jueves, 06 de noviembre del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Cosas curiosas (si quieres pensar…pasa)

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La CONSTANTE de PLANCK: definición sencilla - ¡¡RESUMEN FÁCIL!!Equivalencia entre masa y energía (E=mc2)Qué es la constante gravitacional? - GravedadJUAN MARROQUIN: PRACTICA 30 ¨ECUACIONES EN WORD¨

{\displaystyle r_{\mathrm {e} }={\frac {1}{4\pi \varepsilon _{0}}}{\frac {e^{2}}{m_{e}c^{2}}}=2.8179402894(58)\times 10^{-15}\mathrm {m} }

Si hablamos de Física podemos pensar en la constante de Planck en sus dos versiones, h y ħ; en la igualdad masa-energía de Einstein; la Constante gravitacional de Newton, la constante de estructura fina (α = 2Π e² /137); y, el radio del electrón, por ejemplo.

El valor más preciso de la constante de estructura fina - La Ciencia de la  Mula FrancisASTROFISICOS DE LA UNAM PROPONEN TEORIA DE LA GRAVEDAD EXTENDIDA –  UNIVERSITAM7 aplicaciones pacíficas de la energía nuclearConstante de Planck - Wikipedia, la enciclopedia libre

                                   ¿Habéis pensado en lo que llevan encerrado sus mensajes?

Es verdaderamente meritorio el enorme avance que en tan poco tiempo ha dado la Humanidad, en el campo de la Física y otras ramas del saber.

En poco más o menos, un siglo y medio, se ha pasado de la oscuridad a una claridad, no cegadora aún, pero sí, aceptable. Son muchos los secretos de la Naturaleza física que han sido desvelados y, el ritmo, parece que crece de manera exponencial, y, en algunos campos,  se cumple la ley de Moore.

Eso que llamamos ¡El Tiempo!, tal como lo concebimos es un preciado bien, está a nuestro favor. Sólo tenemos que ir pasando el testigo para alcanzar las metas propuestas.

La tecnología avanza más rápido cada día (tanto que a veces da miedo) -  Avances TecnológicosFotónica, la tecnología del siglo XXIAplicaciones de la Nanotecnología, ejemplos y ventajas - IberdrolaNanotecnología | Qué es, aplicaciones, ventajas, desventajas y su futuro

Nanotecnología en la construcción | Arcus GlobalLa Inteligencia Artificial del Siglo XXI

                                                         Avanzamos en todos los campos

Pongamos nuestras esperanzas en que no seamos tan irresponsables como para estropearlo todo. En el estudio del Espacio exterior cada día damos un paso más hacia adelante, vamos conociendo con más certeza la realidad del Universo que nos acoge, y, aunque todavía nos queda muchísimo camino por recorrer, lo cierto es que no se para en la investigación y se preparan misiones hacia los mundos cercanos para ir conociendo nuestro entorno que… ¿Quién sabe? En el futuro aún lejano nos podría ofrecer una salida.

15 misiones espaciales más importantes en 10 años | Cinco NoticiasLas misiones espaciales más importantes que se lanzarán en 2020 - Infobae

NASA: Las misiones espaciales más locas de las próximas décadasMisiones espaciales

Presupuesto récord de la ESA para impulsar nuevas misiones espaciales

     En estudio están muchos de estos proyectos

Si estoy escribiendo, concentrado, en mis cosas de la Física, de la Astronomía, la Gravedad o el electromagnetismo, pongamos por ejemplo, me aíslo y ni oigo los ruidos que a mi alrededor se puedan producir por el desenvolvimiento de la vida cotidiana.

Hay cuestiones sencillas de entender para los iniciados y, a veces, muy complejas para la gente corriente. Por tal motivo, si escribo sobre estos interesantes temas, mi primera preocupación es la de buscar la sencillez en lo que explico. No siempre lo consigo.

Leer más

¡La Física! Los caminos de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Einstein se preguntaba a menudo si “la providencia divina” tuvo alguna elección al crear el Universo. Según los teóricos de supercuerdas, una vez que exigimos una unificación de la teoría cuántica y la relatividad general, tal “providencia” no hubiera tenido elección. La auto-consistencia por sí sola, afirman ellos, debe haberla obligado a crear el Universo como lo hizo.

Teoría de Cuerdas y la Teoría MTeoría de cuerdas - WikiwandMi charla en Desgranando Ciencia 2018: "50 años de la teoría de cuerdas" -  La Ciencia de la Mula FrancisTeoría de cuerdas - WikiwandLa bella teoria: La función modular de Ramanujan y la teoría de cuerdas

Escuchar a Edward Wittin hablar sobre Física, puede ser un viaje alucinante que nos lleve hacia el futuro que está por llegar. Él es el autor de la Teoría M de cuerdas en la que ha unificado todas las versiones de supersimetría, supergravedad, cuerda heterótica, supercuerdas y demás. Se avanza sin descanso pero, seguimos sin poder verificar de forma experimental. Se dice que esta teoría esta adelantada a su tiempo.

Dibujo20181216 slides07 desgranando ciencia 2018 teoria de cuerdas - La  Ciencia de la Mula Francis

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan como su punto más débil. Cualquier teoría, afirman, debe ser verificable. Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡la teoría de supercuerdas no es realmente una teoría!

 

Con esa simple formula, Planck no dijo la energía que se necesitaba para verificar la teoría de cuerdas, es decir 1019 GeV, y, desgraciadamente, esa energía, de momento, no es de este mundo.

¡Es todo tan complejo! La topología nos dará algunas respuestas y, seguramente, las funciones modulares de Ramanujan también podría tener el derecho a voto en esto de la teoría de cuerdas.

No perturbativa

 

La función e−1/x². La serie de Taylor es idénticamente cero, pero la función no está.

“En matemática y en física, una función matemática o proceso no perturbativo es uno que no se puede describir con precisión por la teoría de la perturbación.​​ Un ejemplo es la función de

{\displaystyle f(x)=e^{-1/x^{2}}}.

 

La serie de Taylor en x = 0 para esta función es exactamente cero a todas las órdenes en la teoría de perturbaciones, pero la función es distinto de cero si x ≠ 0.

La implicancia de esto para la física es que hay algunos fenómenos que son imposibles de entender por la teoría de perturbaciones, independientemente del número de órdenes de la teoría de perturbaciones que utilizamos. El instantón es un ejemplo.”​

Teoría de cuerdasPor qué se rechazó la teoría de cuerdas? - Dimensión Desconocida

El principal problema es teórico más que experimental. Si fuéramos suficientemente inteligentes, podríamos resolver exactamente la teoría y encontrar la verdadera solución no perturbativa de la teoría. Sin embargo, esto no nos excusa de encontrar algún medio por el que verificar experimentalmente la teoría; debemos esperar señales de la décima dimensión.

¿La décima dimensión?

 

“¡Qué extraño sería que la teoría final se descubriera durante nuestra vida! El descubrimiento de las leyes finales de la naturaleza marcará una discontinuidad en la historia del intelecto humano, la más abrupta que haya ocurrido desde el comienzo de la ciencia moderna en el siglo XVII. ¿Podemos imaginar ahora como sería?”

Steven Weinberg

 

¿Es la belleza un principio físico?

 

Ni en este monstruo de la Ingeniería y la técnica actual podríamos alcanzar las energías de Planck. Queda muy lejos de la posibilidad humana y, no sabemos si, alguna inteligencia extraterrestre la habrá podido conseguir. Estamos hablando de las fuerzas de la creación.

Aunque la teoría de supercuerdas nos da una formulación convincente de la teoría del universo (de todo lo que existe, incluyendo el espacio, el tiempo y la materia), el problema fundamental es que un test experimental de la teoría está más allá de nuestra tecnología actual. De hecho, la teoría predice que la unificación de todas las fuerzas ocurre a la energía de Planck, de 1019 miles de millones de electronvoltios (eV), que es alrededor de mil billones de veces mayor que las energías actualmente disponibles en nuestros aceleradores de partículas.

El acelerador LHC aumentará su energía este año | Sociedad | EL PAÍS

                 Hemos llegado a la energía de 14 TeV, muy poca cosa para poder llegar a las cuerdas

ENTREVISTA AL PREMIO NOBEL EN FÍSICA DAVID GROSS: “Puede no haber una  teoría del todo pero

David Gross, uno de los autores de la versión de la cuerda heterótica que se desarrolla en 26 dimensiones. Incorporada más tarde, por Witten a la Teoría M, compendio de todas las anteriores.

