domingo, 19 de mayo del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




De la Nanociencia a la Nanotecnología. 1ª parte

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Es mucho lo que se habla de Nanotecnología y Nanociencia y, la mayoría de las veces, los actores de dichas conversaciones no tienen ni la menor idea de que va todo esto. Así que, para aclarar un poco el panorama y dejar una idea básica de esta moderna disciplina, aquí he transcrito un artículo de los Físicos D. José Angel Martín Gago y Pedro A. Serena Domingo que, fue publicado en la Revista Española de Física, Volumen 23, Número 4 de 2009 y que, para no hacerlo pesado, os pondré en varias partes.

Aplicaciones de la Nanotecnología, ejemplos y ventajas - IberdrolaNanotechnology: imágenes, fotos de stock y vectores | Shutterstock

          La nanociencia revoluciona la salud, los alimentos y la energía solarPor qué estudiar el Máster Universitario en Nanociencia y Nanotecnología  Molecular UMH - Máster Universitario en Nanociencia y Nanotecnología  Molecular. Conjunto

                                                 En las fronteras de la Física del estado sólido

“La Nanociencia y la Nanotecnología es un conjunto de conocimientos teóricos y prácticos que nos permiten determinar como se comporta el denominado nano-mundo (el ámbito en el que el tamaño de los objetos tienen entre 1 y 100 nm). A partir de estos conocimientos se están haciendo continuamente interesantes y arriesgadas propuestas sobre nuevos procedimientos, materiales y dispositivos que muy probablemente se convertirán en los bienes de consumo que inundaran nuestras casas, oficinas, hospitales y vehículos, etc. en las próximas décadas. Demos un repaso a este interesante tema.”

Física del estado sólido - Wikipedia, la enciclopedia libreTEORIA DE SOLIDOS – La Químicaweb

Puede decirse que el comienzo de la Nanotecnología se remonta a 1959 cuando el físico y premio Nobel Richard Feynman pronunció en el Instituto de Tecnología de California su ahora famoso discurso. Feynman trató en su conferencia del problema de la manipulación individual de objetos tan pequeños como átomos y moléculas y de las múltiples oportunidades tecnológicas que ofrecería dicha manipulación. En aquel momento su discurso no tuvo una gran repercusión, pero hoy día muchas de sus predicciones se han cumplido con bastante exactitud.

Guía de lectura: Jiro Taniguchi - Zona Negativa

               N. Taniguchi

Sin embargo, la palabra “Nanotecnología” fue acuñada en 1974 por el profesor N. Taniguchi de la Universidad de Ciencias de Tokio en un artículo titulado “On the Basic Concept of  Nanotechnology”, que se presentó en una conferencia de la Sociedad japonesa de Ingeniería de Precisión. En este contexto la Nanotecnología se presenta como la tecnología que nos permitirá separar, consolidar y deformar materiales átomo a átomo o molécula a molécula.

Leer más

Velocidades aluninantes

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tener la oportunidad de leer a Gerard t´de Hoft, para el aficionado a la Física, puede ser, un auténtico placer. En sus palabras se visualizan los fenómenos que ocurren en el interior del átomo, se comprende como funciona el mundo de las partículas y las interacciones que entre ellas se producen, y, desde luego, se puede llegar a una profundidad de conocimiento que va más allá del nivel ordinario. Para que podáis emitir un veredicto sobre la veracidad de mis palabras, a continuación os transcribo algunos de sus conceptos y maneras de ver la Física.

                       How to become a GOOD Theoretical PhysicistGERARD T HOOFT | Casa del Libro

En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse.

                                               Núcleo atómico - Wikipedia, la enciclopedia libre

Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas sub-nucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

                     Velocidad de reacción

Página 1 de 4 ¡Hola, chicos! Hoy seguiremos con las reacciones químicas. Si  se encuentran con alguna duda, mientras leen la tTeoría de Colisiones y Complejo Activado – quimicasarasoto

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿Cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

Leer más

La búsqueda de lo escondido

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las fuerzas que podemos sentir en la vida cotidiana, es decir, la Gravedad y el electromagnetismo, aumentan con la cercanía: así, cuando más cerca está un clavo de un imán o una manzana del suelo, más se verán atraídos.

En el mapa aparecen representadas las regiones del planeta en las que la Gravedad es más intensa (rojo) y menos intensa (azul).  La intensidad de la gravedad no es constante por toda la superficie de la Tierra y que, por este motivo, nuestro peso puede variar hasta un 0,7% cuando viajamos.

                                 Pin op Lluvia y tormenta

“En el medio en que vivimos, hay campos electromagnéticos por todas partes, pero son invisibles para el ojo humano. Se producen campos eléctricos por la acumulación de cargas eléctricas en determinadas zonas de la atmósfera por efecto de las tormentas. El campo magnético terrestre provoca la orientación de las agujas de los compases en dirección Norte-Sur y los pájaros y los peces lo utilizan para orientarse.”

                                                  Strong Force Nucleus Atom This Science Stock Vector (Royalty Free)  1216908298

Por el contrario, la interacción fuerte disminuye cuanto más cerca y juntas están las partículas en el interior de los átomos, aumentando cuando las partículas se alejan las unas de las otras.

Interacción nuclear fuerte - Didactalia: material educativo

El descubrimiento de esta extraña propiedad, llamada libertad asintótica, supuso toda una revolución teórica en los años 70 (se publicó en 1.973), pero ya plenamente respaldada por los experimentos en los aceleradores de partículas, aconsejó, a la Academia, conceder 30 años más tarde, el Premio Nobel de Física a sus autores.

                                              Frank Wilczek, Ph.D. - Society for Science

“Ha sido un gran alivio.  He estado pensando en ello durante mucho tiempo”, comentó al enterarse de la noticia Franck Wilczek.

“No estaba claro que fuera un adelanto en aquel momento. La teoría que propusimos era descabellada en muchos aspectos y tuvimos que dar muchas explicaciones”, reconoció el investigador.”

Tanto Wilczek como Politzer eran aun aspirantes a doctores en 1.973, cuando publicaron su descubrimiento en Physical Review letters.  Junto a su informe, la misma revista incluyó el trabajo de David Gross, que unido al de los dos estudiantes ha dado lugar a la celebrada teoría de la Cromo-dinámica Cuántica (QCD).

Leer más

Partículas “bellas” de materia y antimateria II

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hace ya algún tiempo que os puse aquí mismo la primera parte del  artículo publicado en la Revista de Física de la RSEF, os pongo el comienzo de aquella primera parte y el final, así, recordareis.

revista española de física – GEFES RSEFRSEF (@RSEF_ESP) / Twitter

Un magnífico artículo de Don Alberto Ruiz Jimeno, miembro del Grupo de Altas Energías del Instituto de Física Moderna Universidad de Cantabria y Jefe del Grupo de Altas Energías. En él nos dice que:

Tevatrón - Wikipedia, la enciclopedia libreCientíficos de Tevatron completan el puzle del quark top | CPAN - Centro  Nacional de Física de Partículas, Astropartículas y Nuclear

Una nueva partícula descubierta en CDF? | Física de particulas para  secundariaLas fronteras informáticas de los aceleradores | KosmosLogos

Nuevos bariones constituidos por tres Quarks, como los protones, pero conteniendo el quarks b (“belleza”) han sido observado en el experimento CDF del Acelerador del Tevatrón de protones y antiprotones. Por otra parte (nos dice), se ha observado por primera vez la oscilación de los mesones B, entre materia y antimateria. Dado que el artículo puede tener un alto interés para ustedes, he creído positivo transcribirlo aquí para gozo del personal que, con estos nuevos conocimientos (como me pasó a mí), podrán aumentar los suyos.

La física de partículas elementales tiene por objeto el estudio de los constituyentes más elementales de la materia y de las fuerzas fundamentales que rigen su comportamiento. La dinámica de estos bloques fundamentales viene formulada por la mecánica cuántica relativista.

Terminaba esta primera parte así:

Archivo:Interacciones del modelo estándar de la física de particulas.png -  Wikipedia, la enciclopedia libreLa ruptura espontánea de la simetría electrodébil y el bosón de Higgs - La  Ciencia de la Mula Francis

El Modelo Estándar ha sido comprobado desde su desarrollo formal, a mediados de 1960, y sus parámetros han sido medidos con extraordinaria precisión, gracias al desarrollo de experimentos muy potentes, entre los que destacan los realizados en el acelerador LEP (“Large Electrón Positrón”) del CERN (Centro Europeo de Física de Partículas, en Ginebra), durante la última década del siglo XX, y del Tevatrón del Laboratorio Fermilab (Chicago, USA), aún en funcionamiento.

Leer más

El Tiempo que transcurre inexorable

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Relativista    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En la tumba de David Hilbert (1862-1943), en el cementerio de Gotinga (Alemania), dice:

A dónde van los matemáticos cuando mueren?

Debemos saber. Sabremos”.

Estoy totalmente de acuerdo con ello. El ser humano está dotado de un resorte interior, algo en su mente que llamamos curiosidad y que nos empuja (sin que en muchas ocasiones pensemos en el enorme esfuerzo y en el alto precio que pagamos) a buscar respuestas, a querer saber el por qué de las cosas, a saber por qué la naturaleza se comporta de una u otra manera y, sobre todo, siempre nos llamó la atención aquellos problemas que nos llevan a buscar nuestro origen en el origen mismo del universo y, como nuestra ambición de saber no tiene límites, antes de saber de dónde venimos, ya nos estamos preguntando hacia dónde vamos. Nuestra osadía no tiene barreras y, desde luego, nuestro pensamiento tampoco las tiene, gracias a lo cual, estamos en un estadio de conocimiento que a principios del siglo XXI, se podría calificar de bastante aceptable para dar el salto hacia objetivos más valiosos.

                                 David Hilbert: el arquitecto de la matemática moderna | OpenMind

Es mucho lo que hemos avanzado en los últimos ciento cincuenta años.  El adelanto en todos los campos del saber es enorme. Las matemáticas, la física, la astronomía, la química, la biología genética, y otras muchas disciplinas científicas que, en el último siglo, han dado un cambio radical a nuestras vidas.

Leer más