jueves, 25 de abril del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Las Dimensiones más altas simplifican la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Para ver cómo dimensiones más altas simplifican las leyes de la Naturaleza, recordemos que un objeto tiene longitud, anchura y altura.  Puesto que tenemos libertad para girar un objeto 90º, podemos transformar su longitud en anchura y su anchura en altura.   Mediante una simple rotación, podemos intercambiar cualquiera de las tres dimensiones espaciales.

Ahora bien, si el tiempo es la cuarta dimensión, entonces es posible hacer “rotaciones” que convierten el espacio en tiempo y el tiempo en espacio.  Estas rotaciones tetradimensionales son precisamente las distorsiones del espacio y del tiempo exigidas por la relatividad especial.

En otras palabras, espacio y tiempo se mezclan de una forma esencial, gobernada por la relatividad.  El significado del tiempo como la cuarta dimensión es que pueden hacerse relaciones entre el tiempo y el espacio de una forma matemáticamente precisa.  A partir de entonces, deben ser tratados como dos aspectos de la misma magnitud: el espacio-tiempo.

Así han quedado unificadas las leyes de la Naturaleza al pasar de tres a cuatro dimensiones.

La discusión de la unificación de las leyes de la Naturaleza fue más bien abstracta, y lo habría seguido siendo si Einstein no hubiese dado el siguiente paso decisivo.  Él comprendió que si el espacio y el tiempo pueden unificarse en una sola entidad, llamada espaciotiempo, entonces quizá la materia y la energía pueden unirse también en una relación dialéctica.  Si las reglas pueden contraerse y los relojes pueden frenarse, razonó, entonces cualquier cosa que midamos con regla y relojes también debe cambiar.

Sin embargo, casi todo en el laboratorio de un físico se mide con regla y relojes. Esto significa que los físicos tendrán que recalibrar todas las magnitudes del laboratorio que una vez dieron por hecho que eran constantes.

En concreto, la energía es una cantidad que depende de cómo midamos las distancias y los intervalos de tiempo.  Un automóvil de prueba que choca a gran velocidad contra una pared de ladrillos tiene obviamente energía.  No obstante, si el veloz automóvil se aproxima a la velocidad de la luz, sus propiedades se distorsionan.  Se contrae como un acordeón y los relojes en su interior se frenan.

Lo que es más importante, Einstein descubrió que la masa del automóvil también aumenta cuando reacelera. Pero  ¿de dónde procede este exceso de masa?  Y él concluyó que procedía de la energía.

Esto tuvo consecuencias perturbadoras.  Dos de los grandes descubrimientos de la física del siglo XIX fueron la conversación de la masa y la conservación de la energía; es decir, la masa total y la energía total de un sistema cerrado, tomadas por separado, no cambian.  Por ejemplo, si el coche veloz choca contra el muro de ladrillos, la energía del automóvil no desaparece, sino que se convierte en energía sonora del choque, energía cinética de los fragmentos de ladrillo que vuelan por los aires, energía calorífica, y así sucesivamente.  La energía total (y la masa total) antes y después del choque es la misma.

Sin embargo, Einstein decía ahora que la energía del automóvil podía convertirse en masa (un nuevo principio de conservación que decía que la suma total de l masa y la energía debe siempre permanecer constante.  La materia no desaparece repentinamente, ni la energía brota de la nada.  En este sentido, la materia desaparece sólo para liberar enormes cantidades de energía o viceversa.

Cuando Einstein tenía 26 años, calculó exactamente cómo debía cambiar la energía si el principio de la relatividad era correcto, y descubrió la relación E=mc2.  Puesto que la velocidad de la luz al cuadrado (C2) es un número astronómicamente grande, una pequeña cantidad de materia puede liberar una enorme cantidad de energía.  Dentro de las partículas más pequeñas de materia hay un almacén de energía, más de un millón de veces la energía liberada en una explosión química.  La materia, en cierto sentido, puede verse como un depósito casi inagotable de energía; es decir, la materia es en realidad, energía condensada.

Einstein supo ver que las dimensiones más altas tienen un propósito: unificar los principios de la Naturaleza.  Al añadir dimensiones más altas podía unir conceptos físicos que, en un mundo tridimensional, no tienen relación, tales como la materia y la energía o el espacio y el tiempo que, gracias a la cuarta dimensión de la relatividad especial, quedaron unificados.

Desde entonces, estos conceptos, los tenemos que clasificar, no por separado, sino siempre juntos como dos aspectos de un mismo ente materia-energía por una parte y espacio-tiempo por la otra.  El impacto directo del trabajo de Einstein sobre la cuarta dimensión fue, por supuesto, la bomba de hidrógeno, que se ha mostrado la más poderosa creación de la ciencia del siglo XX.  Claro que, en contra del criterio de Einstein que era un pacifista y nunca quiso participar en proyectos de ésta índole.

Einstein completó su teoría de la relatividad con una segunda parte que, en parte, estaba inspirada por lo que se conoce como principio de Mach, la guía que utilizó Einstein para crear esta parte final y completar su teoría de relatividad general.