El físico David Gross (el del cuarteto de cuerdas de Princeton), al comentar el coste de generar esta energía fantástica, dice: “No hay suficiente dinero en las tesorerías de todos los países del mundo juntos. Es verdaderamente astronómica“.

Los orígenes de la teoría de supercuerdas I: de la interacción nuclear  fuerte a la gravedad cuántica | La física en el tiempo | SciLogs |  Investigación y Ciencia

“La formulación de la cuerda heterótica por el llamado “cuarteto de cuerdas de Princeton” (David Gross, Jeffrey Harvey, Emil Martinec y Ryan Rohm), el modelo que dominó la fenomenología de supercuerdas hasta la “segunda revolución” en 1994.”

Esto resulta decepcionante, porque significa que la verificación experimental, el motor que hace progresar la física, ya no es posible en esta generación actual de máquinas o con cualquier generación de máquinas en un futuro previsible. Esto significa, a su vez, que la teoría decadimensional no es una teoría en el sentido usual, porque es inverificable dado el actual estado tecnológico de nuestro planeta. Nos quedamos entonces con la pregunta: ¿Es la belleza, por sí misma, un principio físico que pueda sustituir la falta de verificación experimental?

 Ecuación de Dirac | Ecuación de dirac, Formula de dirac, Entrelazamiento  cuánticoCuál es la ecuación matemática más hermosa del mundo? - BBC News Mundo

Las ecuaciones matemáticas representan algunas de las leyes más complejas que gobiernan el Universo y todo lo que hay en ello.

Se necesita años de experiencia para entender las ecuaciones más profundas y muchas de ellas son tan complejas que son difíciles de traducir a un lenguaje normal.

Sin embargo, esto no significa que no podamos apreciar su belleza.

El concepto de belleza es dispar, no todos aprecian la belleza de la misma manera, y, asimilar la belleza a un principio físico de la Naturaleza me parece banal, ya que, esa belleza, esté donde esté, es, también, Naturaleza.

Para agitar más aún la controversia, Glashow escribió incluso un poema que termina así:

Me asusta lo cerca que están algunos físicos de convertirse en filósofos»

“La Teoría de Todo, si uno no se arredra,

Podría ser algo más que un caleidoscopio de cuerdas.

Aunque algunas cabezas se hayan vuelto viejas y escleróticas,

No hay que confiar sólo en las cosas heteróticas,

Seguid nuestro consejo y no cedáis la partida:

El libro no está acabado, la última palabra no es conocida”.

 

Me asusta lo cerca que están algunos físicos de convertirse en filósofos»Historia y Literatura: Harvard University libera sus cursos para hacer  desde casa

 

Glasgow ha jurado (sin éxito) mantener estas teorías fuera de Harvard, donde él enseña. Pero admite que a menudo siente que es superado en su deseo y la teoría de supercuerdas se cuela por todas las rendijas de la universidad y, además, sus puntos de vista no son compartidos por otros Nobel como Murray Gell-Mann y Steven Weinberg que se decantan en el sentido de que la teoría de supercuerdas proporciona nuestra única fuente actual de candidatos para una teoría final con enormes señales reales de autenticidad. ¿Por qué sino de su interior surgen las ecuaciones de Einstein de la relatividad general y el número mágico 24 de Ramanujan y sus funciones modulares, que al ser generalizadas se convierten en 8 y a las que la relatividad añade 2, para finalmente exigir 10 dimensiones? Los físicos no creen en casualidades pero sí en causalidades; si algo ocurre es debido a lo que existió, al suceso anterior que dio lugar al suceso presente, y que dará lugar al suceso futuro.

Amazon.com: Srinivasa Ramanujan (9788172867584): Sydney Srinivas, Michael D  Hirschhorn: Books

                             Srinivasa Ramanujan

El matemático indio más extraño que podía pasarse el día sin levantar la cabeza escribiendo teoremas que ni los mayores matemáticos del momento sabían descifrar. Sus funciones modulares encierran mensajes que están aún por ser descubiertos. ¿Qué nos dirán?

Ciencia: De este polígono abandonado en Texas han surgido los mayores  hallazgos del siglo XXISSC el acelerador de partículas abandonado que iba a superar al LHC

SSC el acelerador de partículas abandonado que iba a superar al LHCCiencia: De este polígono abandonado en Texas han surgido los mayores  hallazgos del siglo XXI

Fue una verdadera pena que los políticos de EEUU dieran al traste con el proyecto SSC (Supercolisionador Superconductor) por su enorme coste de más de 11 mil millones de dólares para construirlo en las afueras de Dallas, Texas, con una circunferencia de 85 Km y rodeado de enormes bobinas magnéticas donde los físicos habrían podido verificar de manera indirecta la teoría decadimensional, además de haber encontrado partículas exóticas tales como la misteriosa partícula de Higgs predicha por el Modelo Estándar. Es la partícula de Higgs la que genera la ruptura de simetría y es por lo tanto el origen de la masa de los quarks. Por consiguiente, la anulación de este proyecto del supercolisionador de partículas nos ha privado de encontrar el “origen de la masa”. Todos los objetos que tienen peso deben su masa a la partícula de Higgs. Incluso, había una posibilidad de que el SSC encontrara partículas exóticas más allá del Modelo Estándar, como “axiones”, que podrían haber ayudado a explicar la materia oscura. También el gravitón, la partícula mediadora en la gravedad, está pendiente de ser encontrada.

 

Bueno, es posible que aquella decepción sea compensada con el LHC que ahora trabajará a 8 TeV y, posiblemente, para el 2.013, habrá encontrado el Bosón de Higgs que cambiaría el Modelo Estándar de la Física de partículas y…otras cosas.

En aquellos momentos se podían leer comentarios como este:

Colisionador de particulas

“Puesto que el super-colisionador no se construirá nunca, y por lo tanto nunca detectará partículas que sean resonancias de baja energía o vibraciones de la supercuerda, otra posibilidad consiste en medir la energía de rayos cósmicos, que son partículas subatómicas altamente energéticas cuyo origen es aún desconocido, pero que debe estar en las profundidades del espacio exterior más allá de nuestra galaxia. Por ejemplo, aunque nadie sabe de dónde vienen, los rayos cósmicos tienen energías mucho mayores que cualquier cosa encontrada en nuestros laboratorios de pruebas.”

Rayos cósmicos y meteorología

Los rayos cósmicos son impredecibles en cuanto a su energía aleatoria. Hace ya aproximadamente un siglo que fueron descubiertos por un padre jesuita de nombre Theodor Wolf en lo alto de la Torre Eiffel en París. Desde entonces, el conocimiento adquirido de estos rayos es bastante aceptable; se buscan y miden mediante el envio de contadores de radiación en cohetes e incluso en satélites a gran altura alrededor del planeta Tierra para minimizar agentes interceptores como los efectos atmosféricos que contaminan las señales. Cuando los rayos energéticos, altamente energéticos, inciden en la atmósfera, rompen los átomos que encuentran a su paso y los fragmentos que se forman caen a tierra donde son detectados por aparatos colocados al efecto en la superficie.

Rayos cósmicos y otros temas del Universo - Ciencia y e... en Taringa!Rayos Cósmicos y otros temas del Universo : Blog de Emilio Silvera V.Rayos cósmicos y otros temas del Universo - Ciencia y e... en Taringa!La Física! Los Caminos de la Naturaleza. : Blog de Emilio Silvera V.

                                                                               Hercules X-1

El detector de Utah, a unos 140 Km al suroeste de Salt Lake City, es lo suficientemente sensible como para detectar la procedencia, el origen de los rayos cósmicos más energéticos. Hasta el momento, Cygnus X-3 y Hércules X-1 han sido identificados como poderosos emisores de rayos cósmicos. Probablemente son grandes estrellas de neutrones, o incluso agujeros negros en rotación engullendo a sus estrellas vecinas que, inocentes, han osado traspasar el horizonte de sucesos. Cuando el material de la estrella traspasa ese punto de no regreso, crea un gran vórtice de energía y escupe cantidades gigantescas de radiación (por ejemplo, protones) al espacio exterior.

Descubierta la primera fuente de rayos cósmicosDescubierta una enigmática fuente de partículas de alta energía en el  Universo

Los rayos cósmicos de muy alta energía vienen de fuera de la Vía LácteaQué son los rayos cósmicos? - Observatorio Pierre Auger

Muchas son las fuentes detectadas de rayos cósmicos a lo largo del Universo. Los rayos cósmicos son partículas que llegan desde el espacio y bombardean constantemente la Tierra desde todas direcciones. La mayoría de estas partículas son protones o núcleos de átomos. Algunas de ellas son más energéticas que cualquier otra partícula observada en la naturaleza. Los rayos cósmicos ultra-energéticos viajan a una velocidad cercana a la de la luz y tienen cientos de millones de veces más energía que las partículas producidas en el acelerador más potente construido por el ser humano.

Descubierta la primera fuente de rayos cósmicos

Hasta la fecha, el rayo cósmico más energético detectado tenía una energía de 1020 electrón voltios. Esta cifra supone una increíble energía diez millones de veces mayor de la que se habría producido en el SSC o ahora el LHC. Dentro de este siglo, seguramente, será difícil alcanzar con nuestras máquinas, energías aproximadas. Aunque esta fantástica energía es todavía cien millones de veces menor que las energías necesarias para sondear la décima dimensión, se espera que energías producidas en el interior profundo de los agujeros negros en nuestra galaxia se acercaran a la energía de Planck. Con grandes naves espaciales en orbita deberíamos ser capaces (seremos) de sondear en lo más profundo de estas estructuras gigantescas de fuentes energéticas que, abundantemente, están repartidas a lo largo y ancho del universo.

Por qué es importante el descubrimiento del origen de los rayos cósmicos?Astrónomos descubren nuevo mecanismo mediante el cual se originan los rayos  cósmicos en el universo – UNIVERSITAMLos rayos cósmicos podrían surgir del agujero negro de la Vía Láctea - RTDescubierta la primera fuente de rayos cósmicos | Digital NewsRayos cosmicosDetectada una extraña emisión de radio entre dos cúmulos de galaxias que  van a chocar | Ciencia | EL PAÍS

Los rayos cósmicos están presentes por todo el Universo allí donde se producen sucesos de grandes energías, como radio-galaxias, explosiones supernovas, e incluso, en colisiones de estrellas de neutrones.

Según una teoría favorita, la mayor fuente de energía dentro de nuestra galaxia (mucho más allá de cualquier cosa imaginable), está en el mismo corazón de la Vía Láctea, en el centro, a 30.000 años luz de nuestro Sistema Solar, y puede constar de millones de agujeros negros.

En física nada se puede descartar, la inaccesibilidad de hoy a la energía de Planck se puede suplir por descubrimientos inesperados que, poco a poco, nos lleve cada vez más cerca de ella, hasta que finalmente tengamos el conocimiento y la tecnología necesarias para poder alcanzarla.

Espectros II: las Líneas Espectrales | Re-Evolución Estelar

Sabemos exactamente de qué están compuestas las estrellas del cielo que, en las que por cierto, exista una gran variedad de elementos, no todas están hechas de la misma materia dependiendo a qué generación puedan pertenecer. Estudiando las líneas espectrales sabemos qué elementos están allí presentes,

No olvidemos que en el siglo XIX, algunos científicos declararon que la composición de las estrellas estaría siempre fuera del alcance del experimento, y que la única manera que tendríamos de conocerlas sería la de mirar al cielo y verlas allí, inalcanzables como puntos de luz brillantes y lejanos en la oscuridad del vacío del cosmos. Sin embargo, podemos decir hoy, a comienzos del siglo XXI, año 2.008, que no sólo podemos saber la composición de las estrellas, sino también como nacen y mueren, las distancias que los separan de nosotros y un sin fin de datos más.

La Muerte del Sol Cómo y Cuando Será - AreaCiencias

De la misma manera que sabemos que el Sol será Gigante roja primero y enana blanca después

Particularmente creo que el ser humano es capaz de realizar todo aquello en lo que piensa dentro de unos límites racionales. Podremos, en un futuro no muy lejano, alargar de manera considerable la media de vida. Podremos colonizar otros planetas y explotar recurso mineros en las lunas de nuestro Sistema Solar; los turistas irán al planeta Marte o a las lunas Ganímedes o Europa. Los transportes de hoy serán reliquias del pasado y nos trasladaremos mediante sistemas de transportes más limpios, rápidos y exentos de colisiones. Tendremos computadoras de cifrado cuántico que harán más seguras las comunicaciones y el intercambio de datos será realmente el de la velocidad de c, así en todos los campos del saber humano.

Hemos llegado al límite del conocimiento?

Sí, nuestra Mente está unida al Universo por los hilos invisibles del electromagnetismo. Formamos parte de él, una de las partes que piensan y conscientes tratan de formular preguntas que nos hagan entender.

La mente humana, conectada al Universo del que forma parte, evoluciona sin cesar y, llegado el momento, podría tener una gran cantidad de respuestas que, desde luego, necesitamos conocer para sobrevivir en este complejo y vasto Cosmos.

Nanotecnología, mucho más que un crecimiento exponencial | Homo nanus |  SciLogs | Investigación y Ciencia

       Estamos inmersos en un avance exponencial, imparable en todos los campos del saber humano

Otro ejemplo de una idea “inverificable” la tenemos en la existencia del átomo. En el siglo XIX, la hipótesis atómica se reveló como el paso decisivo en la comprensión de las leyes de la química y la termodinámica. Sin embargo, muchos físicos se negaban a creer que los átomos existieran realmente, los aceptaban como un concepto o herramienta matemática para operar en su trabajo que, por accidente, daba la descripción correcta del mundo.

Relación de indeterminación de Heisenberg - Wikipedia, la enciclopedia libreEl Principio de Incertidumbre

Hoy somos todavía incapaces de tomar imágenes directas del átomo debido al principio de incertidumbre de Heisemberg, aunque ahora existen métodos indirectos. En 1.905, Einstein proporcionó la evidencia más convincente, aunque indirecta, de la existencia de átomos cuando demostró que el movimiento browniano (es decir, el movimiento aleatorio de partículas de polvo suspendidas en un líquido) puede ser explicado como colisiones aleatorias entre las partículas y los átomos del líquido.

 Kinetic | Teoria cinética, Energia térmica, Movimento browniano

Albert Einstein, había demostrado la existencia de los átomos. Esto lo hizo gracias al siguiente problema: ¿por qué los granos de polen “saltan” en el agua?. Einstein llegó a la conclusión de que esto sólo podía ser posible si los átomos existían, y esto se comprobó por las exactísimas predicciones que se lograban con los cálculos de Einstein sobre este extraño movimiento: el movimiento Browniano.

Por analogía, podríamos esperar la confirmación experimental de la física de la décima dimensión utilizando métodos indirectos que aún ni se han inventado o descubierto. En lugar de fotografiar el objeto que deseamos, quizá nos conformaríamos, de momento, con fotografiar la “sombra” del mismo.

emilio silvera

¿La Gravedad Cuántica? ¿Qués es eso?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (21)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los primeros 25 años de la gravedad cuántica de bucles contados por Carlo  Rovelli - La Ciencia de la Mula FrancisTeoría de cuerdas VS gravedad cuántica de bucles – Universo CuánticoQué es la gravedad cuántica de bucles? | UDGVirtual Formación Integral

“La gravedad cuántica es el campo de la física teórica que procura unificar la teoría cuántica de campos, que describe tres de las fuerzas fundamentales de la naturaleza, con la relatividad general, la teoría de la cuarta fuerza fundamental: la gravedad. La meta es lograr establecer una base matemática unificada que describa el comportamiento de todas las fuerzas de la Naturaleza, conocida como la teoría del campo unificado.”

Gravedad cuántica | •Ciencia• AminoPerspectivas de gravedad cuántica - PDF Free Download

Teoría de Cuerdas vs. Gravedad Cuántica de Bucles [Mega... en Taringa!Gravedad cuántica, pesando lo muy pequeño (Tercera parte) - Naukas

La física será incompleta y conceptualmente insatisfactoria en tanto no se disponga de una teoría adecuada de la gravedad cuántica, y, hasta el momento, no parece que se pueda lograr tal teoría. Sin embargo, al desarrollar las ecuaciones de campo de la Teoría de Cuerdas, allí aparecen las ecuaciones de Einstein de la Relatividad General, sin que nadie las llame, como por arte de magia emergen. ¿Qué significa eso? ¿No será que en la Teoría de cuerdas subyace la Teoría Cuántica de la Gravedad?

