domingo, 01 de febrero del 2026 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo y la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://23.253.41.33/wp-content/uploads/10.208.149.45/uploads/2012/01/oldearth.jpeg

La esfera de Agua y roca que a 28 Km/s, deambula por el Espacio alrededor del Sol y nos da el cobijo que necesitamos para seguir evolucionando. Su vida activa dependerá de la del Sol, es decir,  cuando la estrella que nos ofrece luz y calor se convierta en Gigante Roja primero y Enana Blanca después, la Tierra quedará desolada, los océanos se evaporarán y, la Vida, tal como la conocemos habrá desaparecido. ¡Hay que ir pensando en soluciones! ¿Qué falta mucho para eso? Sí, puede ser pero… ¡El Tiempo transcurre inexorable y, el momento llegará!

http://geekness.com.br/wp-content/uploads/2014/12/noruega-timelapse-1.jpghttp://geekness.com.br/wp-content/uploads/2014/12/noruega-timelapse-2.jpg

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida única, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

HISTORIA BIOLÓGICA
¿Cuánto tiempo
llevamos sobre la
tierra?:

      Así se puede medir el Tiempo en el contexto del Universo para calcular las distintas etapas de la Vida

HISTORIA BIOLÓGICA
Hádico:

Claro que para que la vida hiciera acto de presencia tuvieron que confluir una serie de hechos que, no siempre, ni en todos los planetas se pueden repetir.

HISTORIA BIOLÓGICA
Arcaico:

Los estromatolitos son estructuras estratificadas de formas diversas, formados por la captura y fijación de partículas carbonatadas por parte de cianobacterias en aguas someras que, mediante la fotosíntesis, liberan Oxígeno y captan de la atmósfera grandes cantidades de dióxido de carbono para formar carbonatos que, al precipitar, dan lugar a la formación de los estromatolitos.

Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Ahora, parece que han recapacitado y tenemos en Marte, como decía ayer mismo, a la Mars Phoenix que, de momento ha encontrado hielo de agua, ha diluido porciones de la tierra marciana en agua y debidamente tratada, han hallado la presencia de magnesio, sodio, potasio y cloruros.  Uno de los científicos responsables ha dicho:

“Hay más que evidencia de agua porque las sales están ahí. Además hemos encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de Marte es que no es un mundo extraño, sino que, en muchos aspectos es igual que la Tierra.”

Sonda espacial que aterrizó en Marte sigue sin dar señales de vida

Los grandes presupuestos gastados en Marte, aunque algunos lo critiquen, puede ser que en el futuro, no muy lejano ya, nos pueda echar una mano y sacarnos de grandes apuros que se vislumbran en el horizonte del Tiempo por venir.

Se están analizando los gases y los compuestos químicos del suelo y del hielo allí encontrados, y, todo ello, debidamente procesado nos dará una respuesta de lo que allí existe.

Lo que para mí está muy claro es que, los mecanismos del Universo son los mismos en cualquier región del cielo, y, las estrellas y los planetas surgen en todas partes de la misma manera. Y, si eso es así, sería lógico pensar que la vida podría estar en cualquier parte, y, además, con muchas probabilidades de que sea más o menos tal como la conocemos, ya que, la nuestra, basada en el Carbono y el Nitrógeno (siempre en presencia de agua), es la más natural dadas las características de estos elementos para unirse.

La historia de la vida en el Universo es otro ejemplo de complejidad superficial construida sobre cimientos de una profunda sencillez. Actualmente la prueba de que el universo tal como lo conocemos surgió a partir de un estado denso y caliente (BIg Bang) hace unos 14.000 millones de años, es poco discutida.

Los bloques de construcción básicos que emergieron del big bang fueron el hidrógeno y el helio, casi exactamente en una proporción de 3:1. Todos los demás elementos químicos (excepto unos leves vestigios de unos pocos elementos muy ligeros, como el litio) han sido fabricados en el interior de las estrellas y dispersados por el espacio cuando estas se dilataron y expulsaron materiales (en algunos casos explotaron) en las últimas etapas de sus vidas como expliqué en comentarios de días pasados.

