos interpretan como multiversos, pero estadísticamente no bastan, pueden deberse al azar.”

Hasta aquí la entrevista publicada que nos deja claro lo que siempre hemos comentado aquí: Sabemos menos de lo que creemos que sabemos. La Publicación original en el Diario el Pais no ha sido trastocada y sólo, para hacerlo más amena, me tomé la licencia de poner algunas imágenes relacionadas.

emilio silvera

La ciencia en 2015: candidatos a ser hitos

Autor por Emilio Silvera    ~    Archivo Clasificado en Ciencia futura    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El superacelerador de partículas LHC, el fin del ébola, el genoma del hombre de Atapuerca o una visita a Plutón son algunas de las áreas de investigación a tener en cuenta en los próximos 12 meses, según la revista `Nature´

Unos especialistas trabajan en el detector CMS, del acelerador de partículas LHC, en junio de 2013. / Michael Hoch / CERN

Nadie en ciencia tiene la osadía de anticipar un descubrimiento, pero los expertos sí que tienen olfato para saber dónde y qué áreas de investigación son más fértiles para la novedad provechosa. Una nueva instalación se abre con buenas perspectivas para atisbar lo nunca visto, una línea de trabajo puede estar acercándose a la culminación de logros acumulados, una nave espacial que llega a su destino puede fallar, o no, pero tiene potencialidad de aportar nueva información. El equipo de la revista científica Nature hace esta semana su pronóstico del año próximo. En su resumen Qué cabe esperar en ciencia en 2015, coordinado por Elisabeth Gibney, apuesta por el superacelerador de partículas LHC como primer candidato a profundizar en el conocimiento del universo, entre la decena de cuestiones científicas de las que merece mucho la pena estar pendientes, como el cambio climático, el fin de la epidemia de ébola, los nuevos medicamentos contra el colesterol, la llegada de una nave espacial a Plutón o el genoma de los humanos de Atapuerca.

Superacelerador LHC. Para el mes de marzo está previsto que el acelerador de partículas LHC, junto a Ginebra, empiece a funcionar de nuevo tras dos años de parada en los que se ha puesto a punto para aguantar casi el doble de energía en las colisiones de protones que genera, respecto a la fase anterior. Era ya la instalación de este tipo más potente del mundo y ahora irá mucho más lejos. El Laboratorio Europeo de Física de Partículas (CERN), junto a Ginebra, espera para mayo las primeras colisiones útiles para los experimentos. Si en 2012, los científicos descubrieron en el LHC el histórico bosón de Higgs, ahora esperan “desvelar fenómenos que cierren las fisuras del Modelo Estándar de física de Partículas”, recalca Nature. Además, “la popular [entre los físicos] teoría de supersimetrías, ya en duda, podría perder partidarios si el actualizado LHC no encuentra indicios las muchas partículas pesadas que dicha teoría predice”.

Algunas cifras y muchas galletas

 

  • La inversión mundial en Investigación y Desarrollo (I+D) alcanzará, en 2015, los 1,55 billones de euros (frente a 577.000 millones en 2000; 780.000 millones en 2005 y un billón en 2010), indica un gráfico de la revista Nature que recoge las grandes cifras en ciencia y tecnología.
  • Unos 10 millones de investigadores en todo el planeta y con una media de 50 horas semanales de trabajo, suman 2,9 millones de años de labor científica.
  • En 2015 habrá en el mundo 260.000 nuevos doctores, se publicarán 920.000 artículos científicos (con un crecimiento del 2,8% de crecimiento anual) y los bancos genéticos habrán acumulado 1,5 billones de bases (las letras químicas del ADN), lo que equivale a unos 500 genomas humanos.
  • En el capítulo de las curiosidades, Nature calcula que se consumirán 234.000 galletas en la estación científica estadounidense McMurdo, la mayor de la Antártida, y los investigadores se tomarán en todo el planeta mil millones de tazas de café, “su estimulante favorito”.

 

 

 

El pacto del clima. Para diciembre de 2015 está fijada una cita importante en la lucha contra el cambio climático: la conferencia anual que, en esta ocasión, se celebrará en París. El objetivo de la cumbre, tras el acuerdo alcanzado este año entre los dos países que son los mayores emisores de gases de efecto invernadero (EE UU y China) para reducir dicha contaminación climática, es alcanzar acuerdos vinculantes de control de las emisiones para después de 2020, señala Nature. Mientras tanto, recuerda, el nivel medio mundial de dióxido de carbono en la atmósfera terrestre puede superar las 400 partes por millón por primera vez desde hace millones de años.

Fin de la epidemia de ébola. Los expertos en salud esperan acabar con el actual brote de ébola que azota tres países de África Occidental: Sierra Leona, Liberia y Guinea Conakry. Esa victoria “requerirá medidas ya en marcha como la rápida detección [de casos] y el aislamiento de personas contagiadas”. Pero también, señalan los expertos de la revista, habrá que estar atentos a los ensayos de vacunas contra el virus (se esperan resultados para junio), así como a los medicamentos que se están probando. También destacan los tratamientos en estudio que utilizan sangre rica en anticuerpos de pacientes que han superado la infección para ayudar al sistema inmune de los enfermos.

This is an artist's impression of the dwarf planet Ceres. Image credit: NASA / JPL-Caltech.

Viajes espaciales a planetas enanos. Primero será Ceres el que reciba la visita de una nave espacial. Será la Dawn, de la NASA y llegará en marzo próximo a ese objeto del Sistema Solar, más masivo que se conoce del cinturón de asteroides que hay entre Marte y Júpiter. Luego, la nave New Horizons, también de la agencia espacial estadounidense, llegará a Plutón. Sobrevolará ese planeta enano y la máxima aproximación será el 14 de julio. Se espera una avalancha de nuevos datos sobre ese cuerpo rocoso, sus lunas y su atmósfera.

El Grafeno en Medicina y Biomedicina

Grafeno y Biomedicina. Los centros de investigación que se abren, si están debidamente planificados, son una potencial fuente de descubrimientos importantes. En noviembre de 2015 abrirá sus puertas, en Londres, el Instituto Francis Crick, con 1.250 investigadores y una financiación de 817 millones de euros. Será un centro interdisciplinar orientado a la biomedicina. También en el Reino Unido, en concreto en Manchester, se inaugurará el Instituto Nacional del Grafeno. Financiado en parte por el Gobierno británico, es un elemento clave del plan de Manchester denominado Ciudad del Grafeno. En la universidad de esa ciudad trabajan con los científicos rusos Andre Geim y Konstantin Novoselov que, en 2010, recibieron el premio Nobel de Física por el descubrimiento del grafeno.

 

Ilustración de la nave espacial `New Horizons´ pasando junto a Plutón en julio de 2015. / Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)

 

 

Medicamentos contra el colesterol. Varias empresas farmacéuticas compiten por sacar al mercado nuevos fármacos contra el colesterol que pueden ser aprobados en 2015. Las terapias que reducen la lipoproteína LDL actuando sobre la proteína PCSK9 han mostrado ser prometedores en los ensayos clínicos. Nature cita dos fármacos en concreto, uno de la californiana Amgen, y otro de la francesa Sanofi, que están pendientes de autorizaciones que podrían darse hacia el verano.

Ondulaciones del espacio-tiempo. Hacia finales de 2015 estarán listos para trabajar con mayor sensibilidad que hasta ahora dos grandes detectores estadounidenses de ondas gravitacionales del programa LIGO: uno en Richland (Washington) y otro en Livingstone (Luisiana). El objetivo es captar ondulaciones en el espacio tiempo predichas por Albert Einstein. Además, para el otoño está previsto el lanzamiento al espacio del LISA Pathfinder, de la Agencia Europea del Espacio (ESA). Es una misión de ensayos tecnológicos imprescindibles para lanzar al espacio, hacia 2034, un detector de ondas gravitacionales.

El genoma de Atapuerca. Tras un primer genoma (mitocondrial), anunciado en 2013, de los fósiles de la Sima de los Huesos, en Atapuerca (Burgos), de hace unos 400.000 años, los científicos esperan lograr ahora el genoma del núcleo de la célula. Puede ser este año, pese a que el reto es enorme dada la antigüedad de los huesos y el escaso ADN recuperable en ellos. “Pero los resultados pueden ayudar a clarificar la relación evolutiva entre los humanos, los neandertales y otro grupo remoto, los denisovanos, y a identificar episodios de cruce entre homínidos relacionados entre sí”, señala Nature.

Política científica. El Gobierno ruso se propone evaluar 450 institutos de investigación de la Academia Rusa de Ciencias. En el Reino Unido, las elecciones generales de mayo formarán un parlamento que decidirá acerca de permitir o no, por primera vez en el mundo, la fertilización in vitro de tres progenitores, una técnica que combina el material genético de tres adultos y que puede ser útil para tratar determinadas enfermedades hereditarias.

Observación oceánica. Dos nuevos buques de investigación estadounidenses comenzarán sus operaciones: el Sikuliaq ártico, de la Fundación Nacional para la Ciencia (NSF), y el Neil Armstrong de la Institución Oceanográfica Woods Hole. Alemania también estrenará buque científico, el Sonne, que repite el nombre de su antecesor. El sistema de la Iniciativa de Observación del Océano estará completo en 2015 para el estudio marino en tiempo real. Japón, por su parte, recuerda Nature, reiniciará probablemente la captura “científica” de ballenas en aguas antárticas después de la interrupción impuesta por la Corte Internacional de Justicia.

Hasta aquí la Noticia que he ido adornando con algunas imágenes acordes al tema. Sin embargo, no está todo lo que debería y, como pasa siempre, se dejan cosas importantes por detrás y, lo podemos considerar como una muestra incompleta de lo que fue y, de lo que será. Este 2.015 nos traerá descubrimientos asombrosos en algunas de las Disciplinas que practica el Ser humano en el campo de la Ciencia.

Habrá que estar muy atentos al sector de la robótica, de las naves espaciales que van a otros “mundos”, de los telescopios y sus descubrimientos, de las “cortinas” que se puedan descorrer en el campo de la Física y que dejará enfocar, sobre los ahora rincones oscuros, un rayo de luz para que nos lleve a la comprensión.

