martes, 16 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Velocidades inimaginables

Autor por Emilio Silvera    ~    Archivo Clasificado en Sin categoría    ~    Comentarios Comments (8)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético.

Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de energía en reposo de una partícula cualquiera, como se denota a continuación:

E = mc2

Leer más

El fantástico mundo de lo infinitesimal

Autor por Emilio Silvera    ~    Archivo Clasificado en Sin categoría    ~    Comentarios Comments (16)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¡El mundo de lo muy pequeño!

No es fácil adentrarse en este universo de lo definitivamente pequeño, o incluso hablar de ello, exige un conocimiento muy profundo de las leyes de la naturaleza que rigen el mundo y que no tenemos. Las fuerzas que encontramos allí determinan la forma en la cual se mueven las partículas pequeñísimas y también le dan sus propiedades por medio de unos mecanismos que no siempre llegamos a comprender.

Muchos, diciendo que “saben” buscan refugio en un galimatías matemático que pocas personas “normales” pueden entender a menos que sea uno de ellos, y, sin embargo, para apreciar realmente la solidez de la lógica de las leyes físicas, no se pueden evitar las matemáticas que es, el único lenguaje que pueden explicar aquello que no podemos decir con palabras. Desde siempre, he tratado de hablar de la Física como si de cualquier otra disciplina se tratara y, he procurado soslayar ecuaciones, teoremas y funciones modulares que aterran al lector no versado y, desde luego, no siempre he conseguido transmitir lo que quería decir.

Hacer un viaje al mundo de lo muy pequeño no resulta nada comprensible para nuestros sentidos que, acostumbrados a lo “pequeño” cotidiano, cuando se adentra en lo infinitesimal, allí, las cosas se comportan de manera muy distinta a la acostumbrada en nuestro mundo real.

Todos, cuando hemos sido pequeños, hemos tratado de imitar el mundo de los mayores con juguetes a escalas más pequeñas: cochecitos, un tren, grúas y camiones, piezas de madera en colores para construir figuras, piezas metálicas que nos daban la oportunidad de emplear la imaginación para construir mecanos y rústicos robots que sólo se movían con el impulso de nuestras manos, etc.

El escritor Jonathan Swift nos dejó aquellas fantásticas historias de Gulliver, aquel aventurero que llegó a las tierras de Lilliput, en la que habitaban personas diminutas. Allí todo era muy pequeño: la naturaleza, las plantas y animales, todo estaba conformado a pequeñas escalas. Él era allí como un gigante: “el hombre montaña”. Todas aquellas fantasías extrapoladas al fantástico mundo de la mecánica cuántica, me hace pensar que, en realidad, la historia falla si nos ponemos a plantear preguntas. Sabemos, por ejemplo, que las llamas de las velas pequeñas son aproximadamente del mismo tamaño que la llama de las velas grandes. ¿De qué tamaño eran las llamas de las velas en Lilliput? Y cuanto más se piensa más cuestiones surgen: ¿Cómo eran de grande las gotas de lluvia de Lilliput y en Brobdingnag?, ¿eran las leyes físicas para el agua diferentes allí que en nuestro propio mundo? Y, finalmente, los físicos se preguntarían: ¿De qué tamaño eran los átomos en estos lugares?, ¿qué clase de reacciones químicas podrían tener lugar con los átomos del cuerpo de Gulliver?

Leer más

El Congreso de Como.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el año 1927, en un Congreso de Física celebrado en Como (Lago de Italia, provincia de Como, en Lombardía, al pie de los Alpes, atravesado por el río Adda y rodeado por colinas cubiertas de bosques que lo hacen muy pintoresco), Niels Bohr habló por primera vez del “Principio de complementariedad”, una idea que tuvo fortuna científica y fortuna literaria.  Esta mezcla suele poner de los nervios a los científicos, que consideran escandaloso, y con razón, que se usen conceptos científicos fuera de su contexto.  Todos hemos visto aplicar las ideas de relatividad, caos, fractales, indeterminación, singularidad (que no tienen sentido fuera de su expresión matemática) para hablar de todo lo divino y lo humano.

Aquel Congreso quedó inscrito en los anales de la historia de la Física.  Asistieron Born, Compton, Fermi, Heisemberg, Lorentz, Millikan, Pauli, Planck, Sommerferld, es decir, lo más reluciente del ingenio humano en la Física del momento, a excepción de Einstein que, por motivos personales, no asistió.

En su enunciado Bohr dijo que quería resolver las diferencias insalvables que había entre la descripción clásica de los fenómenos físicos y la descripción cuántica.  La diferencia fundamental (dicho en plan coloquial) era que la Física clásica creía en la realidad de los fenómenos, mientras que la cuántica pensaba que el estado del sistema depende del observador.

Puso como ejemplo la naturaleza de la luz.

¿Es una onda o una partícula?

Para explicar los fenómenos de interferencia hay que considerarla onda, pero para explicar la interacción entre radiación y materia, conviene considerarla corpúsculo.  Bohn propuso su “Principio de complementariedad”.  El fenómeno depende del sistema de observación y, en último término, la realidad no sería más que el resultado de todos los sistemas posibles de observación.

Leer más