Una estrella como el Sol genera calor convirtiendo hidrógeno en helio dentro de su núcleo; en otras estrellas los procesos cruciales incluyen fusiones sucesivas de núcleos de helio. Dado que cada núcleo de helio es una unidad que contiene cuatro “nucleones” (dos protones y dos neutrones), y este elemento se denomina abreviadamente helio-4, esto significa que los elementos cuyos núcleos contienen un número de nucleones que es múltiplo de cuatro son relativamente comunes en el universo, excepto el berilio-8, que es inestable.

Concretamente, en las primeras etapas de este proceso se produce carbono-12 y oxígeno-16, y resulta que el nitrógeno-14, aunque no contiene un número entero de núcleos de helio-4, se obtiene como subproducto de una serie de interacciones en las que participan núcleos de oxígeno y de carbono que operan en estrellas de masa un poco mayor que la de nuestro Sol.

 

 La inmensa complejidad que está presente en el cerebro humano y de cómo se genera lo que llalamos “la mente”, a partir de una maraña de conexiones entre más de cien mil millones de neuronas, más que estrellas existen en nuestra Galaxia, la Vía Láctea. Es algo grande que, en realidad, no hemos alcanzado a comprender.

Con gran diferencia, los elementos más comunes, aparte del hidrógeno y del helio. Dado que éste último es un gas inerte (noble) que no reacciona químicamente, se deduce que los cuatro elemenbtos reactivos más comunes en el universo son el Carbono, el Hidrógeno, el Oxígeno y el Nitrógeno, conocidos en el conjunto por el acrónimo CHON.

No es casualidad que los cuatro elementos químicos que participan con una aplastante mayoría en la composición de los seres vivos de la Tierra sean el carbono, el hidrógeno, el oxígeno y el nitrógeno.

El Carbono desarrolla el papel clave en el desarrollo de la vida, porque un solo átomo de este elemento es capaz de combinarse químicamente nada menos que con otros cuatro átomos al mismo tiempo (incluídos otros átomos de carbono, que pueden estar unidos a su vez  a más átomos de carbono, formando anillos y cadenas), de tal modo que este elemento tiene una química excepcionalmente rica. Así decimos con frecuencia que la vida en la Tierra está basada en el Carbono, el elemento más ductil y crucial en nuestra formación.

El día que podamos viajar a otros mundos, lo que allí podamos encontrar no debe resultarnos nada extraño, ya que, si nos fijamos en lo que tenemos aquí en la Teirra… ¡También podría asombrar a los posibles seres de otros mundos?

Claro que, tal comentario, no implica la negación de quer pudieran existir otras clases de vida basadas en el silicio o en cualquier otra combinación química, pero todas las pruebas que aporta la Astronomía sugieren que es mucho mayor la probabilidad de que la vida más allá de nuestras fronteras esté basada también en el CHON.

Es inadmisible lo poco que la gente común sabe del Universo al que pertenecen y también lo poco que se valora el trabajo de Astrónomos, Astrofísicos y Cosmólogos, ellos son los que realizan las pruebas y las comprobaciones que finalmente nos llevan al conocimiento que hoy tenemos del cielo y de los objetos que lo pueblan y de las fuerzas que allí actúan.

Gran parte de estas pruebas proceden del análisis espectroscópico del material que está presente en las Nebulosas, esas inmensas nubes de gas y polvo que se encuentran en el espacio como resultado de explosiones de supernovas o de otros fenómenos que en el Universo son de lo más frecuente. A partir de esas nubes se forman los sistemas planetarios como nuestro sistema solar, allí, nacen nuevas estrellas que contienen los mismos materiales expulsados por estrellas de generaciones anteriores.

En estas nubes hay muchos compuestos construidos en torno a átomos de carbono, y este elemento es tan importante para la vida que sus compuestos reciben en general el nombre de compuestos “orgánicos”. Entre los compuestos detectados en nubes interestelares hay sustancias muy sencillas, como metano y dióxido de carbono, pero también materiales orgánicos mucho más complejos, entre los que cabe citar el formaldehído, el alcohol etílico, e incluso al menos un aminoácido, la glicina. Lo que constituye un descubrimiento muy esclarecedor, porque es muy probable que toso los materiales existentes en las nubes interestelares hayan estado presentes en la nube a partir de la cual se formó nuestro Sistema Solar, hace unos cinco milo millones de años.

Resultado de imagen de Experimentos biológicos para saber sobre la formacion´çon de la vida

Una protocélula parecida a lo que aparece en la imagen de arrina podría haber sido la precursora de la Vida en la Tierra.

A partir de estos datos, equipos científicos han llevado a cabo en la Tierra experimentos en los que unas materias primas, debidamente tratadas simulando las condiciones de densidad y energías de aquellas nubes interestelares (ahora en laboratorio), dieron como resultado el surgir expontáneo de tres aminoácidos (glicina, serina y alanina). Todos conocemos el experimento de Miller.

En otro experimento utilizando otra mezcla de ingredientes ligeramente distinta, se producian no menos de dieciseis aminoácidos y otros compuestos orgánicos diversos en unas condiciones que eran las existentes en el espacio interestelar.

Imagen relacionada

Para hacernos una idea, las proteínas de todos los seres vivos de la Tierra están compuestas por diversas combinaciones de tan sólo veinte aminoácidos. Todas las evidencias sugieren que este tipo de materia habría caído sobre los jóvenes planetas durante las primeras etapas de formación del sistema planetario, deposita por cometas que habría sido barridos por la influencia gravitatoria de unos palnetas que estaban aumentando de tamaño.

Como hemos podido deducir, una sopa de aminoácidos posee la capacidad de organizarse por sí sóla, formando una red con todas las propiedades que ha de tener la vida. De esto se deduce que los aminoácidos que estuvieron formando durante largos períodos de tiempo en las profundidades del espacio (utilizando energias proporciona por la luz de las estrellas), serían transportados a la superficie de cualquier planeta joven, como la Tierra.

Algunos planetas pueden resultar demasiado calientes para que se desarrolle la vida, y otros demasiado fríos. Pero ciertos planetas como la propia Tierra (existentes a miles de millones), estarían justo a la temperatura adecuada. Allí, utilizando la expresión de Charles Darwin, en alguna “pequeña charca caliente” tendrían la oportunidad de organizarse en sistemas vivos.

Claro que, por mi parte, como dijo aquel famoso Astrofísico inglés del que ahora no recuerdo el nombre:

” milagro no es que aparezca vida fuera de la Tierra, el verdadero milafro sería que no apareciera”.

Y, en cuanto a las condiciones para que haga posible la existencia de vida, conviene ser reservados y no emitir un juicio precipitado, ya que, todos sabemos de la existencia de vida en condiciones que se podrían comparar o denominar de infernales. Así que, estaremos a la espera de que, el Universo nos de una respuesta.

emilio silvera

¡La Vida en el Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“…en alguna pequeña charca caliente, tendrían la oportunidad de hacer el trabajo y organizarse en sistemas vivos…”

Eso comentaba Darwin sobre lo que podría ocurrir en la Naturaleza.

http://4.bp.blogspot.com/_JlhvjWXE_Ik/TKO0LwU5O8I/AAAAAAAAAtY/IJ48OMDTWvY/s1600/Extremofilos.jpg