¡Estaremos esperando!

¡Cuántas maravillas!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

No sería descabellado decir  que las simetrías que vemos a nuestro alrededor, un arco iris a las flores y a los cristales, pueden considerarse en última instancia como manifestaciones de fragmentos de la teoría decadimensional original. Riemann y Einstein habían confiado en llegar a una comprensión geométrica de por qué las fuerzas pueden determinar el movimiento y la naturaleza de la materia. Por ejemplo, la fuerza de Gravedad generada por la presencia de la materia, determina la geometría del espacio-tiempo.

Dado el enorme poder de sus simetrías, no es sorprendente que la teoría de supercuerdas sea radicalmente diferente de cualquier otro de física.  De hecho, fue descubierta casi por casualidad. Muchos físicos han comentado que si este accidente fortuito no hubiese ocurrido, entonces la teoría no se hubiese descubierto hasta bien entrado el siglo XXI. Esto es así porque supone una neta desviación de todas las ideas ensayadas en este siglo. No es una extensión natural de tendencias y teorías populares en este siglo que ha pasado; permanece aparte.

Por el contrario, la teoría de la relatividad general de Einstein tuvo una evolución normal y lógica. En primer lugar, su autor, postula el principio de equivalencia. Luego reformuló principio físico en las matemáticas de una teoría de campos de la gravitación basada en los campos de Faraday y en el tensor métrico de Riemann. Más tarde llegaron las “soluciones clásicas”, tales el agujero negro y el Big Bang. Finalmente, la última etapa es el intento actual de formular una teoría cuántica de la gravedad. Por lo tanto, la relatividad general siguió una progresión lógica, un principio físico a una teoría cuántica.

 

                         Geometría → teoría de campos → teoría clásica → teoría cuántica.

Contrariamente, la teoría de supercuerdas ha evolucionando hacia atrás desde su descubrimiento accidental en 1.968. Esta es la razón de que nos parezca extraña y poco familiar, estamos aún buscando un principio físico subyacente, la contrapartida del principio de equivalencia de Einstein.

La teoría nació casi por casualidad en 1.968 cuando dos jóvenes físicos teóricos, Gabriel Veneziano y Mahiko Suzuki, estaban hojeando independientemente libros de matemáticas. Figúrense ustedes que estaban buscando funciones matemáticas que describieran las interacciones de partículas fuertemente interactivas. Mientras estudiaban en el CERN, el Centro Europeo de Física Teórica en Ginebra, Suiza, tropezaron independientemente con la función beta de Euler, una función matemática desarrollada en el S. XIX por el matemático Leonhard Euler. Se quedaron sorprendidos al que la función beta de Euler ajustaba casi todas las propiedades requeridas para describir interacciones fuertes de partículas elementales.

File:Beta function on real plane.png

Función beta. Representación de la función valores reales positivos de x e y.

Según he leído, durante un almuerzo en el Lawrence Berkeley Laboratory en California, con una espectacular vista del Sol brillando sobre el puerto de San Francisco, Suzuki le explicó a Michio Kaku mientras almorzaban la excitación de descubrir, prácticamente por casualidad, un resultado parcialmente importante. No se suponía que la física se pudiera hacer de ese modo casual.

Tras el descubrimiento, Suzuki, muy excitado, mostró el hallazgo a un físico veterano del CERN. Tras oír a Suzuki, el físico veterano no se impresionó. De hecho le dijo a Suzuki que otro físico joven (Veneziano) había descubierto la misma función unas semanas antes. Disuadió a Suzuki de publicar su resultado. Hoy, esta función beta se conoce con el de modelo Veneziano, que ha inspirado miles de artículos de investigación iniciando una importante escuela de física y actualmente pretende unificar todas las leyes de la física.

            Gabriele Veneziano es un físico italiano

En 1.970, el Modelo de Veneziano-Suzuki (que contenía un misterio), fue parcialmente explicado cuando Yoichiro Nambu, de la Universidad de Chicago, y Tetsuo Goto, de la Nihon University, descubrieron que una cuerda vibrante yace detrás de sus maravillosas propiedades. Así que, la teoría de cuerdas fue descubierta hacia atrás y por casualidad, los físicos aún no conocen el principio físico que subyace en la teoría de cuerdas vibrantes y sus maravillosas propiedades. El último paso en la evolución de la teoría de cuerdas (y el primer paso en la evolución de la relatividad general) aún está pendiente de que alguien sea capaz de darlo.

    Así, Witten dice:

“Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de supercuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos c del siglo XX no deberían haber tenido el privilegio de estudiar teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos ahora mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.”

 

Actualmente, como ha quedado dicho en este mismo , Edwar Witten es el físico teórico que, al frente de un equipo de físicos de Princeton, lleva la bandera de la teoría de supercuerdas con aportaciones muy importantes en el desarrollo de la misma. De todas las maneras, aunque los resultados y avances son prometedores, el camino por andar es largo y la teoría de supercuerdas en su conjunto es un edificio con muchas puertas cerradas de las que no tenemos las llaves acceder a su interior y mirar lo que allí nos aguarda.

Ni con colección de llaves podremos abrir la puerta que nos lleve a la Teoría cuántica de la gravedad que, según dicen, subyace en la Teoría M, la más moderna versión de la cuerdas expuesta por E. Witten y que, según contaron los que estuvieron presentes en su presentación, Witten les introdujo en un “universo” fascinante de inmensa belleza que, sin embargo, no puede ser verificado por el experimento.

El problema está en que nadie es lo suficientemente inteligente para resolver la teoría de campos de cuerdas o cualquier otro enfoque no perturbativo de esta teoría. Se requieren técnicas que están actualmente más allá de nuestras capacidades. Para encontrar la solución deben ser empleadas técnicas no perturbativas, que son terriblemente difíciles. Puesto que el 99 por ciento de lo que conocemos sobre física de altas energías se basa en la teoría de perturbaciones, esto significa que estamos totalmente perdidos a la hora de encontrar la verdadera solución de la teoría.

¿Por qué diez dimensiones?

Uno de los secretos más profundos de la teoría de cuerdas, que aún no es comprendido, es por qué está definida sólo en diez, once y veintiséis dimensiones. Si calculamos cómo se rompen y se vuelven a juntar las cuerdas en el espacio N-dimensional, constantemente descubrimos que pululan términos absurdos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos indeseados aparecen multiplicados por (N-10). Por consiguiente, para hacer que desaparezcan estas anomalías, no tenemos otra elección cuántica que fijar N = 10. La teoría de cuerdas, de hecho, es la única teoría cuántica conocida que exige completamente que la dimensión del espacio-tiempo esté fijada en un número único, el diez.

Por desgracia, los teóricos de cuerdas están, por el , completamente perdidos para explicar por qué se discriminan las diez dimensiones.  La respuesta está en las profundidades de las matemáticas, en un área denominada funciones modulares.

Al manipular los diagramas de lazos1 de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el 10 aparecen en los lugares más extraños. Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del este. Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro universo actual.

nos asomamos a la Teoría de cuerdas, entramos en un “mundo” lleno de sombras en los que podemos ver brillar, a lo lejos, un resplandor cegador. Todos los físicos coinciden en el hecho de que es una teoría muy prometedora y de la que parece se podrán obtener buenos rendimientos en el futuro pero, de momento, es imposible verificarla.

El misterio de las funciones modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos. Igual que Riemann, murió de cumplir cuarenta años, y como Riemann antes que él, trabajó en total aislamiento en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que los buscó sin conocerlos. Perdió muchos años de su vida en redescubrir matemáticas conocidas.

Dispersas oscuras ecuaciones en sus cuadernos están estas funciones modulares, que figuran entre las más extrañas jamás encontradas en matemáticas. Ellas reaparecen en las ramas más distantes e inconexas de las matemáticas. Una función que aparece una y otra vez en la teoría de las funciones modulares se denomina (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor. Esta extraña función contiene un término elevado a la potencia veinticuatro.

       La magia esconde una realidad

El 24 aparece repetidamente en la obra de Ramanujan. Este es un ejemplo de lo que las matemáticas llaman números mágicos, que aparecen continuamente donde menos se esperan por razones que nadie entiende.   Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas. El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas.  En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda. Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas. Estas son precisamente las entidades matemáticas descubiertas por Ramanujan. Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio-tiempo debe tener 24 + 2 = 26 dimensiones espacio-temporales.

Para comprender este misterioso factor de dos (que añaden los físicos), consideramos un rayo de luz que tiene dos modos físicos de vibración. La luz polarizada vibrar, por ejemplo, o bien horizontal o bien verticalmente. Sin embargo, un campo de Maxwell relativista Aµ cuatro componentes, donde µ = 1, 2, 3, 4. Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell.  Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos. Análogamente, una cuerda relativista vibra en 26 dimensiones.  Sin embargo, dos de estos modos vibracionales pueden ser eliminados rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.

Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. Este es el origen de la décima dimensión que exige la teoría. La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente. Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda. Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende. Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio-tiempo sea diez.

En el análisis final, el origen de la teoría decadimensional es tan misterioso como el propio Ramanujan. Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “no lo sé”. Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una cuánticamente autoconsistente), pero no sabemos por qué se seleccionan estos números concretos.

Ghhardy@72.jpg

               Godfrey Harold Hardy

G. H. Hardy, el mentor de Ramanujan,  trató de estimar la capacidad matemática que poseía Ramanujan.   Concedió a David Hilbert, universalmente conocido y reconocido uno de los mayores matemáticos occidentales del siglo XIX, una puntuación de 80.   A Ramanujan le asignó una puntuación de 100.  Así mismo, Hardy se concedió un 25.

Por desgracia, ni Hardy ni Ramanujan parecían interesados en la psicología a los procesos de pensamiento mediante los cuales Ramanujan descubría estos increíbles teoremas, especialmente cuando diluvio material brotaba de sus sueños con semejante frecuencia.   Hardy señaló:

“Parecía ridículo importunarle sobre como había descubierto este o ese teorema conocido, cuando él me estaba mostrando media docena día, de nuevos teoremas”.