Espacio-Tiempo Curvo de la Gravedad Cuántica | Textos Científicos

Espacio-Tiempo Curvo: Gravedad Cuántica

Durante el siglo XX, la física se fundamentó, en general, sobre dos grandes pilares: la Mecánica Cuántica y la teoría de Relatividad. Sin embargo, a pesar de los enormes éxitos logrados por cada una de ellas, las dos aparecen ser incompatibles. Esta embarazosa contradicción, en el corazón mismo de física teórica, se ha transformado en uno de los grandes desafíos permanentes en la ciencia.

1 - Curso de Relatividad General - YouTubeLa Teoría de la Relatividad General en siete preguntas (y respuestas)

La teoría de la relatividad general da cuenta a la perfección de la gravitación. Por su parte, la aplicación a la gravedad de la mecánica cuántica requiere de un modelo específico de gravedad cuántica. A primera vista, parecería que la construcción de una teoría de gravedad cuántica no sería más problemático que lo que resultó la teoría de la electrodinámica cuántica (EDC), que ya lleva más de medio siglo con aplicaciones más que satisfactorias.

Electrodinamica y magnetismo (Powerpoint) - Monografias.comElectrodinámica cuántica de cavidades – Portal de Noticias Universidad del  Quindio

En lo medular, la EDC describe la fuerza electromagnética en términos de los cambios que experimentan las llamadas partículas virtuales, que son emitidas y rápidamente absorbidas de nuevo; el principio de incertidumbre de Heisenberg nos dice que ellas no tienen que conservar la energía y el movimiento. Así la repulsión electrostática entre dos electrones puede ser considerada como la emisión, por parte de un electrón, de fotones virtuales y que luego son absorbidos por el otro.

Partículas virtuales (y III)Nuestra Consciencia forma el Cosmos y la Ciencia: PARTICULAS VIRTUALES EN  EL VACIO

Partículas virtuales (I)Uncertainty and Virtual Particles

Aunque parece contrario a lo racional, ni siquiera el vacío absoluto equivale al concepto de la nada. De hecho, el vacío está repleto de diversas partículas que continuamente aparecen o dejan de existir. Estas partículas aparecen, existen durante un breve instante y luego vuelven a desaparecer.

Como su existencia es tan fugaz, generalmente se las llama partículas virtuales.


La misma mecánica, pero a través de los cambios de la partícula virtual de la gravedad el «gravitón» (el quantum del campo gravitacional), podría considerarse para estimar la atracción gravitacional entre dos cuerpos. Pero gravitones nunca se han visto. La gravedad es tan débil que puede obviarse a escala molecular, donde los efectos cuánticos son importantes. Ahora, si los cambios que podrían realizarse en los gravitones sólo se producen en la interacción entre dos puntos de masa, es posible, entonces, que en los cuerpos masivos se ignore los efectos cuánticos. El principio de incertidumbre de Heisenberg nos señala que no podemos medir simultáneamente la posición y la velocidad de una partícula subatómica, pero esta indeterminación es imperceptible para los planetas, las estrellas o las galaxias.

Leer más

Revelando secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pauli Exclusion PrinciplePauli Exclusion Principle

“El principio de exclusión de Pauli estipula que dos Fermiones no pueden ocupar el mismo estado cuántico dentro del mismo sistema al mismo tiempo, mientras que para el caso de los electrones estipula que es imposible para 2 electrones en un mismo átomo tener los mismos 4 valores para los números cuánticos, donde esos 4 números incluyen el número cuántico principal, el número cuántico de momento angular, el número cuántico magnético y por último, el número cuántico de espín. Como se ha dicho, el principio de exclusión de Pauli solo es aplicable a Fermiones , esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero.

Son Fermiones, por ejemplo, los electrones y los quarks (estos últimos son los que forman los protones y los neutrones). En cambio, partículas como el fotón, y el (hipotético) gravitón, no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres.”

