“Hace unos días, cerca de Cessy (Francia), una mujer paseaba con su perro ajena a lo que se cocía bajo sus pies. Era un entorno idílico. Campos verdes con nieve en las umbrías, granjas de vacas y los Alpes recortados en el horizonte. Mientras, a 100 metros bajo tierra, cientos de operarios, ingenieros y físicos hacían los últimos ajustes para encender la mayor máquina del mundo, capaz de reproducir lo que pasó en el universo poco después del Big Bang.
Vista lateral del experimento CMS, uno de los mayores del CERN
Por aquel entonces se decía:
“El Gran Colisionador de Hadrones, o LHC, en la frontera entre Francia y Suiza, volverá a funcionar a finales de mes de Abril de 2015. Los físicos llaman a estas puestas en marcha runs. En la primera ya se consiguió todo un récord mundial con el descubrimiento del bosón de Higgs. Lo que depara esta segunda, que durará hasta 2018, no lo sabe nadie. Tras un tiempo de reparación y acondicionamiento el acelerador va a funcionar al doble de potencia y cruzará una frontera de la física nunca antes traspasada. ¡Veremos que nos encontramos! Incluso podría ser alguna sorpresa ¿desagradable?
El Large Hadron Collider (LHC) que hace tres años nos sorprendía con la confirmación de la existencia del bosón de Higgs, Después de aquello volvió a tener una parada para revisiones y pronto los protones volverán a circular por este túnel de 27 kilómetros de longitud, preparados para ofrecernos nuevos hallazgos científicos. Bueno, eso dicen los del LHC que se empeñan en buscar partículas de materia oscura que llaman WIMPs, cuando no sa sabe ni si la “materia oscura” existe en realidad. Es toda una paradoja el que una maquinaria tan enormemente grande que dispone de tan descomunal energía, se disponga a realizar experimentos en busca de la “nada”, ya que, lo cierto es que no saben ni si encontraran alguna cosa.”
Nuevos detectores nos darán mucha más información
Este último parón ha servido para que los ingenieros a cargo del CERN hayan realizado importantes mejoras en esta estructura, y pronto funcionará con el doble de energía de lo que lo había hecho en el pasado ciclo de experimentos. De momento el LHC está “calentando motores”, y las colisiones no comenzarán a tener lugar hasta dentro de cuatro meses.
Los protones que se están inyectando ya en ese particular circuito lo están haciendo a una energía relativamente pequeña, pero en los próximos meses los ingenieros esperan ir incrementando la energía y hacer que esta llegue a los 13 teraelectronvoltios (TeV). Al incrementar el número de protones aumentará el número de colisiones y la temperatura, y a finales de Abril de 2.016 se espera que la energía de las partículas que circulen en el interior del LHC alcance su pico.
El descubrimiento del bosón de Higgs fue crucial para “completar” la formulación del modelo estándar de la física de partículas, pero dicha teoría está aún incompleta, y otra teoría llamada supersimetría sugiere que hay una partícula aún no descubierta que acompaña a cada una de las existentes en el modelo estándar. Estas son algunas de las partículas que los científicos esperan detectar en la nueva ronda de experimentos, y sobre todas ellas destaca la partícula de materia oscura, que según los físicos constituye el 26% del universo.
Datos de mayo de 2004. La zona verde representa el resultado del experimento DAMA, en comparación con los límites de precisión de los experimentos CDMS y EDELWEISS.
“El CDMS (Cryogenic Dark Matter Search), situado en la mina Soudan (Minnesota, Estados Unidos), utiliza una técnica basada en el almacenamiento de cristales de germanio y silicio a una temperatura muy fría. Los cristales, que tienen un tamaño similar al de un disco de hockey, son enfriados a la temperatura de 50 milikelvin (0,05 K). Esta temperatura tan cercana al cero absoluto hace que los átomos del cristal vibren muy lentamente, por lo que, si cualquier WIMP impactara contra un átomo del cristal, se produciría una onda de sonido, pues el átomo que recibe el impacto desplaza en su vibración a los átomos de su alrededor, tarea de la que se encarga una capa de metal (aluminio y tungsteno). Este tungsteno se encuentra a una temperatura crítica, por lo que ejerce de superconductor, y las vibraciones que se generan en el cristal calientan la capa de metal, que se detecta a través del cambio en la resistencia del mismo.”
Sí los WIMPS han sido buscados por muchos y de muchas maneras pero, sin encontrarlos hasta el momento y en ello está empeñado el LHC que cuenta con más potencia que otros experimentos.
los WIMPs, si finalmente resultan ser las partículas responsables de la “materia oscura” no bariónica ( si es que realmente existen), deberían tener propiedades muy concretas al hacer “imposible” o “difícil” que no podamos verla a pesar de que conforma una gran parte de la masa del Universo, no interacciona mediante la fuerza electromagnética, lo que nos lleva a pensar que son neutras y, sin embargo, sí parece que emitan fuerza gravitatoria… ¡Es todo tan raro!
En física, el consenso científico es que la materia oscura existe con una certeza del 100% (Bueno, yo no entro en ese 100 x 100 y soy muy exeptico en cuanto a la existencia de materia oscura a la que se agarran los cosmólogos como el ahogado a un clavo ardiendo, ya que, no saben, por qué las galaxias se alejan unas de otras a tanta velocidad y lo mismo las estrellas en las galaxias, y, la explicación más fácil para ellos… ¡la materia oscura”. Sabemos que interacciona muy poco con la materia ordinaria, por ello detectarla es extremadamente difícil, pero la estamos buscando con ahínco y tesón en un rango de 90 órdenes de magnitud. Has leído bien, buscamos una partícula con una masa entre los yocto-gramos y los yotta-gramos. La hemos descartado en muchos lugares, pero hay muchos otros en los que aún podría esconderse.
yotta-gramos
Uno de los grandes objetivos del LHC Run 2 es buscar una partícula candidata a la materia oscura si es que hay alguna que esté a su alcance. No sabemos si está a su alcance. Pero no perdemos la esperanza de que la encuentre.
“La materia oscura es un corpúsculo (si es macroscópico) o una partícula (si es microscópica) neutro (para la carga eléctrica y para la carga de color), que tiene una vida media muy larga y que interacciona débilmente con la materia ordinaria, quizás sólo gracias al bosón de Higgs. Uno de los objetivos del LHC Run 2 es explorar la búsqueda de una partícula de materia oscura en un pequeño rango de energías (la escala débil entre cientos y miles de GeV). Nos gusta creer que hay muchas razones físicas por las cuales debería esconderse en dicha escala. Pero la Naturaleza es sutil, aunque no perversa. Igual que el borracho que ha perdido sus llaves al entrar en casa de noche las busca debajo de la farola, donde hay luz, aunque esté a unos metros de distancia, buscamos la partícula donde podemos hacerlo. Y nuestra esperanza es encontrarla, pero si no la encontramos allí, como somos tercos, seguiremos buscándola.”
Como veréis, estos hablan de las partículas y de la materia oscura como si fueran objetos familiares con los que estamos a diario interaccionando, cuando en realidad, todo son hipótesis y creencias asentadas a través de indicios y conexiones “lógico-mentales” que no sabemos, aún, si van en la buena dirección.
¡Ya veremos que pasa! Me gustaría que acertaran y aparecieran los dichos WIMPs, confirmando todas esas teorías, así podríamos comenzar la búsqueda de otras partículas que, como el Gravitón, están por ahí perdidas y tampoco podemos encontrarla.
Como tantas veces he referido en otras ocasiones, cuando se habla de la “materia oscura”, me viene a la memoria lo que dijo aquel Físico premio Nobel que era de Holanda:
“La Materia Oscura es la alfombra bajo la cual, los cosmólogos barren su ignorancia”.
Una señal de un experimento húngaro de física apunta a la posibilidad de que exista una fuerza fundamental de la Naturaleza más allá de las cuatro que conocemos hasta el momento.
“Todos, aunque no tengamos ni idea de física, hemos experimentado los efectos de las cuatro fuerzas fundamentales de la naturaleza. La gravedad nos pega al suelo, la interacción nuclear fuerte se rompe a base de bombardeos con neutrones para producir energía en las centrales atómicas, la radiación electromagnética que generan el Sol o las bombillas nos ilumina y la interacción nuclear débil, quizá la más esotérica, produce nuevos elementos y permite, por ejemplo, la datación por Carbono 14.”
La Tierra rodeada de filamentos de “materia oscura”, según una hipótesis para explicar qué es NASA/JPL-Caltech
Con estos antecedentes, cuando desde principios de este año comenzó a hablarse del posible descubrimiento de una quinta fuerza, muchos trataron de imaginar un fenómeno parecido que se nos hubiese podido escapar. Sin embargo, aún queda mucho para poder confirmar el hallazgo y los efectos de esa quinta fuerza no serían tan evidentes como los de las cuatro anteriores.
Varios experimentos en todo el mundo podrían confirmar o descartar la existencia de esta quinta fuerza
Si al final tiene éxito y no queda aplastada por nuevos datos que la refuten, la historia de esta revolución comenzará a contarse en Hungría. Allí, en el Instituto para la Investigación Nuclear de la Academia Húngara de ciencias en Debrecen, Attila Krasznahorkay y su equipo observaron un fenómeno extraño en un experimento diseñado para buscar “fotones oscuros”, un tipo de partículas que ayudarían a entender qué es la materia oscura. En su búsqueda, disparaban protones a unas dianas de litio, generando núcleos de berilio 8, un elemento inestable que, por efecto de la fuerza nuclear débil, se desintegraba produciendo electrones y positrones.
Buscando entre las partículas producidas en esos choques, encontraron una anomalía que solo eran capaces de explicar si existiese una partícula aún desconocida. Se trataría de un bosón ligero, solo 34 veces más pesado que un electrón, algo que permitiría su detección sin una máquina descomunal como el LHC, necesaria para generar bosones pesados como el higgs. Eso haría asequible para muchos grupos del mundo el estudio de ese rango energético en busca de la nueva partícula, pero también plantea la cuestión de por qué no se ha encontrado antes.
Físicos de la Universidad de California sugieren que el trabajo realizado por un equipo en Hungría el año pasado podría haber revelado la existencia de una quinta fuerza de la naturaleza.
Aquel estudio, como es natural, causó un gran revuelo en la comunidad de la Física, que tiene a varios grupos que se han fijado la meta de reproducir los experimentos realizados por el equipo de la del Instituto de Investigación Nuclear de la Academia Húngara de Ciencias.
El trabajo húngaro ganó relevancia internacional cuando un grupo de físicos teóricos de la Universidad de California en Irvine liderado por Jonathan Feng tomó sus datos y trató de explicar su significado en un reciente artículo publicado en la revista Physical Review Letters. Según ellos, no se trataría de un fotón oscuro, sino de un bosón. El motivo por el que no se habría encontrado hasta ahora, pese a que hay aceleradores capaces de generar partículas de esa masa desde los años cincuenta, es que no interactuaría con protones, y solo se relacionaría con electrones y fotones de una forma débil. Ahora que otros grupos saben dónde buscar, podrán dedicar sus experimentos a la búsqueda de nuevos datos que confirmen o descarten la existencia del bosón X.
¿Podría estar el Universo lleno de fotones oscuros que tienen masa?
¿Son los fotones oscuros portadores de la quinta fuerza del Universo?
Un experimento de científicos del CERN trata de dar caza a estas elusivas partículas, que serían emitidas por la materia oscura
¿Qué? Pero, ¿no decían que la “materia oscura” no emite radiación y sí Gravedad?
Y, aparte de que se desdicen, seguimos divagando…
“La nueva partícula podría servir para elaborar una teoría unificada que explicase todas las fuerzas conocidas”
“Con los experimentos que hay en marcha y los que están a punto de arrancar, se podrá comprobar en uno o dos años si esa partícula existe”, señala Eduard Massó, catedrático de Física Teórica en la Universidad Autónoma de Barcelona. No obstante, Massó recuerda que la experiencia muestra que a veces hay señales de física exótica que al final son efectos de los propios experimentos que no se han interpretado bien. Sobre la posibilidad real de que la señal observada por el equipo húngaro se confirme como el indicio de esa nueva fuerza de la naturaleza, otro físico responde con humor: “Hay rumores sobre la existencia de un templo oculto en las profundidades del Himalaya, dedicado únicamente a servir de mausoleo a las quintas fuerzas difuntas”.
El escepticismo sobre los resultados del grupo húngaro se alimenta además por dos anuncios previos que acabaron en nada. Según contaba a la revista Quanta el investigador de la Universidad del Estado de Míchigan (EE. UU.) Oscar Naviliat Cuncic, en 2008 afirmaron haber descubierto un bosón de 12 mega-electronvoltios y en 2012 otro de 13,5. Ambos hallazgos desaparecieron cuando se obtuvieron nuevos datos con mejores detectores.
El año pasado, un equipo de físicos nucleares en Hungría observaron una anomalía en las desintegraciones de átomos excitados de berilio-8 -en las que se produjeron inesperados pares de partículas con un ángulo particular de separación. El bache en los datos de los físicos era inconfundible, con probabilidades de menos de uno de cada 100 mil millones que surgieran por casualidad. Informaron de la anomalía en Physical Review Letters en enero, en ese entonces, los investigadores argumentaron que podría significar la existencia de una nueva partícula fundamental. Pero al principio, pocos se dieron cuenta del descubrimiento.
Lo que pasaría si se encuentra
A la espera de que la comunidad científica averigüe si el bosón X es o no una realidad, Massó adelanta qué significaría esa quinta fuerza que, en principio, no tendría una influencia tan evidente en nuestra vida como las cuatro que conocemos hasta ahora. “En el nivel más entusiasta, encontrar esta partícula que se acopla de una forma tan precisa y tan especial a las otras partículas, supondría una revolución. Sería la punta del iceberg de una nueva física, porque existe la posibilidad de que la materia oscura tenga interacciones más allá de las gravitacionales, que no nos dan mucha información sobre esas partículas”, indica. “Muchos experimentos para buscar la materia oscura no han dado los resultados esperados y es posible que sea algo muy diferente de lo que se había supuesto. Es posible que sean partículas de lo que a veces se llama un mundo shadow [de sombra] que contactaría con el nuestro a través de unas interacciones mediadas por esa quinta fuerza, que sería como un puente entre nuestro mundo y el de la materia oscura”, plantea.
Sorprendentemente, mientras que se necesitaba un mayor super-colisionador del mundo para producir el bosón de Higgs pesado, el hipotético bosón de Hungría es tan ligero, con un peso de sólo 34 veces el peso del electrón, que podría haber aparecido en los experimentos hace décadas. Si realmente existe, ¿Cómo ha pasado desapercibido durante tanto tiempo? La mayoría de los expertos se mantienen escépticos hasta que se presenten nuevas prueba en la fisíca de partículas – incluso para Feng, “es una presión enorme decir que una quinta fuerza ha sido descubierta, y reconoce que, obviamente, es necesario comprobarlo.
En un segundo escenario, es posible que “esta quinta fuerza no tenga consecuencias para nuestra vida”, apunta Massó. Sin embargo, podría servir para acercarse a una teoría que unifique las cuatro grandes fuerzas, algo a lo que Einstein dedicó los últimos años de su vida. Aunque en los años sesenta se vio que a altas energías las fuerzas electromagnética y nuclear débil se podrían explicar como una sola, los esfuerzos para hacer lo mismo con el resto no han tenido éxito. Quizá este nuevo bosón podría servir para lograr lo que no consiguió el descubridor de la Relatividad.
El 21 de diciembre de 2010 científicos estadounidenses descubrieron “un vimana atrapado en un pozo del tiempo“ (un campo gravitatorio electromagnético, que sólo puede ocurrir en una dimensión invisible del espacio) en la ciudad de Balkh, Afganistán, lugar que alguna vez Marco Polo catalogó como: “Una de las ciudades más nobles y grandiosas del mundo”.
Los intentos por retirar el misterioso Vimana de la cueva donde había estado oculto durante por lo menos 5.000 años, causaron la “desaparición” de por lo menos 8 soldados norteamericanos, atrapados por el vórtex temporal ( nuestros cuerpos no pueden desplazarse como si nada del presente al futuro y del futuro al pasado sin cargarse el peso destructivo de las leyes de la fìsica, salvo si se logra bloquear el campo magnético, algo que aparentemente los científicos norteamericanos tardaron ocho cadáveres en descubrir y solucionar, probablemente con jaulas de Faraday ).
La existencia de este tipo de fenómenos no está demostrado por los científicos (caso contrario estaríamos hablando de leyes), pero los físicos teóricos coinciden en general que podrían ser posibles si se acepta la teoría del Multi-universo (un universo de por lo menos 11 dimensiones espaciotemporales) como estructura lógica y matemática. Atravesando esa especie de plasma líquido, nos podríamos trasladar a otros mundos, a otras galaxias.
Theodor Kaluza, ya en 1921 conjeturaba que si ampliáramos nuestra visión del universo a 5 dimensiones, entonces no habría más que un solo campo de fuerza: la gravedad, y lo que llamamos electromagnetismo sería tan sólo la parte del campo gravitatorio que opera en la quinta dimensión, una realidad espacial que jamás reconoceríamos si persistiéramos en nuestros conceptos de realidad lineal, similar a un holograma.
Bueno, independientemente de que todo esto pueda ser una realidad, lo cierto es que, nosotros, ahora en nuestro tiempo, hablamos de un universo con más dimensiones y, la carrera de las más altas dimensiones la inicio (como arrtiba se menciona) en el año 1919 (no el 1921) por Theodor Kaluza, un oscuro y desconocido matemático, cuando le presentó a Einstein mediante un escrito una teoría unificada que podía unificar, las dos grandes teorías del momento, la Relatividad General con el Magnetismo y podía realizarse si elaboraba sus ecuaciones en un espacio-tiempo de cinco dimensiones.
Teoría de la Relatividad de Kaluza
Así estaban las cosas cuando en 1.919 recibió Einstein un trabajo de Theodor Kaluza, un privatdozent en la Universidad de Königsberg, en el que extendía la Relatividad General a cinco dimensiones. Kaluza consideraba un espacio con cuatro dimensiones, más la correspondiente dimensión temporal y suponía que la métrica del espacio-tiempo se podía escribir como:
Theodor Kaluza
En 1921, Einstein presentó en la Academia Prusiana un artículo de Theodor Kaluza… en el que el campo gravitacional y electromagnético están unificados geométricamente en cinco dimensiones.
Así que, como hemos dicho, ese mismo año, Oskar Klein publicaba un trabajo sobre la relación entre la teoría cuántica y la relatividad en cinco dimensiones. Uno de los principales defectos del modelo de Kaluza era la interpretación física de la quinta dimensión. La condición cilíndrica impuesta ad hoc hacía que ningún campo dependiera de la dimensión extra, pero no se justificaba de manera alguna.
Klein propuso que los campos podrían depender de ella, pero que ésta tendría la topología de un círculo con un radio muy pequeño, lo cual garantizaría la cuantización de la carga eléctrica. Su diminuto tamaño, R5 ≈ 8×10-31 cm, cercano a la longitud de Planck, explicaría el hecho de que la dimensión extra no se observe en los experimentos ordinarios, y en particular, que la ley del inverso del cuadrado se cumpla para distancias r » R5. Pero además, la condición de periodicidad implica que existe una isometría de la métrica bajo traslaciones en la quinta dimensión, cuyo grupo U(1), coincide con el grupo de simetría gauge del electromagnetismo.
Einstein al principio se burló de aquella disparatada idea pero, más tarde, habiendo leido y pensado con más atenci`´on en lo que aquello podía significar, ayudó a Kaluza a publicar su idea de un mundo con cinco dimensiones (allí quedó abierta la puerta que más tarde, traspasarían los teóricos de las teorías de más altas dimensiones). Algunos años más tarde, , el físico sueco Oskar Klein publicó una versión cuántica del artículo de Kaluza. La Teoría Kaluza-Klein que resultó parecía interesante, pero, en realidad, nadie sabía que hacer con ella hasta que, en los años setenta; cuando pareció beneficioso trabajar en la supersimetría, la sacaron del baúl de los recuerdos, la desempolvaron y la tomaron como modelo.
Pronto, Kaluza y Klein estuvieron en los labios de todo el mundo (con Murray Gell-Mann, en su papel de centinela lingüistico, regañando a sus colegas que no lo sabían pronunciar “Ka-wu-sah-Klein”.
Pero, ¿Existen en nuestro Universo dimensiones ocultas?
Aunque la teoría de cuerdas en particular y la supersimetría en general apelaban a mayores dimensiones, las cuerdas tenían un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la Teoría de cuerdas sólo sería eficaz, en dos, diez y veintiséis dimensiones, y sólo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta hacia algo tan tajante, los científicos prestan atención, y a finales de los años ochenta había decenas de ellos que trabajaban en las cuerdas. Por aquel entonces, quedaba mucho trabajo duro por hacer, pero las perspectivas era brillantes. “Es posible que las décadas futuras -escribieron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten- sea un excepcional período de aventura intelectual.” Desde luego, la aventura comenzó y, ¡qué aventura!
La Constante de Estructura Fina (α)
Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck). Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.
Puesto que el radio de compactificación es tan pequeño, el valor típico de las masas será muy elevado, cercano a la masa de PlanckMp = k-12 = 1’2 × 1019 GeV*, y por tanto, a las energías accesibles hoy día (y previsiblemente, tampoco en un futuro cercano – qué más quisieran E. Witten y los perseguidores de las supercuerdas -), únicamente el modo cero n = 0 será relevante. Esto plantea un serio problema para la teoría, pues no contendría partículas ligeras cargadas como las que conocemos.
¿Y si llevamos a Kaluza-Klein a dimensiones superiores para unificar todas las interacciones?
En este proceso llamado desintegración beta y debido a la interacción débil, un neutrón se transforma en un protón, un electrón y un (anti)neutrino electrónico cuando uno de los quarks del neutrón emite una partícula W–. Aquí queda claro que el término “interacción” es más general que “fuerza”; esta interacción que hace cambiar la identidad de las partículas no podría llamarse fuerza (todo representado en uno de los famosos diagramas de Feynman).
La descripción de las interacciones débiles y fuertes a través de teorías gauge no abelianas mostró las limitaciones de los modelos en cincodimensiones, pues éstas requerirían grupos de simetría mayores que el del electromagnetismo. En 1964 Bryce de UIT presentó el primer modelo de tipo Kaluza-Klein–Yang-Mills en el que el espacio extra contenía más de una dimensión.
El siguiente paso sería construir un modelo cuyo grupo de isometría contuviese el del Modelo Estándar SU(3)c × SU(2)l × U(1)y, y que unificara por tanto la gravitación con el resto de las interacciones.
Edward Witten demostró en 1981 que el número total de dimensiones que se necesitarían sería al menos de once. Sin embargo, se pudo comprobar que la extensión de la teoría a once dimensiones no podía contener fermiones quirales, y por tanto sería incapaz de describir los campos de leptones y quarks.
Por otra parte, la supersimetría implica que por cada bosón existe un fermión con las mismas propiedades. La extensión supersimétrica de la Relatividad General es lo que se conoce como supergravedad (supersimetría local).
Unos años antes, en 1978, Cremmer, Julia y Scherk habían encontrado que la super-gravedad, precisamente en once dimensiones, tenía propiedades de unicidad que no se encontraban en otras dimensiones. A pesar de ello, la teoría no contenía fermiones quirales, como los que conocemos, cuando se compactaba en cuatro dimensiones. Estos problemas llevaron a gran parte de los teóricos al estudio de otro programa de unificación a través de dimensiones extra aún más ambicioso, la teoría de cuerdas.
No por haberme referido a ella en otros trabajos anteriores estará de más dar un breve repaso a las supercuerdas. Siempre surge algún matiz nuevo que enriquece lo que ya sabemos.
El origen de la teoría de supercuerdas data de 1968, cuando Gabriela Veneziano introdujo los modelos duales en un intento de describir las amplitudes de interacción hadrónicas, que en aquellos tiempos no parecía provenir de ninguna teoría cuántica de campos del tipo de la electrodinámica cuántica. Posteriormente, en 1979, Yaichiro Nambu, Leonard Susskind y Holger Nielsen demostraron de forma independiente que las amplitudes duales podían obtenerse como resultado de la dinámica de objetos unidimensionales cuánticos y relativistas dando comienzo la teoría de cuerdas.
En 1971, Pierre Ramona, André Neveu y otros desarrollaron una teoría de cuerdas con fermiones y bosones que resultó ser supersimétrica, inaugurando de esta forma la era de las supercuerdas.
David Jonathan Gross
Sin embargo, en 1973 David Gross, David Politzer y Frank Wilczek descubrieron que la Cromodinámica Cuántica, que es una teoría de campos gauge no abeliana basada en el grupo de color SU(3)c, que describe las interacciones fuertes en términos de quarks y gluones, poseía la propiedad de la libertad asintótica. Esto significaba que a grandes energías los quarks eran esencialmente libres, mientras que a bajas energías se encontraban confinados dentro de los hadrones en una región con radio R de valor R ≈ hc/Λ ≈ 10-13 cm.
Dicho descubrimiento, que fue recompensado con la concesión del Premio Nobel de Física a sus autores en 2.004, desvió el interés de la comunidad científica hacia la Cromodinámica Cuántica como teoría de las interacciones fuertes, relegando casi al olvido a la teoría de supercuerdas.
Se habla de cuerdas abiertas, cerradas o de lazos, de p branas donde p denota su dimensionalidad (así, 1 brana podría ser una cuerda y 2.Brana una membrana) o D-Branas (si son cuerdas abiertas) Y, se habla de objetos mayores y diversos que van incorporados en esa teoría de cuerdas de diversas familias o modelos que quieren sondear en las profundidades del Universo físico para saber, como es.
En la década de los noventa se creó una versión de mucho éxito de la teoría de cuerdas. Sus autores, los físicos de Princeton David Gross, Emil Martinec, Jeffrey Harvey y Ryan Rohn, a quienes se dio en llamar el cuarteto de cuerdas de Princeton.
El de más edad de los cuatro, David Gross, hombre de temperamento imperativo, es temible en los seminarios cuando al final de la charla, en el tiempo de preguntas, con su inconfundible vozarrón dispara certeros e inquisidoras preguntas al ponente. Lo que resulta sorprendente es el hecho de que sus preguntas dan normalmente en el clavo.
Gross y sus colegas propusieron lo que se denomina la cuerda heterótica. Hoy día, de todas las variedades de teorías tipo Kaluza-Klein que se propusieron en el pasado, es precisamente la cuerda heterótica la que tiene mayor potencial para unificar todas las leyes de la naturaleza en una teoría. Gross cree que la teoría de cuerdas resuelve el problema de construir la propia materia a partir de la geometría de la que emergen las partículas de materia y también la gravedad en presencia de las otras fuerzas de la naturaleza.
¿Por qué será que, cuando los físicos manejan las ecuaciones de la teoría de cuerdas, sin que nadie las llame, allí aparecen las ecuaciones de campo de la Relatividad General? ¿No será que que en esa teoría no verificada subyace una teoría de la Gr4avedad cuántica?
El caso curioso es que, la Relatividad de Einstein, subyace en la Teoría de cuerdas, y, si eliminamos de esta a aquella y su geometría de la Gravedad…todo resulta inútil. El gran Einstein está presente en muchos lugares y quizás, más de los que nos podamos imaginar.
Es curioso constatar que si abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió atraído inicialmente hacia la teoría de cuerdas. En 1.982 leyó un artículo de revisión de John Schwarz y quedó sorprendido al darse cuenta de que la gravedad emerge de la teoría de supercuerdas a partir solamente de los requisitos de auto consistencia. Recuerda que fue “la mayor excitación intelectual de mi vida”.
Gross se siente satisfecho pensando que Einstein, si viviera, disfrutaría con la teoría de supercuerdas que sólo es válida si incluye su propia teoría de la relatividad general, y amaría el hecho de que la belleza y la simplicidad de esa teoría proceden en última instancia de un principio geométrico, cuya naturaleza exacta es aún desconocida.atividad general de Einstein. Nos ayuda a estudiar las partes más grandes del Universo, como las estrellas y las galaxias. Pero los elementodiminutoso los átomos y las partículas subatómicas se rigen por unas leyes diferentes denominadas mecánica cuántica.
Claro que, como todos sabemos, Einstein se pasó los últimos treinta años de su vida tratando de buscar esa teoría unificada que nunca pudo encontrar. No era consciente de que, en su tiempo, ni las matemáticas necesarias existían aún. En la historia de la física del siglo XX muchos son los huesos descoloridos de teorías que antes se consideraban cercanas a esa respuesta final que incansables buscamos.
Hasta el gran Wolfgang Pauli había colaborado con Heisenberg en la búsqueda de una teoría unificada durante algún tiempo, pero se alarmó al oir en una emisión radiofónica como Heisenberg decía: “Está a punto de ser terminada una Teoría unificada de Pauli-Heisenserg, en la que sólo nos queda por elaborar unos pocos detalles técnicos.”
Wolfgang Pauli
Enfadado por lo que consideraba una hipérbole de Heisenberg que se extralimitó con aquellas declaraciones en las que lo inviolucraba sin su consentimiento, Pauli envió a Gamow y otros colegas una simple hija de papel en blanco en la que había dibujado una caja vacía. Al pie del dibujo puso estas palabras: “Esto es para demostrar al mundo que yo puedo pintar con Tiziano. Sólo faltan algunos detalles técnicos.”
Los críticos del concepto de supercuerdas señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoría aún no había repetido siquiera los logros del Modelo Estándar, ni había hecho una sola predicción que pudiera someterse a prueba mediante el experimento. La Supersimetría ordenaba que el Universo debería estar repleto de familias de partículas nuevas, entre ellas los selectrones (equivalente al electrón supersimétrico) o el fotino (equivalente al fotón).
Lo cierto es que, nada de lo predicho ha podido ser comprobado “todavía” pero, sin embargo, la belleza que conlleva la teoría de cuerdas es tal que nos induce a creer en ella y, sólo podemos pensar que no tenemos los medios necesarios para comprobar sus predicciones, con razón nos dice E. Witten que se trata de una teoría fuera de nuestro tiempo, las supercuerdas pertenecen al futuro y aparecieron antes por Azar.
Y, a todo esto, ¿Dónde están esas otras dimensiones?
Bueno, una cosa es segura…. ¡Siempre hay más de lo que podemos ver! Ni subido en lo más alto podemos ver todo lo que hay.
Una nos habla del Cosmos y de como el espacio se curva ante la presencia de masas, la otra, nos habla de funciones de ondas, entrelazamientos cuánticos, de diminutos objetos que conforman la materia y hacen posibles los átomos y la vida.
Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “super-simetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.
La vida entre chinches del genio Perelman, el ruso que rechazó el millón de dólares del ‘nobel de las matemáticas’.
Los vecinos alucinados: “Que acepte y reparta la pasta, por lo menos”. Vive en el bloque de pisos donde reside con su madre en “el Bronx de San Petesburgo, y, en sus ratos libres, coge un canasto y un gancho y los vecinos lo ven caminar al campo para coger setas. Extraño personaje.
Uno de los logros más destacados de Perelman fue la resolución de la famosa Conjetura de Poincaré, un problema que desconcertó a los matemáticos durante más de un siglo y que se considera uno de los Problemas del Milenio, de hecho, el único de los siete que está resuelto.
Pero sigamos con lo que decíamos: “Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “super-simetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.”
Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?). Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal. Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!
La longitud de Planck (ℓP) u hodón (término acuñado en 1926 por Robert Lévi) es la distancia o escala de longitud por debajo de la cual se espera que el espacio deje de tener una geometría clásica. Una medida inferior previsiblemente no puede ser tratada adecuadamente en los modelos de física actuales debido a la aparición de efectos de Gravedad Cuántica.
¿Quién puede ir a la longitud de Planck para “verla”? A distancias comparables con la longitud de Planck, se cree que están sucediendo cosas muy curiosas que rebasan ampliamente los límites de nuestra imaginación. A diferencia de la filosofía reduccionista que propone que lo más complejo está elaborado -axiomáticamente- a partir de lo más elemental, lo que está sucediendo en la escala de Planck no parece tener nada de elemental o sencillo.
Qué es la longitud de Planck y por qué marca un límite en nuestra comprensión del Universo.
Al pensar en el Universo, nuestra mente tiende a irse a lo inimaginablemente inmenso, un espacio sin fronteras conocidas donde existe todo.
Sin embargo, es lo inimaginablemente diminuto lo que constituye las piedras angulares de esa inmensidad y ofrece la oportunidad de comprender cómo funciona.
Observando cómo se comportan sus componentes en las escalas más mínimas posibles podremos entender cómo se unen para crear este mundo y más.
Esa es una de las principales razones por las que hemos querido saber qué es lo más pequeño del mundo.
Y la respuesta a esa eterna pregunta ha evolucionado junto con la humanidad.
“La longitud de Planck es la única escala de distancias que puede obtenerse de manera natural a partir de las constantes de la naturaleza. Son varios los argumentos que implican que, a la escala de Planck, los efectos de la gravedad y los de la mecánica cuántica deberían combinarse, por lo que cualquier experimento que permitiesen explorar las leyes de la física a tales distancias supondría un avance tremendo en física teórica. El problema reside en su ínfimo valor, del orden de 10-35metros. En los experimentos de física de partículas, sondear distancias cada vez más pequeñas requiere emplear energías más y más elevadas. Sin embargo, la energía necesaria para escudriñar la longitud de Planck se halla muchos órdenes de magnitud por encima de las posibilidades técnicas de los aceleradores presentes o futuros. La escala de distancias que podrá explorar el LHC, por ejemplo, puede estimarse en unos 10-19 metros.”
En ese lugar nos encontramos con una especie de espuma cuántica
Se cree que a esta escala la continuidad del espacio-tiempo en vez de ir marchando sincronizadamente al parejo con lo que vemos en el macrocosmos de hecho está variando a grado tal que a nivel ultra-microscópico el tiempo no sólo avanza o se detiene aleatoriamente sino inclusive marcha hacia atrás, una especie de verdadera máquina del tiempo. Las limitaciones de nuestros conocimientos sobre las rarezas que puedan estar ocurriendo en esta escala en el orden de los 10-35 metros, la longitud de Planck, ha llevado a la proposición de modelos tan imaginativos y tan exóticos como la teoría de la espuma cuántica que supuestamente veríamos aún en la ausencia de materia-energía si fuésemos ampliando sucesivamente una porción del espacio-tiempo plano.
La exploración enigmática las dimensiones más altas. ¿No será otra solución como la que dió lugar al problema de la expansión de las galaxias, y, surgió la “materia oscura”?
La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa. En el Hiperespacio, todo es posible. Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.
Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas. Todo debe ser contestado a partir de una ecuación básica.
¿Dónde radica el problema?
El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que mencioné en páginas anteriores.
La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías.
¡Necesitamos algo más avanzado!
Cada partícula tiene encomendada una misión, la de Higgs, ya sabemos lo que dicen por ahí.
Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña. El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo. El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.
Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs. Las partículas influidas por este campo, toman masa. Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético. Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.
ADEMÁS DE SU BELLEZA… ¡DICEN TANTO CON TAN POCO!
Cuando los físicos hablan de la belleza de algunas ecuaciones, se refieren a las que, como ésta, dicen mucho con muy pocos caracteres. De hecho, puede que ésta sea la ecuación más famosa conocida en nuestro mundo.
Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo. Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein. La masa, m, tiene en realidad dos partes. Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo. La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos. Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.
Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo. Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.
Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.
La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo. El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.
Hasta hace bien poco no teniamos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC cuando la buscaba). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W–, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?
Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV. Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam). Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles. En la unidad hay cuatro partículas mensajeras sin masa -los W+, W–, Zº y fotón que llevan la fuerza electrodébil. Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa. La simetría se rompe espontáneamente, dicen los teóricos. Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.
Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.
Pero, encierra tantos misterios la materia que, a veces me hace pensar en que la podríamos denominar de cualuquier manera menos de inerte ¡Parece que la materia está viva!
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54) x 10-31 Kg la primera y, 1,602 177 33 (49) x 10-19 culombios, la segunda, y también su radio clásico: r0 = e2/mc2 = 2’82 x 10-13 m. No se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.
¡No por pequeño, se es insignificante!
Recordémoslo, todo lo grande está hecho de cosas pequeñas.
En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*.
Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.
El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.
Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales. Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La fuerza electromagnética afecta los cuerpos eléctricamente cargados y es la fuerza involucrada en las transformaciones físicas y químicas de átomos y moléculas. Es mucho más intensa que la fuerza gravitatoria, tiene dos sentidos (positivo y negativo) y su alcance es infinito.
La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.
Han llevado años captarlas, las ondas gravitatorias llevadas por el gravitón son débiles
Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.
De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es o, su carga es o, y su espín de 2. Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.
Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.
La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.
Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.
Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles que no se pueden eliminar de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.
Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultraalto.
No puedo dejar de referirme al vacío theta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs).
El vacío theta es el punto de partida para comprender el estado de vacío de las teoría gauge fuertemente interaccionantes, como la cromodinámica cuántica. En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados. Esto significa que el vacío theta es análogo a una fundón de Bloch* en un cristal.
Se puede derivar tanto como un resultado general o bien usando técnicas de instantón. Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido.
Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.
Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos y que son:
Los elementos transuránicos o elementos transuránidos son elementos químicos con número atómico mayor que 92, el número atómico del elemento uranio. El nombre de trans-uránidos significa «más allá del uranio». Posición en la tabla periódica del uranio.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.
Sí, el electrón es el más pequeño de la familia si no tenemos en cuenta los neutrinos acompañantes
En esta representación artística, un electrón orbita el núcleo de un átomo, girando alrededor de su eje mientras una nube de otras partículas subatómicas se emiten y reabsorben constantemente – Nicolle R. Fuller, Fundación Nacional de Ciencia
El Electrón sigue siendo la esfera más perfecta del Universo
El examen de esta partícula elemental con una precisión sin precedentes respalda, una vez más, el modelo estándar de la física
Investigadores del Imperial College de Londres concluyeron en 2011 que el electrón es la esfera más perfecta del Universo. Según anunciaron, lo que separa a esta partícula elemental de la redondez absoluta es menos de 0,000000000000000000000000001 cm, algo insignificante. En otras palabras, «si un electrón se inflara hasta el tener el tamaño del Sistema Solar, todavía parecería esférico».
Ahora, investigadores de las universidades estadounidenses de Northwestern, Harvard y Yale han examinado nuevamente la forma de la carga del electrón con una precisión sin precedentes. Y nada ha cambiado. Los investigadores han confirmado que es perfectamente esférico. Esta conclusión va mucho más allá de una mera curiosidad científica. Una carga ligeramente aplastada podría haber indicado partículas pesadas desconocidas y difíciles de detectar a su alrededor, un descubrimiento que, de haberse producido, habría afectado a la comunidad física mundial. Sin embargo, y aunque para algunos puede resultar decepcionante, todo parece seguir el guion del modelo estándar, la teoría que describe cómo funciona el Universo y que, pese a sus lagunas evidentes, todavía no ha podido ser desbancada.
Representación de un electrón- Nicolle R. Fuller, Fundación Nacional de Ciencia
«Si hubiéramos descubierto que la forma no era redonda, ese sería el mayor titular en física de las últimas décadas», dice Gerald Gabrielse, quien dirigió la investigación en Northwestern. «Pero nuestro descubrimiento sigue siendo igual de importante científicamente porque fortalece el modelo estándar de la física de partículas y excluye modelos alternativos». El estudio aparece publicado en la revista «Nature».
El modelo estándar describe la mayoría de las fuerzas y partículas fundamentales en el universo. Es una imagen matemática de la realidad, y ningún experimento de laboratorio realizado ha sido capaz de contradecirlo por el momento. Pero eso ha sido desconcertante para los físicos durante décadas. «El modelo estándar tal como está no puede ser correcto porque no puede predecir por qué existe el Universo», señala Gabrielse, profesor de física. «Esa es una laguna bastante grande».
Supersimetría
Al tratar de «arreglar» el modelo estándar, muchos modelos alternativos predicen que la esfera aparentemente uniforme de un electrón está en realidad aplastada asimétricamente. Uno de esos modelos, llamado supersimetría, postula que partículas subatómicas pesadas y desconocidas influyen en el electrón para alterar su forma perfectamente esférica, un fenómeno no probado llamado «momento dipolar eléctrico». Estas partículas más pesadas y sin descubrir podrían ser responsables de algunos de los misterios más deslumbrantes del Universo y posiblemente podrían explicar por qué está hecho de materia en lugar de antimateria.
«Casi todos los modelos alternativos dicen que la carga de electrones podría estar aplastada, pero simplemente no lo hemos visto con suficiente sensibilidad», apunta Gabrielse. «Es por eso que decidimos mirar allí con una precisión más alta de lo que nunca antes se había observado».
Crean un microscopio capaz de “ver” electrones en movimiento
Investigadores de la Universidad de Arizona desarrollan el microscopio más rápido del mundo que abre nuevas fronteras en la observación de procesos electrónicos ultrarrápidos.
En física, el electrón, comúnmente representado por el símbolo e−, es una partícula subatómica con una carga eléctrica elemental negativa. Un electrón no tiene componentes o subestructura conocidos; en otras palabras, generalmente se define como una partícula elemental.
Con este objetivo en mente, el equipo disparó un haz de moléculas de óxido de torio frías a una cámara del tamaño de un escritorio grande. Luego, los investigadores estudiaron la luz emitida por las moléculas. Una luz torcida indicaría un momento dipolo eléctrico. Como la luz no se torció, el equipo de investigación concluyó que la forma del electrón era, de hecho, redonda, confirmando la predicción del modelo estándar. Que no haya evidencia de un momento dipolo eléctrico significa que no hay evidencia de esas partículas hipotéticas más pesadas. Y si a pesar de todo estas partículas existen, sus propiedades difieren de las predichas por los teóricos.
«Nuestro resultado le dice a la comunidad científica que necesitamos repensar seriamente algunas de las teorías alternativas», asegura David DeMille, profesor de física en Yale y coautor del estudio.
En 2014, el equipo realizó la misma medición con un aparato más simple. Al utilizar métodos mejorados y diferentes frecuencias de láser, el experimento actual era un orden de magnitud más sensible que su predecesor. «Si un electrón fuera del tamaño de la Tierra, podríamos detectar si el centro del planeta está a una distancia un millón de veces más pequeña que un cabello humano», explica Gabrielse. «Así de sensible es nuestro aparato».
Los investigadores planean seguir afinando sus instrumentos para realizar mediciones cada vez más precisas. Hasta que los investigadores encuentren evidencias de lo contrario, la forma redonda de los electrones y los misterios del universo permanecerán como están.
«Sabemos que el modelo estándar está mal, pero parece que no podemos encontrar dónde está mal. Es como una gran novela de misterio», admite Gabrielse. «Debemos ser muy cuidadosos al hacer suposiciones de que estamos más cerca de resolver el misterio, pero tengo una gran esperanza de que nos estamos acercando a este nivel de precisión».