Sep
1
El “mundo” de lo muy pequeño… ¡Es tan extraño!
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo. Simplemente con que su carga fuera distinta en una pequeña fracción… ¡El mundo que nos rodea sería muy diferente! Y, ni la vida estaría presente en el Universo.
Experimentos con electrones y positrones nos enseñaron cómo funciona el universo
Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).
Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede.
Acero al rojo vivo
Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.
Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.
Con esta idea fue sembrada la semilla de lo que, más tarde, sería la mecánica cuántica
Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, pero esto lo veremos más adelante.
Las dos primeras son la imagen obtenida por los físicos en el laboratorio de cómo se vería un electrón y, la segunda es la Imagen ilustrativa de la dualidad onda-partícula, con la cual se quiere significar cómo un mismo fenómeno puede tener dos percepciones distintas. Lo cierto es que, el mundo de lo muy pequeño es extraño y no siempre lo podemos comprender.
El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.
La función de onda de Schrödinger nos acercó a ese mundo infinitesimal
Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿Qué significan realmente estas ecuaciones?, ¿Qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.
Sin importar que estén a mucha distancia la una de la otra, están conectadas
Pero para los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?
El “universo de las partículas nunca ha sido fácil de comprender y su rica diversidad, nos habla de un vasto “mundo” que se rige por su propias reglas que hemos tenido que ir conocimiento y seguimos tratando de saber, el por qué de esos comportamientos extraños y a veces misteriosos. Así, la pregunta anterior, de ¿Qué puede significar todo eso?…
La pudo contestar Niels Bohr, de forma tal que, con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.
Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.
No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.
Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario.
Miramos la imagen y sabemos exactamente lo que significa cada imagen y lo que hay en el núcleo central
Un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.
Mucho ha sido el camino andado hasta nuestros tratando de conocer los secretos de la naturaleza que, poco a poco, nos van siendo familiares. Sin embargo, es más el camino que nos queda por recorrer. Es mucho lo que no sabemos y, tanto el micro-mundo como en el vasto mundo de muy grande, hay que cosas que aún, no hemos llegado a comprender.
El detector ATLAS funcionó, y rastrearon las partículas subatómicas…
Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los “trucos” ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a esta interpretación. Quizá funcione bien, pero ¿Dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿Dónde está en realidad?, y ¿Cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.
Es cierto que, localizar y saber en qué punto exacto están esas pequeñas partículas… no es fácil
La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos ahora se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.
Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.
Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, para el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.
(“El teorema de Bell o desigualdades de Bell se aplica en mecánica cuántica para cuantificar matemáticamente las implicaciones planteadas teóricamente en la paradoja de Einstein-Podolsky-Rosen y permitir así su demostración experimental. Debe su nombre al científico norirlandés John S. Bell, que la presentó en 1964.
El teorema de Bell es un meta-teorema que muestra que las predicciones de la mecánica cuántica (MC) no son intuitivas, y afecta a temas filosóficos fundamentales de la física moderna. Es el legado más famoso del físico John S. Bell. El teorema de Bell es un teorema de imposibilidad, que afirma que:
Ninguna teoría física de variables ocultas locales puede reproducir todas las predicciones de la mecánica cuántica.”)
¿Cómo saber el número que saldrá cuando lanzamos los dados?
¡¡La mecánica cuántica!!, o, la perplejidad de nuestros sentidos ante lo que ese “universo cuántico” nos ofrece que, generalmente, se sale de lo que entendemos por sentido común. Ahí, en el “mundo” de los objetos infinitesimales, suceden cosas que no siempre podemos comprender. Y, como todo tiene una razón, no dejamos de buscarla en cada uno de aquellos sorprendentes sucesos que en ese lugar se producen. Podríamos llegar a la conclusión de que, la razón está en todo y solo la encontramos una vez que llegamos a comprender, mientras tanto, todo nos resulta extraño, irrazonable, extra-mundano y, algunas veces…imposible. Sin embargo, ahí está.
Cualquier perturbación en su camino, hará que todo sea distinto en la trayectoria
Dos elementos actúan de común acuerdo para garantizar que no podamos descorrer el velo del futuro, de lo que será después (podemos predecir aproximaciones, nunca certezas), el principal de esos elementos es la ignorancia nunca podremos saber el resultado final de éste o aquél suceso sin tener la certeza de las condiciones iniciales. En la mayoría de los sistemas físicos son, en mayor o menor medida dada su complejidad, del tipo caótico es tal que, el resultado de las interacciones entre elementos son sumamente sensibles a pequeñísimas variaciones de los estados iniciales que, al ser perturbados mínimamente, hacen que el suceso final sea y esté muy alejado del que se creía al comienzo.
¿El Futuro? Es el Tiempo por venir, lo que no existe, lo que sólo podemos imaginar y nunca tendremos la certeza de saber como será. Lo podemos presentir, incluso atisbar algunos rasgos de cómo podría ser. Sin embargo, como nos pasa con el horizonte si navegamos hacia él, nunca lo podremos alcanzar.
Estamos confinados en un eterno Presente previa visita al Pasado.
Emilio Silvera V.
Sep
1
Veamos un poco de Futuro
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
En unas decenas de años, las Organizaciones Astronómicas del Mundo, aportando de manera proporcional a su poder económico, acometerán el Proyecto a Alfa Centauro visitando el planeta habitable de Próxima, la estrella más cercana al Sol.
En el Presente no tenemos los medios tecnológicos necesarios para una Misión de este calibre, peo en algo de más de cien años, será posible construir naves de estas características. que se desplace a una velocidad considerable con una energía que ahora ni podemos imaginar. Y, por supuesto, toda la nave estará construida con materiales inteligentes que respondan a imprevistas anomalías que serán reparadas de inmediato por la misma materia.
En la nave, estarán instaladas cámaras criogénicas que llevarán dormidos a los viajeros y rodos los mecanismos y todas las actividades de a bordo serán supervisados por Robot de última generación especializados, ya que, un humano, no podría soportar físicamente tal viaje.
Cuando todo eso suceda no estaremos aquí y, nuestros descendientes serán los que asumirán esa responsabilidad ineludible de buscar otros mundos para la Humanidad, pensando en la llegada de Andrómeda, la muerte del Sol, y, seguramente, otros muchos acontecimientos que están previstos por el Azar.
Claro que me gustaría estar aquí para ser testigo de todo esto. Sin embargo, estamos sometidos al Principio del Universo de que todo tiene un comienzo y un final, la Eternidad no existe, tampoco la Nada ni el Infinito, incluso contradiciendo la palabra “Vacío”, se ha comprobado que todo está lleno a rebosar.
Me vienen a la Mente aquellas palabras de profundos pensamientos<.
“Que no está muerto lo que duerme eternamente. Y con el paso delos Eones, hasta la muerte morirá.”
Emilio Silvera V.
Ago
31
¡Estamos aquí de prestado? ¿Es la vida un accidente?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Nuestra especie, desde que podemos considerarla como mujeres y hombres verdaderos, siempre supo adaptarse a los tiempos que les tocó vivir, a las circunstancias y formas de vida que la Naturaleza les ofrecía
Algunas veces, cuando a solas pienso más profundamente en nuestra presencia en el mundo que habitamos, en el recorrido que ha hecho nuestra especie hasta llegar hasta aquí, en la inmensa lucha contra los elementos y las circunstancias adversas que hemos tenido que superar, sobre todo, esa enorme carga que llevamos sobre nosotros: ¡la ignorancia!, que no pocas veces nos lleva a comportamientos irracionales y contrarios a nuestros propios intereses. ¡Tantas esperanzas y sueños! Cuando, en realidad, no somos dueño de nuestro destino como especie que siempre ha estado en poder de la Naturaleza que nos creó. Las estrellas brillan en el cielo, ajenas a nuestra presencia. En realidad estamos en manos del Azar y nada impide que en cualquier momento, un gran asteroide venido del espacio pueda acabar con nuestra especie y toda la vida que pulula sobre nuestro planeta.
Movimiento de traslación
Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos (¿racionales?) de extinguirse así mismos, agotar los recursos, propagar infecciones letales y venenos mortales, hacer pruebas armamentísticas con la propia Naturaleza y un sin fin de locuras más, lo cierto es que también, aparte de los peligros que aquí nos acechan, bien sean naturales o artificiales, lo cierto es que, las amenazas externas nos acechan.
Cometas y asteroides que nos pueden fastidiar la vida
Los movimientos de cometas y asteroides constituyen una seria amenaza para el desarrollo y la continuidad de la vida inteligente en sus primeras etapas. Los impactos no son infrecuentes y en el pasado lejano han tenido efectos catastróficos sobre nuestro planeta, la Tierra. Somos afortunados por estar doblemente protegidos de estos impactos: por nuestra pequeña y cercana vecina, la Luna, y por nuestro vecino lejano y gigante Júpiter que tiene una masa mil veces mayor que la Tierra y está situado en las afueras del Sistema solar donde su poderosa atracción gravitatoria puede capturar objetos errantes que se dirigen hacia el interior.