Que, dicho sea de paso, en lo que a la vida se refiere, ésta se abre paso en los lugares más estremos e inesperados por muy malas condiciones que allí puedan estar presentes. Así ocurre con los llamaodos extremófilos que, pueden estar, casi en cualquier sitio.  De hecho, en el lago Untersee de la Antártida, nutrido por glaciares, siempre cubierto de nieve, y muy alcalino, es uno de los lagos más inusuales de la Tierra. Los primeros 70 metros de agua del lago son tan alcalinos que “su pH es como CloroxTM fuerte.  Y para hacerlo todavía más interesante, los sedimentos del lago producen más metano que cualquier otra masa de agua natural que haya en nuestro planeta.En ese entorno, podría estar presente la vida. Algunos investigadores ya han encontrado microbios que viven en el hielo, en agua hirviendo y hasta en reactores nucleares. Estos “extraños” extremófilos pueden ser de hecho normales para la vida en otros sitios del cosmos.

.

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.

En trabajos anteriores, ya nos referimos a los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON).

Imagen relacionada

Lee Smolin, de la Universidad de Waterloo,  Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas.

Nuestro hogar dentro del espacio, la Vía Láctea, es una entre los cientos de miles de millones de estructuras similares dispersas por todo el Universo visible, y parece ser una más, con todas las características típicas -de tipo medio en cuanto a tamaño, composición química, etc.- La Vía Láctea tiene forma de disco plano, con alrededor de cien mil años luz de diámetro, y está formada por más de cien mil millones de estrellas que describen órbitas en torno al centro del disco.

El Sol, en realidad, sólo es importante para las formas de vida que pueblan el planeta Tierra, y, posiblemente, algunas de las lunas de Júpiter y Saturno, además del subsuelo del planeta Marte. Es sin duda algunaa el cuerpo central de nuestro Sistema Solar, la estrella que envía luz y calor por todo el Sistema solar,y con mucho, la estrella más cercana al planeta Tierra y la única que se puede estudiar con todo lujo de detalles. Se clasifica como una estrella G2V: una estrella amarilla con una temperatura efectiva de 5.770 K (tipo espectral G2) y una enana de la secuencia principal (clase de luminosidad V). Los detalles de su composición son sobradamente sabidos por todos y cabe destacar su abundancia de hidrógeno – 71% en masa- y de helio el 27% y elementos más pesados hasta completarlo. Por lo tanto, nuestro Sol no destaca por nada entre esa multitud de de cientos de miles de millones de estrellas.

Imagen relacionada

Recorre su órbita a una distancia del centro que viene a ser más o menos dos tercios del diámetro. En el centro de la Galaxia las estrellas forman una protuberancia, de tal modo que desde el exterior daría la sensación de estar viendo un enorme huevo frito, en el que la protuberancia sería la yema. Algunos cosmólogos, al no saber explicar lo que se podía observar en el movimiento de las estrellas dentro de las galaxias, y, en las galaxias mismas al alejarse las unas de las otras a más velocidad de lo que podría suponerse, dieron una explicación de la Vía Láctea en la que, ya introducían la “materia oscura”. Decían:

“Sin embargo, el modo en que este disco gira revela que todo el material brillante (materia bariónica) que compone la parte visible de la Vía Láctea queda sujeto por el tirón gravitatorio de una materia invisible que no brilla ni emite radiación y que viene a ser más o menos diez veces mayor que la materia visible de la Galaxia y que muchos suponen que está diseminada en un halo situado alrededor de ella, extendiéndose mucho más allá del borde del disco de estrellas brillantes.”

 

 

“Mientras los físicos intentan encontrar en los detectores terrestres, aquí mismo, los supuestos extraños componentes de la materia oscura (que representaría, según las teorías vigentes, más del 70% de la masa total de galaxias como la nuestra), los astrónomos se trasladan a través de sus instrumentos a billones de billones de kilómetros por los alrededores de la galaxia para comprobar cómo y dónde se acumula esta materia, distinta de la que forma todo lo que podemos ver y palpar.”

info

Los científicos teorizan la existencia de materia oscura para explicar las observaciones que sugieren que hay mucha más masa en el universo de la que se puede ver. Ellos creen que la materia oscura debe comprender alrededor del 25% del universo, sin embargo, como las partículas que componen la materia oscura no absorben ni emiten luz, hasta ahora era imposible detectarla.