 

 

           Ramanujan

Hardy recordaba vivamente:

-”Recuerdo una vez que fui a visitarle cuando estaba enfermo en Putney.  Yo había tomado el taxi 1.729, y comenté que el numero me parecía bastante feo, y que esperaba que no fuese mal presagio.”

 

– No. -Replicó Ramanujan postrado en su cama-. Es un número muy interesante; es el número más pequeño expresable como una suma de dos cubos en dos formas diferentes.

 

(Es la suma de 1 x 1 x 1  y 12 x 12 x 12, y la suma de 9 x 9 x 9  y  10 x 10 x 10).

Era capaz de recitar en el acto teoremas complejos de aritmética cuya demostración requeriría un ordenador moderno.

En 1.919 volvió a casa, en la India, donde un año más tarde murió  enfermo.

El legado de Ramanujan es su obra, que consta de 4.000 fórmulas en cuatrocientas páginas que llenan tres volúmenes de notas, todas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario o, lo que es más frustrante, sin ninguna demostración.  En 1.976, sin embargo, se hizo un nuevo descubrimiento.   Ciento treinta páginas de borradores, que contenían los resultados del último año de su vida, fueron descubiertas por casualidad en una caja en el Trinity Collage.   Esto se conoce ahora con el de “Cuaderno Perdido” de Ramanujan.

Comentando cuaderno perdido, el matemático Richard Askey dice:

“El de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”.  Lo que él consiguió era increíble.  Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.

 

Por mi creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años hasta que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna,   la única capaz de unir la mecánica quántica y la Gravedad.

        Fórmula de Ramanujan determinar los decimales de pi

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca vísto, él trabajaba otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie.   Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro.   Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.

saben los físicos, los “accidentes” no aparecen sin ninguna razón.  Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente.  Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego.  Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

                           Nuestro mundo asimétrico hermosas simetrias

Aquí es precisamente donde entra el trabajo de Ramanujan.  Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan.  ¡Increíble , cierto.

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan su punto más débil.  Cualquier teoría, afirman, debe ser verificable.   Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡La teoría de cuerdas no es realmente una teoría!

El principal problema, es teórico más que experimental.  Si fuéramos suficientemente inteligentes, podríamos resolver exactamente la teoría y encontrar la verdadera solución no perturbativa de la teoría.  Sin embargo, esto no nos excusa de encontrar algún medio por el que verificar experimentalmente la teoría, debemos esperar señales de la décima dimensión.

Volviendo a Ramanujan…

Es innegable lo sorprendente de su historia, un muchacho pobre con escasa preparación y arraigado pocos a sus creencias y tradiciones, es considerado como una de los mayores genios de las matemáticas del siglo XX. Su legado a la teoría de números, a la teoría de las funciones theta y a las series hipergeométricas, además de ser invaluable aún sigue estudiándose por muchos prominentes matemáticos de todo el mundo. Una de sus fórmulas más famosas es

utilizada realizar aproximaciones del número Pi con más de dos millones de cifras decimales. Otra de las sorprendentes fórmulas descubiertas por Ramanujan es un igualdad en que era “casi” un entero (la diferencia era de milmillonésimas). De hecho, durante un tiempo se llegó a sospechar que el número era efectivamente entero. No lo es, pero este hallazgo sirvió de base para la teoría de los “Cuasi enteros”. A veces nos tenemos que sorprender al comprobar hasta donde puede llegar la mente humana que, prácticamente de “la nada”, es capaz de sondear los misterios de la Naturaleza para dejarlos al descubierto ante nuestros asombros ojos que, se abren como platos ante tales maravillas.

Publica: emilio silvera

Para saber mucho más: “HIPERESPACIO”, de Michio Kaku,( 1996 CRÍTICA-Grijalbo Mondadori,S.A. Barcelona) profesor de física teórica en la City University de Nueva York. Es un especialista a nivel mundial en la física de las dimensiones superiores ( hiperespacio). Despide el libro con una palabras preciosas:
”Algunas personas buscan un significado a la vida a través del beneficio , a través de las relaciones personales, o a través de experiencias propias. Sin embargo, creo que el estar bendecido con el intelecto para adivinar los últimos secretos de la naturaleza da significado suficiente a la vida”.

¡Los materiales para la vida! Y, de los mundos

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Química de la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

 

 

http://2.bp.blogspot.com/-az-rChkzpD4/Tm9SUJr4G_I/AAAAAAAAHMM/iynnMNxF0Cg/s1600/m42_vargas.jpg

 

 

plasma vivo? ¿De dónde venimos?

¿Será así la espuma cuántica?

                   Los elementos se crean en las estrellas y en las explosiones supernovas

¡La Física! Cuando se asocia a otras disciplinas ha dado siempre un resultado espectacular y, en el caso de la Astronomía, cuando se juntó con la Física, surgió esa otra disciplina que llamamos Astrofísica. La Astrofísica es esa nueva rama de la Astronomía que estudia los procesos físicos y químicos en los que intervienen los fenómenos astronómicos. La Astrofísica se ocupa de la estructura y evolución estelar (incluyendo la generación y transporte de energía en las estrellas), las propiedades del medio interestelar y sus interacciones en sus sistemas estelares y la estructura y dinámica de los sistemas de estrellas (como cúmulos y galaxias) y sistemas de galaxias. Se sigue con la Cosmología que estudia la naturaleza, el origen y la evolución del universo. Existen varias teorías sobre el origen y evolución del universo (big bang, teoría del estado estacionario, etc.

Las estrellas, como todo en el Universo, no son inmutables y, con el paso del Tiempo, cambian para convertirse en objetos diferenters de los que, en un principio eran. Por el largo trayecto de sus vidas, transforman los materiales simples en materiales complejos sobre los que se producen procesos biológico-químicos que, en algunos casos, pueden llegar hasta la vida.

Una de las cosas que siempre me han llamado poderosamente la atención, han sido las estrellas y las transformaciones que, dentro de ellas y los procesos que en su interior se procesan, dan lugar a las transiciones de materiales sencillos hacia materiales más complejos y, finalmente, cuando al final de sus vidas expulsan las capas exteriores al espacio interestelar dejando una extensa región del espacio interestelar sembrada de diversas sustancias que, siguiendo los procesos naturales e interacciones con todo lo que en el lugar está presente, da lugar a procesos químicos que transforman esas sustancias primeras en otras más complejas, sustancias orgánicas simples como, hidrocarburos y derivados que, finalmente, llegan a ser los materiales necesarios para que, mediante la química-biológica del espacio, den lugar a moléculas y sustancias que son las propicias para hacer posible el surgir de la vida.

La Química de los Carbohidratos es una parte de la Química Orgánica que ha tenido cierta entidad propia desde los comienzos del siglo XX, probablemente debido a la importancia química, biológica (inicialmente como sustancias de reserva energética) e industrial (industrias alimentaria y del papel) de estas sustancias. Ya muy avanzada la segunda mitad del siglo XX han ocurrido dos hechos que han potenciado a la Química de Carbohidratos como una de las áreas con más desarrollo dentro de la Química Orgánica actual.

Todos los animales, plantas y microbios están compuestos fundamentalmente, por las denominadas sustancias orgánicas. Sin ellas, la vida no tiene explicación (al menos que sepamos). De esta manera, en el primer período del origen de la vida tuvieron que formarse dichas sustancias, o sea, surgimiento de la materia prima que más tarde serviría para la formación de los seres vivos.

La característica principal que diferencia a las sustancias orgánicas de las inorgánicas, es que en el contenido de las primeras se encuentra como elemento fundamental el Carbono.

En las sustancias orgánicas, el carbono se combina con otros elementos: hidrógeno y oxígeno (ambos elementos juntos forman agua), nitrógeno (este se encuentra en grandes cantidades en el aire, azufre, fósforo, etc. Las distintas sustancias orgánicas no son más que las diferentes combinaciones de los elementos mencionados, pero en todas ellas, como elemento básico, siempre está el Carbono.

EDUCACIÓN AMBIENTAL PARA EL TRÓPICO DE COCHABAMBA

En el primer nivel (abajo) están los productores, o sea las plantas como maíz, frijol, papaya, cupesí, mora, yuca, árboles, hierbas, lianas, etc., que producen hojas, frutas, raíces, semillas, que comen varios animales y la gente.

En el segundo nivel están los primeros consumidores, que comen hierbas, hojas (herbívoros) y frutas (frugívoros). Estos primeros consumidores incluyen a insectos como hormigas, aves como loros y mamíferos como ratones, urina, chanchos, chivas, vacas.

En el tercer nivel están los segundos consumidores (carnívoros), es decir los que se comen a los animales del segundo nivel: por ejemplo el oso bandera come hormigas, el jausi come insectos y la culebra come ratones.

Nosotros, los humanos, somos omnívoros, es decir comemos de todo: plantas y animales. Algunos de los carnívoros comen, a veces, plantas también, como los perros. Otros, como el chancho, comen muchas plantas y a veces también carne.

Las sustancias orgánicas más sencillas y elementales son los llamados hidrocarburos o composiciones donde se combinan el Oxígeno y el Hidrógeno. El petróleo natural y otros derivados suyos, como la gasolina, el keroseno, etc., son mezcolanzas de varios hidrocarburos. Con todas estas sustancias como base, los químicos obtienen sin problemas, por síntesis, gran cantidad de combinados orgánicos, en ocasiones muy complejos y otras veces iguales a los que tomamos directamente los seres vivos, como azúcares, grasas, aceites esenciales y otros. Debemos preguntarnos como llegaron a formarse en nuestro planeta las sustancias orgánicas.

Está claro que, para los iniciados en estos temas, la cosa puede parecer de una complejidad inalcanzable, nada menos que llegar a comprender ¡el origen primario de las sustancias orgánicas!

Es nuestro planeta y el único habitado (hasta donde podemos saber). Está en la ecosfera, un espacio que rodea al Sol y que tiene las condiciones necesarias para que exista vida. Claro que, ¡son tantos los mundos! Cómo vamos a ser nosotros nos únicos que poblemos el Universo? ¡Que despercidicio de espacio!

La observación directa de la Naturaleza que nos rodea nos puede facilitar las respuestas que necesitamos. En realidad, si ahora comprobamos todas las sustancias orgánicas propias de nuestro mundo en relación a los seres vivos podemos ver que, todas, son producidas hoy día en la Tierra por efecto de la función activa y vital de los organismos.

Las plantas verdes absorben el carbono inorgánico del aire, en calidad de anhídrido carbónico, y con la energía de la luz crean, a partir de éste, sustancias orgánicas necesarias para ellas. Los animales, los hongos, también las bacterias y el resto de organismos, menos los de color verde, se alimentan de animales o vegetales vivos o descomponiendo estos mismos, una vez muertos, pueden proveerse de las sustancias orgánicas que necesitan. Con esto, podemos ver como todo el mundo actual de los seres vivos depende de los dos hechos análogos de fotosíntesis y quimiosíntesis, aplicados en las líneas anteriores.

Incluso las sustancias orgánicas que se encuentran bajo tierra como la turba, la hulla o el petróleo, han surgido, básicamente, por efecto de la acción de diferentes organismos que en un tiempo remoto se encontraban en el planeta Tierra y que con el transcurrir de los siglos quedaron ocultos bajo la maciza corteza terrestre.

Todo esto fue causa de que muchos científicos de finales del siglo XIX y principios del XX, afirmaran que era imposible que las sustancias orgánicas produjeran en la Tierra, de forma natural, solamente mediante un proceso biogenético, o sea, con la única intervención de los organismos. Esta opinión predominante entre los científicos de hace algunas décadas, constituyó un obstáculo considerable para hallar una respuesta a la cuestión del origen de la vida.

Para tratar esta cuestión era indispensable saber cómo llegaron a constituirse las sustancias orgánicas; pero ocurría que éstas sólo podían ser sintetizadas por organismos vivos. Sin embargo, únicamente podemos llegar a esta síntesis si nuestras observaciones no van más allá de los límites del planeta Tierra. Si traspasamos esa frontera nos encontraremos con que en diferentes cuerpos celestes de nuestra Galaxia se están creando sustancias orgánicas de manera abiogenética, es decir, en un ambiente que excluye cualquier posibilidad de que existan seres orgánicos en aquel lugar.

    Estrella de carbono (estrella gigante roja)

Con un espectroscopio podemos estudiar la fórmula química de las atmósferas estelares, y en ocasiones casi con la misma exactitud que si tuviéramos alguna muestra de éstas en el Laboratorio. El Carbono, por ejemplo, se manifiesta ya en las atmósferas de las estrellas tipo O, que son las que están a mayor temperatura, y su increíble brillo es lo que las diferencia de los demás astros (Ya os hablé aquí de R. Lepori, la estrella carmesí, o, también conocida como la Gota de Sangre, una estrella de Carbono de increíble belleza).

En la superficie de las estrellas de Carbono existe una temperatura que oscila los 20.000 y los 28.000 grados. Es comprensible, entonces, que en esa situación no pueda prevalecer aún alguna combinación química. La materia está aquí en forma relativamente simple, como átomos libres disgregados, sueltos como partículas minúsculas que conforman la atmósfera incandescente de estos cuerpos estelares.

La atmósfera de las estrellas tipo B, característica por su luz brillante blanco-azulada y cuya corteza tiene una temperatura que va de 15.000 a 20.000 grados, también tienen vapores incandescentes de carbono. Pero aquí este elemento tampoco puede formar cuerpos químicos compuestos, únicamente existe en forma atómica, o sea, en forma de pequeñísimas partículas sueltas de materia que se mueven a una velocidad de vértigo.

Sólo la visión espectral de las estrellas Blancas tipo A, en cuya superficie hay una temperatura de unos 12.000º, muestras unas franjas tenues, que indican, por primera vez, la presencia de hidrocarburos –las más primitiva combinaciones químicas de la atmósfera de estas estrellas. Aquí, sin que existan antecedentes, los átomos de dos elementos (el carbono y el hidrógeno) se combinan resultando un cuerpo más perfecto y complejo, una molécula química.

Observando las estrellas más frías, las franjas características de los hidrocarburos son más limpias cuando más baja es la temperatura y adquieren su máxima claridad en las estrellas rojas, en cuya superficie la temperatura nunca es superior a los 4.000º.

Es curioso el resultado obtenido de la medición de Carbono en algunos cuerpos estelares por su temperatura:

  • Proción: 8.000º
  • Betelgeuse: 2.600º
  • Sirio: 11.000º
  • Rigel: 20.000º

Como es lógico pensar, las distintas estrellas se encuentran en diferentes períodos de desarrollo. El Carbono se encuentra presente en todas ellas, pero en distintos estados del mismo.

Las estrellas más jóvenes, de un color blanco-azulado son a la vez las más calientes. Éstas poseen una temperatura muy elevada, pues sólo en la superficie se alcanzan los 20.000 grados.