El Hubble pudo captar ésta imagen de los fragmentos del cometa Schumacher-Levy 9 que cayeron sobre Júpiter que los engulló y allí desaparecieron para siempre.
En el siglo XX tuvimos dos impactos importantes en la Tierra, uno en América del Sur y el otro en Tunguska, al norte de Rusia. Hemos estado haciendo trampas con la ley de los promedios pero, un día, nuestra suerte cambiará. Y, aunque es cierto que algunos gobiernos están haciendo esfuerzos económicos en proyectos encaminados a seguir y vigilar las trayectorias de algunos grandes meteoritos sospechosos, lo cierto es que el paso del tiempo acerca, de manera inexorable, el acontecimiento hacia nosotros, dado que en última instancia será inevitable.
Las imágenes que fueron tomadas de aquel acontecimiento son sobrecogedoras, todo quedó arrasado
Cien años han pasado de la explosión de origen desconocido que arrasó una zona de 50 kilómetros de diámetro en Tunguska, una remota zona de Siberia, explosión que se conoce con el nombre de evento de Tunguska. Esta explosión fue tan potente que fue detectada por sismógrafos en toda Asia y Europa e incluso llegaron a medirse en Londres las variaciones de presión atmosférica que causó.
Algunos que están controlados vienen hacia nuestra región pero sin peligro de colisión
A la fecha (al menos que yo sepa), sólo una sonda ha visitado un Asteroide que se Acerca a La Tierra. Se trata de la sonda NEAR-Shoemaker (Near Earth Asteroid Rendezvous), NASA, USA. Fue lanzada el 17 de Febrero de 1996 con destino final en el asteroide de tipo orbital amor 433 Eros. Su peso total era de 805 kilogramos. En Febrero de 1998 pasó por Eros sin ponerse en órbita. El 14 de Febrero de 2000 entró en órbita alrededor de Eros y el 12 de Febrero de 2001 descendió (!!) suavemente sobre él.
La sonda sobrevivió al aterrizaje y transmitió una serie de imágenes desde la superficie de este AAT. Se observaban bloques de rocas en un suelo polvoriento semejante al de nuestra Luna. Esta sonda contaba con espectrógrafos ópticos, infrarrojos, de rayos X y Gamma, magnetómetros, una cámara óptica multi-espectral y un radar láser.
Ida y su luna Dactyl
Algunos de estas rocas llegan a tener más de mil kilómetros (Asteroide 1 Ceres. Algunos, como el conocido por el nombre de Ida llegan a tener hasta su propia pequeña luna llamada Dáctyl. ¿Os imagináis lo que sería la caída de uno de estos monstruos sobre nuestras cabezas? ¡¿Un asteroide con una luna?! La sonda Galileo cuya primera misión fue explorar el sistema joviano se encontró con dos asteroides y los fotografió durante su largo viaje a Júpiter. El segundo asteroide fotografiado es Ida (arriba) y se descubrió que tenía una luna, la que aparece como un pequeño punto a la derecha de Ida. La pequeña luna, llamada Dactyl mide poco más de un kilómetro, mientras que el asteroide con forma de patata mide unos cincuenta kilómetros de largo por unos treinta de ancho. Como ya habréis podido suponer, los nombres de Ida y Dactyl se tomaron de la Mitología Griega.
Curiosamente, estas intervenciones externas sobre la evolución de la Tierra tienen otra cara. Es cierto que pueden producir extinciones globales de una inmensa gravedad y retrasar la evolución de la complejidad en millones de años. Pero, en ciertas circunstancias pueden tener un efecto positivo y acelerador sobre la evolución de formas de vida inteligente. El mejor ejemplo que tenemos de ello fue el meteorito caído en el Yucatán (México).
La extinción de los grandes lagartos posibilitó que, 65 millones de años más tartde, pudiéramos venir nosotros.
La caída de aquel enorme meteorito modificó durante mucho tiempo la Atmósfera de la Tierra, hasta el punto de que, los Dinosaurios se quedaron sin comida y en aquel ambiente enrarecido poco a poco perecieron.
El suceso que, según todos los indicios, dio lugar a la extinción de los dinosaurios por la caída de un objeto espacial en la provincia del Yucatán hace ahora 65 millones de años, al final de la Era Mezosoica. Lo cierto es que, la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.
La desaparición de los dinosaurios, junto con otras muchas formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Además limpió algunos nichos de competidores por los recursos naturales. Todo aquello estimuló una rápida aceleración del desarrollo de la diversidad. Quizás esos impactos desempeñen un papel vital en la puesta en marcha de nuevos mecanismos evolutivos cuando, las formas de vida se ven atascadas en caminos poco prometedores.
¿Quién sabe? Pudiera ser que sin impactos, los procesos de desarrollo pueden establecerse en un camino estable pero poco prometedores y con extinciones sistemáticas se posibilitan mutaciones y cambios que, de otra manera, nunca llegarían a producirse. Hemos oído muchas veces esa expresión que dice: ¡La Naturaleza es sabia! Pero, por otra parte, se me hace muy cuesta arriba pensar que ninguna de las estrellas que titilan en el firmamento, se puedan preocupar de nuestra efímera existencia aquí en la Tierra.
Enemigo mortal y silencioso que se nutre de nuestras células. No sabemos aún si en realidad, es un arma biológica preparada de manera artificial… ¡La que ha formado!
Resulta muy difícil imaginar un organismo con vida que logre sobrevivir completamente aislado de otras formas de vida. Las necesidades orgánicas de todos los seres vivos vuelve el contacto con otras especies una condición sine qua non para poder sobrevivir en lo que conocemos como ecosistemas, los cuales se definen, justamente, por la interacción de varias formas de vida.
La existencia de un ser vivo que logre vivir completamente independiente del resto de formas de vida es algo que podríamos a priori enmarcar en el contexto de la ciencia ficción. Sin embargo, un reciente descubrimiento que tuvo lugar en Sudáfrica ha dejado boquiabierta a la ciencia.
Unas condiciones duras y rápidamente cambiantes podrían estimular la adaptación y acelerar los procesos evolutivos incrementando la diversidad que es el mejor seguro de vida que puede tener un planeta contra la extinción total de su biología por un impacto futuro. Claro que, no lo veríamos de la misma manera si fuéramos dinopsaurios. Por otra parte, la vida es persistente y, como se puede leer debajo de la imagen de arriba, hasta aislada insiste en estar presente.
Por otra parte y de manera independiente de los posibles sucesos naturales que nos puedan amenazar, nuestra imaginación también crea otros que, según los rumores… pudieran ser ciertos. Tal es el caso del Planeta X, Hercóbulus, El 12º Planeta, Nibiru, son diferentes nombres que existen desde antiguo para designar a un extraño y destructor cuerpo celeste, que forma parte del Sistema Solar vecino de Tylo, pero que sin embargo su órbita tan elíptica y tan larga le lleva a cruzarse con nuestro Sistema Solar cada 3660 años.
Con esta imagen en toda la prensa mundial salió la noticia:
“Ya existe una nueva fecha que anuncia, otra vez, el fin del mundo.”
La última amenaza de apocalipsis afirma que un cuerpo desconocido llamado Nibiru o Planeta X chocará con la Tierra el 23 de septiembre de 2017.
La nueva profecía, que se hizo pública hace algunos años y circula especialmente en la red durante las últimas semanas, asegura combinar astronomía, investigación científica y pasajes de la Biblia para respaldar su predicción.”
Como otras antes que esta, llegó la fecha y nada pasó. Claro que, eso no quiere decir que… ¡En el Futuro no pueda ocurrir!
El paso del planeta X, cruzándose por dentro de nuestro Sistema Solar, crearía unos efectos devastadores en La Tierra, encendiendo volcanes, terremotos, tsunamis, lluvias de fuego, etc… pues tendría que acercarse a unos 14 millones de millas de La Tierra, que astronómicamente se puede considerar como una distancia peligrosamente próxima.
La órbita elíptica de Nibiru, un planeta rojizo, más grande que Júpiter, le lleva a atravesar nuestro Sistema solar causando desequilibrios apocalípticos en la Tierra. Hercóbulus tiene un tamaño bastante grande, entre 2 y 5 veces mayor más que Júpiter, con lo que la fuerza de este planeta gigante altera electromagnéticamente y gravitacionalmente, a todos los niveles, a nuestro planeta; su polo norte ejerce una gran influencia magnética al acercarse al polo norte de La Tierra, momento en el que ambos cuerpos se repelen magnéticamente y se produce una gran sacudida geo-magnética que cambia los polos en La Tierra.