Einstein enunció que, la presencia de materia-energía determina la curvatura del espacio-tiempo a su alrededor.  Esta es la esencia del principio físico que Riemann no logró descubrir: la curvatura del espacio está directamente relacionada con la cantidad de energía y materia contenida en dicho espacio.

Esto, a su vez, puede resumirse en la famosa ecuación de Einstein, que esencialmente afirma:

Materia-energía determina ←→ curvatura del espacio-tiempo

Esta ecuación engañosamente corta es uno de los mayores triunfos de la mente humana (me he referido a ella en otras muchas ocasiones).  De ella emergen los principios que hay tras los movimientos de las estrellas y las galaxias, los agujeros negros, el big bang, y seguramente el propio destino del Universo.

Es curiosa la similitud que se da entre la teoría del electromagnetismo y la relatividad general, mientras que Faraday experimentó y sabía los resultados, no sabía expresarlos mediante las matemáticas y, apareció Maxwell que, finalmente formuló la teoría.

Einstein, al igual que Faraday, había descubierto los principios físicos correctos, pero carecía de un formulismo matemático riguroso suficientemente potente para expresarlo (claro que Faraday no era matemático y Einstein si lo era).  Carecía de una versión de los campos de Faraday para la Gravedad.  Irónicamente, Riemann tenía el aparato matemático, pero no el principio físico guía, al contrario que Einstein.  Así que, finalmente, fue Einstein el que pudo formular la teoría con las matemáticas de Riemann.

¡Qué extraño sería que la teoría final se descubriera durante nuestra vida!  El descubrimiento de las leyes finales de la Naturaleza marcará una discontinuidad en la Historia del intelecto humano, la más abrupta que haya ocurrido desde el comienzo de la ciencia moderna del siglo XVII.  ¿Podemos imaginar ahora como sería?

STEVEN WEINBERG

¿Es la belleza un principio Físico?

La teoría de supercuerdas nos da una formulación convincente de la teoría del Universo, sin embargo, el problema fundamental radica en que una comprobación de dicha teoría, está más allá de nuestras posibilidades actuales.  De hecho, la misma teoría predice que la unificación de todas las fuerzas ocurre a la energía de Planck, o 1019 GeV

Miles de millones de electronvoltios, que como sabéis, es alrededor de mil billones de veces mayor que las energías actualmente disponibles en nuestros aceleradores de partículas.

Ya he comentado otras veces que el físico David Gross (el de más edad de los miembros conocidos como el “cuarteto de cuerdos” y autores de la teoría llamada la cuerda heterótica) dijo en una ocasión: “El coste de generar esta fantástica energía, necesitaría el dinero de las tesorerías de todos los países del mundo juntos, y quizá, no llegara.  Es verdaderamente astronómico.”

Siendo así, de momento estamos condenados a no poder verificar experimentalmente este motor (parado) que haría marchar el vehículo de la Física.  La teoría decadimensional está paralizada en tres sentidos: el económico, el técnico y el matemático.  El primero por falta de dinero que  nos pudiera construir aceleradores tan potentes como para descubrir la partícula de Higgs, los quarks e incluso las cuerdas vibrantes, esos previsibles y minúsculos objetos primordiales que conforman la materia.  En segundo lugar, las formulaciones matemáticas complejas que, según parece, aún no se han inventado.  Parece que hoy, ni siquiera Witten o Perelman, conocen el secreto de los números mágicos que nos puedan llevar hasta el final del camino iniciado con Einstein y Kaluza-Klein.

Particularmente opino que la teoría de cuerdas nos dará muchas alegrías y que en ella están las respuestas a muchas preguntas que no sabemos contestar. Yo prestaría más atención a las funciones modulares de Ramanujan y a sus números mágicos repetidos una y otra vez en los teoremas encontrados en sus cuadernos perdidos.

Dentro del mundo de la Física, los hay de todas las opiniones: en contra y a favor.  Es famosa la postura detractora del Nóbel Sheldoy Glasgow de Harvard, no quiere ni oír hablar de la teoría de supercuerdas a la que califica de física de Teatro.

Otros muchos, la mayoría, como Murray Gell-Mann, Steven Weinberg (ambos Premios Nóbel) o el mismo.  E. Witten (Medalla Field), opinan lo contrario y ven en esta teoría de dimensiones más altas el futuro de la Física.

Ya sabemos que en física toda teoría debe ser verificada, una y otra vez, en uno y en otro lugar, experimentalmente, obteniendo siempre el mismo resultado, es la única manera de que sea aceptada por la comunidad científica, mientras tanto, la teoría no es fiable y queda a la espera de ser comprobada, verificada sin ningún lugar para la duda.

Pero, ¿Se puede recrear la creación?

La teoría de supercuerdas trata de eso.  Quiere explicarnos todos los misterios del Universo a partir de ese primer momento, ¡la creación!

¿Cuántas y cuántas páginas no habré leído y escrito sobre estos temas fascinantes de los secretos del Universo, las fuerzas que lo rigen, la materia de las Galaxias y de los objetos que lo pueblan?

No podría decirlo.  Sin embargo, hay una cosa que sí puede decir: ¡Cuánto más profundizo en estas cuestiones, cuánto más conocimientos adquiero, más fascinación siento y desde luego, mi capacidad de asombro, más crece!

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting