lunes, 03 de agosto del 2020 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Si entendiera la Física! Sería maravilloso

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (13)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

El Acelerador LHC explorará con detalle la alta escala de energía del TeV, con un potencial de descubrimiento de hasta 14 Tera electrón Voltios. Con esta trampa descomunal construida por el hombre, se espera atrapar al esquivo bisón que, según todos los indicios, es el que proporciona la masa a las partículas. Hoy creemos en la existencia de una presencia espectral en el Universo que nos impide conocer la verdadera naturaleza de la materia. Es como si algo quisiera impedirnos ese conocimiento final que nos daría la luz necesaria para que, nuestras mentes, pudieran al fin comprender esa realidad del Universo que, hasta el momento, no hemos sabido vislumbrar, sólo su sombra se nos aparece en algunos experimentos.

En los años 60 del S.XX, independientemente, Peter Higgs, Francois Englert, Robert Brout, Gerald Guralnik, Dick Hagen y Tom Kibble, propusieron precisamente, que el universo estaba lleno de un campo más tarde llamado Campo de HIGGS. Como ya se ha comentado, las interacciones de las partículas con este campo provoca que adquieran masa. Podemos pues imaginar el espacio lleno de estas partículas virtuales (Bosones de Higgs) que al interaccionar con las demás partículas provocan en ellas “dicficultade” para moverse. Es decir, las partículas adquieren inercia y por tanto masa. A más interacción con el campo Higgs más masa.Por ejemplo, los fotones  no interaccionan con ese campo mientras que los quarks “top ” lo hacen muy intensamente.

Allá por el año 1974, algunos físicos propusieron aquella primera teoría para alcanzar la gran unificación. Ellos, propusieron que las tres interacciones o fuerzas fuerte, débil y electromagnética, eran parte de una fuerza unificada en aquellos momentos en que la temperatura del universo recién nacido estaba más alta que 10²⁸ de grados –unos mil trillones de veces la temperatura del centro del Sol-, y, esas condiciones extremas existían antes de 10¯³⁵ segundos contados a partir del Big Bang.

Por encima de dicha temperatura, los fotones, los gluones de la fuerza fuerte, así como las partículas W y Z, podrían intercambiarse libremente entre sí –una teoría gauge más potente que la de la teoría electrodébil- sin ninguna consecuencia observable. Todo esto sugiere que habría simetría completa entre las partículas de las tres fuerzas no gravitatorias.

Claro que, aquella teoría de gran unificación que los físicos sugerían, no la podemos ver el mundo que nos rodea –la fuerza nuclear fuerte que mantiene pegados protones y neutrones en el núcleo de los átomos, parece independiente de la fuerza débil y electromagnética.

Cuando la temperatura cayó por debajo de 10¯²⁸ grados, se hizo patente el nacimiento de otro campo que, ahora conocemos como el campo de Higgs y que denominamos Higgs de gran unificación. Y, como sucede con el campo electrodébil, cuando se formó ese océano de Higgs de gran unificación, el universo sufrió una transición de fase con la consiguiente reducción de simetría. En este caso, debido a que el océano de Higgs de gran unificación tiene un efecto diferente entre los gluones que el que tiene sobre las otras partículas de fuerza, la fuerza fuerte se desgajó de la fuerza electromagnética, dando dos fuerzas no gravitatorias distintas donde previamente había sólo una. Una fracción de segundo y un descenso de trillones de grados más tarde, el Higgs electrodébil se condensó, haciendo que también se separaran la fuerza débil y electromagnética. La idea es de una gran belleza, ¡la gran unificación!, sin embargo, no ha podido ser confirmada experimentalmente.

Contrariamente, aquella propuesta original de Georgi y Glasow predecía una huella, una consecuencia residual de la primitiva simetría del universo que hoy debería ser manifiesta, algo que permitiría que los protones se transmutaran de vez en cuando en otras especies de partículas (tales como antielectrones y partículas conocidas como piones). Pero tras años de laboriosa búsqueda de dicha desintegración del protón en sofisticados experimentos subterráneos, aquello nunca sucedió, al menos no pudo ser detectado.

El concepto de ruptura de simetría, y su realización mediante el campo de Higgs electrodébil, desempeña claramente un papel fundamental en la física de partículas y también en cosmología. Claro que, en este punto se nos ocurre la pregunta si un océano de Higgs es un algo invisible que llena lo que normalmente llamamos espacio vacío, ¿no estamos dándole vida a un nuevo éter?

Si existe…¿Cómo sería el Campo de Higgs?

La única respuesta que a dicha pregunta podemos dar es que si, en algunos aspectos nos recuerda al éter. Como el éter, un campo de Higgs condensado permea el espacio, nos envuelve a todos, se filtra a través de todo lo material y, como una característica intrínseca del espacio vacío (al menos que recalentemos el universo por encima de 10¹⁵ grados, lo que en realidad no podemos hacer) redefine nuestra concepción de la nada. Pero a diferencia del éter original, que fue introducido como medio indivisible para transportas las ondas luminosas de la misma manera que el aire transporta ondas sonaras, un océano de Higgs no tiene nada que ver con el movimiento de la luz, y por eso los experimentos de finales de siglo que descartaron el éter cuando se estudiaba el movimiento de la luz no tienen relación alguna con el océano de Higgs.

El océano de Higgs no tiene ningún conflicto con nada que se mueva a velocidad constante y, siendo así, todos los observadores con velocidad constante siguen estando en total pie de igualdad, y por ello un océano de Higgs, no entra en conflicto con la relatividad especial.

Claro que estas observaciones no son ninguna prueba de la existencia de los océanos de Higgs; lo que muestran es que, pese a ciertas similitudes con el éter, los campos de Higgs no están en conflicto con ninguna teoría o experimento.

No obstante, si existe un océano de Campos de Higgs debería tener otras consecuencias que fueran experimentalmente comprobables por estas fechas en que contamos con la valiosa ayuda del LHC.

Si, experimentos de altas energías, nos pueden llevar a confirmar el Campo de Higgs

Como ejemplo fundamental, de la misma forma que los campos electromagnéticos están compuestos de fotones, los campos de Higgs están compuestos de partículas que, de forma nada sorprendente, se han dado en llamar partículas de Higgs. Los cálculos teóricos han demostrado que existe un océano de Higgs que permea el espacio y, debería haber partículas de Higgs entre los restos de colisiones de altísimas energías que ya han tenido lugar en el Gran Colisionador de Hadrones, ese acelerados de átomos de gigantescas proporciones que, de momento ha utilizado la energía que proporcionan 7 TeV y, se propone, por estas fechas, hacer la prueba con 8 TeV.

Claro que, el marco teórico que lleva en vigor unas pocas decenas de años, se vendría abajo, se derrumbaría como un viejo edificio si, finalmente, no se encontrara el océano de Higgs repletos de bosones que proporcionan masa a las otras partículas.

¿Sería como un empezar de nuevo?

Bueno, no exactamente. Pero, soy de la opinión que no debemos adelantar los acontecimientos y, debemos tener todas nuestras esperanzas puestas en que, la física teórica está próxima a obtener un gran éxito: confirmando la potencia de la simetría para conformar de manera correcta nuestros razonamientos matemáticos cuando se aventura en las profundidades de lo desconocido de la Naturaleza.

Otro triunfo de la aparición del Bosón de Higgs, sería la confirmación de que, las fuerzas, en tiempos pasados eran una sola fuerza, es decir, el universo era parte4 de un todo simétrico que se desgarró en lo que actualmente conocemos. Por otra parte, sabiendo de la existencia del océano de Higgs, nuestra noción del espacio vacío tendría que ser re-establecida. Un espacio vacío no tiene que ser sinónimo de la NADA ABSOLUTA que, según parece, como la eternidad y lo infinito, no existen.

emilio silvera