Esto explicaría que la civilización humana transcurre y evoluciona en el tiempo mediante periodos cíclicos, de aproximadamente cada 4 milenios, siendo una de las visitas indeseables de Nibiru la causante de la desaparición del continente de la Atlántida. según todas estas leyendas, se calcula que el paso de Nibiru cerca de La Tierra, hacia el año 2012, podría ocasionar la muerte de 2/3 de la población mundial. (Ya tenemos aquí “hecha realidad” la predicción maya).
¡Qué gente!
Lo cierto es que no tenemos que ir tan lejos para poder constatar in situ, los cambios que los desastres naturales pueden producir en nuestro entorno que, con cada suceso catastrófico se ve transformado y hay cosas que desaparecen para dejar pasos a otras nuevas… La vida incluida.
Los cráteres volcánicos, como parece ser el caso, están frecuentemente llenos de agua de lluvia y freáticas, formando lagos. Suele ocurrir que, tras una erupción volcánica, sean destruidos miles de kilómetros cuadrados de terreno a su alrededor y cambien por completo la orografía de la zona. Parece imposible pensar que la Naturaleza pueda recuperarse tras un acontecimiento de este tipo, sin embargo, las primeras muestras de vida vegetal aparecen a unos escasos tres meses del acontecimiento en los campos cubiertos por las cenizas ricas en minerales. Poco tiempo después, vuelven los animales y la vida, se reanuda, como si allí, nada hubiese pasado.
Muere una estrella masiva y forma en el Espacio Interestelar una inmensa Nebulosa, de esa Nebulosa nacen nuevas estrellas y, probablemente, aparezca un agujero negro de la masa sobrante de la Nebulosa.
Así es la Naturaleza, y, como tantas veces se dijo aquí, algo se destruye para hacer posible que algo nuevo surja a la vida. Cuando una estrella muere crea las condiciones necesarias para que otras surjan a la vida. La eterna rueda de los ciclos del Universo que, una y otra vez, reproduce los acontecimientos para que todo siga igual pero… diferente. Y, aunque os parezca una paradoja, así es el ritmo del Universo en el que todo muere para que todo pueda seguir el ritmo evolutivo que la Naturaleza impone.
Emilio Silvera V.
Ago
31
¿Cómo era la vida en la era prehistórica?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
De vez en cuando es conveniente que echemos una mirada al pasado, saber como era la vida en otros tiempos y como ha evolucionado hasta nuestros días, en el Presente solo el 1% de las especies que poblaron la Tierra están presentes.
Ago
30
¡El Tiempo! ¿Qué será?
por Emilio Silvera ~
Clasificado en General ~
Comments (0)
Bueno, el Tiempo es el que nos ha permitido desvelar tantos y tantos secretos de la Naturaleza, y, seguirá permitiéndolo a los que detrás de nosotros vendrán. Ya hemos hablado aquí (en otros trabajos), de manera amplia lo que el Tiempo es, y, lo que nosotros los humanos hemos hecho de él para adaptarlo a nuestras necesidades y a nuestros entendimientos, lo mismo lo hicimos “cuantos” llamados segundos que, Eones, grandes paquetes de mil millones de años. También lo dividimos en el Tiempo que se fue (Pasado), el Tiempo que vivimos (Presente), y, el Tiempo que vendrá (Futuro).
El Pasado lo podemos rememorar, el Presente lo vivimos, y, el Futuro solo conjeturarlo podemos.
Lo cierto es que nunca nadie nos ha dicho a qué velocidad se mueve el Tiempo.
Y también es cierto que como no hemos llegado a saber lo que el Tiempo es, finalmente nos hemos inventado un Tiempo ficticio cuantizado en segundos y diversas unidades hasta los Eones que aplicamos según el caso. Ese Tiempo de los relojes nos sirve para los diversos momentos y actividades de la vida cotidiana (levantarse y acostarse, comer, trabajar o estudiar, reseñar la Historia…).
Ese tiempo del Reloj no es el Tiempo real, el Tiempo que nación con el Big Bang, ese Tiempo misterioso que no acabamos de conocer, ni sabemos su real naturaleza.
El día que sepamos lo que el Tiempo es…. ¡Habremos descargado de nuestros frágiles cuerpos una buena parte de la ignorancia que llevamos con nosotros.
El Tiempo es muy imp0ortante para todos y para todo, y, sin embargo, es un gran desconocido.
Emilio Silvera V.