Los científicos descubrieron una enorme cantidad de silicatos cristalinos e hidrocarburos policíclicos aromáticos, dos sustancias que indican la presencia de oxígeno y de carbono, respectivamente. Así todos los elementos que las componen, incluido el Carbono, están en forma de átomos, de diminutas partículas sueltas. Existen estrellas de color amarillo y la temperatura en su superficie oscila entre los 6.000 y los 8.000º. En estas también encontramos Carbono en diferentes combinaciones.

El Sol, pertenece al grupo de las estrellas amarillas y en la superficie la temperatura es de 6.000º. El Carbono en la atmósfera incandescente del Sol, lo encontramos en forma de átomo, y además desarrollando diferentes combinaciones: Átomos de Carbono, Hidrógeno y Nitrógeno, Metino, Cianógeno, Dicaerbono, es decir:

  1. Átomos sueltos de Carbono, Hidrógeno y Nitrógeno.
  2. Miscibilidad combinada de carbono e hidrógeno (metano)
  3. Miscibilidad combinada de carbono y nitrógeno (cianógeno); y
  4. Dos átomos de Carbono en combinación (dicarbono).

En las atmósferas de las estrellas más calientes, el carbono únicamente se manifiesta mediante átomos libres y sueltos. Sin embargo, en el Sol, como sabemos, en parte, se presenta ya, formando combinaciones químicas en forma de moléculas de hidrocarburo de cianógeno y de dicarbono.

Para hallar las respuestas que estamos buscando en el conocimiento de las sustancias y materiales presentes en los astros y planetas, ya se está realizando un estudio en profundidad de la atmósfera de los grandes planetas del Sistema solar. Y, de momento, dichos estudios han descubierto, por ejemplo, que la atmósfera de Júpiter está formada mayoritariamente por amoníaco y metano. Lo cual hace pensar en la existencia de otros hidrocarburos. Sin embargo, la masa que forma la base de esos hidrocarburos, en Júpiter permanece en estado líquido o sólido a causa de la abaja temperatura que hay en la superficie del planeta (135 grados bajo cero). En la atmósfera del resto de grandes planetas se manifiestan estas mismas combinaciones.

Ha sido especialmente importante el estudio de los meteoritos, esas “piedras celestes” que caen sobre la Tierra de vez en cuando, y que provienen del espacio interplanetario. Estos han representado para los estudiosos los únicos cuerpos extraterrestres que han podido someter a profundos análisis químico y mineralúrgico, de forma directa. Sin olvidar, en algunos casos, los posibles fósiles.

Estos meteoritos están compuestos del mismo material que encontramos en la parte más profunda de la corteza del planeta Tierra y en su núcleo central, tanto por el carácter de los elementos que los componen como por la base de su estructura. Es fácil entender la importancia capital que tiene el estudio de los materiales de estas piedras celestes para resolver la cuestión del origen de las primitivas composiciones durante el período de formación de nuestro planeta que, al fin y al cabo, es la misma que estará presente en la conformación de otros planetas rocosos similares al nuestro, ya que, no lo olvidemos, en todo el universo rigen las mismas leyes y, la mecánica de los mundos y de las estrellas se repiten una y otra vez aquí y allí, a miles de millones de años-luz de nosotros.

Así que, se forman hidrocarburos al contactar los carburos con el agua. Las moléculas de agua contienen oxígeno que, combinado con el metal, forman los hidróxidos metálicos, mientras que el hidrógeno del agua mezclado con el carbono forman los hidrocarburos.
Los hidrocarburos originados en la atmósfera terrestre se mezclaron con las partículas de agua y amoníaco que en ella existían, creando sustancias más complejas. Así, llegaron a hacerse presentes la formación de cuerpos químicos. Moléculas compuestas por partículas de oxígeno, hidrógeno y carbono.

Todo esto desembocó en el saber sobre los Elementos que hoy podemos conocer y, a partir de Mendeléiev (un eminente químico ruso) y otros muchos…se hizo posible que el estudio llegara muy lejos y, al día de hoy, podríamos decir que se conocen todos los elementos naturales y algunos artificiales que, nos llevan a tener unos valiosos datos de la materia que en el universo está presente y, en parte, de cómo funciona cuando, esas sustancias o átomos, llegan a ligarse los unos con los otros para formar, materiales más complejos que, aparte de los naturales, están los artificiales o transuránicos.

Aquí en la Tierra, las reacciones de hidrocarburos y sus derivados oxigenados más simples con el amoníaco generaron otros cuerpos con distintas combinaciones de átomos de carbono, hidrógeno, oxígeno y nitrógeno (CHON) en su moléculas llamadas paras la vida una vez que, más tarde, por distintos fenómenos de diversos tipos, llegaron las primeras sustancias proteínicas y grasas que, dieron lugar a los aminoácidos, las Proteínas y el ADN y RDN que, finalmente desembocó en eso que llamamos vida y que, evolucionado, ha resultado ser tan complejo y, a veces, en ciertas circunstancias, peligroso: ¡Nosotros!

emilio silvera