Los neutrinos

En 1930, el físico Wolfgang Pauli propuso la hipótesis de una nueva e invisible partícula denominada neutrino para dar cuenta de la energía pérdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía. Pauli comprendió, no obstante, que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente, muy raramente con la materia.

LA SAGA DES NEUTRINOSNeutrinosLos neutrinos - AstroAficion

Por ejemplo, si pudiéramos construir un bloque sólido de plomo de varios años-luz de extensión desde nuestro Sistema Solar hasta Alpha Centaury y lo pusiéramos en el camino de un haz de neutrinos, aun saldrían algunos por el extremo opuesto.  Pueden atravesar la Tierra como si ni siquiera existiese y, de hecho, billones de neutrinos emitidos por el Sol están atravesando continuamente nuestros cuerpos, tanto de día como de noche.  Pauli admitió: “He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada.”

NEUTRINO: LA PARTÍCULA FANTASMA QUE ESTÁ DE MODAEl haz de neutrinos más potente atravesará 1.300 kilómetros de la Tierra |  Ciencia | EL PAÍS

Plomo español de hace 2.000 años para descubrir los secretos del UniversoAgua para detectar neutrinos, el Premio Nobel de Física 2015 – Hidrología  Sostenible

       A la caza del neutrino en diferentes proyectos para saber de sus propiedades y su masa

Los neutrinos han sido objeto de grandes proyectos para su localización, y, escondidos en las profundidades de la Tierra, en minas abandonadas, han sido instalados grandes depósitos de agua pesada que, detectaban a los neutrinos que allí interaccionaban y que eran detectados por ordenador. Hay empresas que parecen descabelladas y, sin embargo, son las que nos traen los mayores éxitos.

Si repasamos la historia de la Ciencia, seguramente encontraremos muchos motivos para el optimismo.  Witten con su Teoría M,  está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck.

Como ya he contado en otras ocasiones, él dijo:

Edward Witten is an American theoretical physicist with a focus on  mathematical physics who is a professor of mathematical physi… |  Physicists, Science guy, Physics

       Edward Witten autor de la Teoría M dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles.  En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible.  Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas…  La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante veinticinco años.”

Leer más

De materiales y radiaciones (La imaginación del Ser Humano)

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Uranio-233 - Wikiwand

Uranio 233

Uranium-235 Chain ReactionEl uranio: el elemento más polémico - BBC News Mundo

Uranio 235

Qué es el uranio empobrecido? – Ciencia de Sofáuranio 238 | Moléculas a reacción

Uranio 238

PU 239 - Isótopo Radiactivo Del Plutonio Foto de archivo - Imagen de pared,  grunge: 110536822Plutonio - EcuRed

Plutonio 239

Al pensar en la desintegración me ha traído a la memoria otros materiales que también se desintegran de manera natural y que son materiales fértiles, o que sin serlo, se pueden transformar en otros que sí lo son.

Al hablar de material fértil me estoy refiriendo a núclidos que pueden absorber neutrones para formar material fisible. El uranio-238, por ejemplo, absorbe un neutrón para formar uranio-239, que se desintegra en plutonio-239. Este es el tipo de conversión que la imaginación del hombre hace que ocurra en un reactor reproductor.

Lo explicaré con más detalles:

Nuclear FissionUranium-235 Chain Reaction

Reacciones en la fisión del uranio-235Uranio-235 fisión nuclear energía nuclear energía, energía, ángulo, Fisión  nuclear png | PNGEgg

El uranio-235 es un combustible práctico, es decir, los neutrones lentos son capaces de hacer que el uranio-235 se fisione, o lo que es lo mismo, se rompan sus átomos en dos, produciendo neutrones lentos, que a su vez inducen otras fisiones atómicas. El uranio-233 y el plutonio-239 son también combustibles nucleares prácticos por las mismas razones.

Desgraciadamente, el uranio-233 y el plutonio-239 no existen en estado natural sino en trazas mínimas, y el uranio-235, aunque existe en cantidades apreciables, no deja de ser raro. En cualquier muestra de uranio natural, sólo siete de cada mil átomos son de uranio-235, el resto es uranio-238.

Leer más