Disco circumnuclear de La Galaxia

Descubrir qué es realmente esta materia oscura (yo prefiero llamarla no luminosa o materia escondida) constituye un tema de crucial interés para los astrónomos, pero no entraremos ahora en eso, ya que, para lo que estamos tratando, no tiene importancia. Muchas galaxias en forma de disco se caracterizan por sus formas en una especie de serpentinas que se alejan en espiral desde su centro, lo que hace que se les aplique el nombre de galaxias espirales. Es fácil estudiar las pautas que siguen los llamados “brazos espirales”, porque las galaxias se encuentran relativamente cerca unas de otras, si comparamos estas distancias con sus tamaños.

               Galaxia Andrómeda

Situada a 2.3 millones de años-luz

Andrómeda es una galaxia espiral cercana a nuestra Vía Láctea, y es la galaxia más grande que es visible a simple vista. Utilizando luz ultravioleta los astrónomos pueden resaltar diferentes estructuras: los colores azules representan la luz de estrellas jóvenes brillantes en los brazos espirales, mientras que las tonalidades anaranjadas son estrellas viejas, más frías en el núcleo de la galaxia. Dentro de miles de millones de años, la Vía Láctea y Andrómeda se unirán.

Crédito: el Equipo de Exploración de Evolución de Galaxias de NASA / JPL-CalTech.

 

Resultado de imagen de La fusión de Andrómeda con la Vía Láctea

 

 

Un grupo de investigadores de la NASA acaba de calcular cómo se producirá exactamente la titánica colisión entre la Vía Láctea, nuestra galaxia, y su vecina más cercana, Andrómeda. El acontecimiento, que tendrá lugar dentro de 4.000 millones de años, cambiará para siempre el aspecto del cielo y, de paso, la historia de nuestro Sol y su sistema de planetas. Estas conclusiones se publicarán en tres estudios diferentes en Astrophysical Journal.

Andrómeda, la galaxia espiral más cercana comparable a la Vía Láctea, se encuentra con respecto a nosotros a una distancia de poco más de dos millones de años luz; parece una gran distancia, pero la galaxia de Andrómeda es tan grande (un poco mayor que la Vía Láctea) que, incluso a esa distancia, vista desde la Tierra cubre un trozo de cielo del tamaño de la Luna, y puede observarse a simple vista en una noche despejada y sin luz lunar, si nos situamos lejos de las ciudades y de otras fuentes de emisión de luz. Lo cierto es que la galaxia vecina se nos viene encima a razón de 500 Km/s y, dentro de algunos miles de millones de años, se fuionará con la Vía Láctea para conformar una galaxia gigante.

Galaxia

Una nueva galaxia en espiral, la más grande encontrada hasta ahora, fue avistada por un equipo de astrónomos, según se informó en el encuentro de la Sociedad Astronómica de Estados Unidos.

Los brazos espirales, que son una característica tan llamativa en galaxias como la nuestra, son visibles porque están bordeados por estrellas calientes de gran masa que relucen con mucho brillo. Esto significa que también son estrellas jóvenes, ya que no hay estrellas viejas que tengan gran cantidad de masa.

No hay misterio alguno en cuanto al modo en que mantienen esa forma espiral. Se debe exclusivamente a un fenómeno de retroalimentación. Las nubes gigantescas a partir de las cuales se forman las estrellas pueden contener hasta un millón de veces la masa del Sol cuando empieza a contraerse gravitatoriamente para formar estrellas. Cada nube que se contrae produce, no una sola estrella de gran tamaño, sino todo un conglomerado de estrellas, así como muchas estrellas menores. Cuando las estrellas brillantes emiten luz, la energía de esta luz estelar (especialmente en la parte ultravioleta del espectro) forma una burbuja dentro de la nube, y tiende a frenar la formación de más estrellas. Sin embargo, una vez que las estrellas de gran masa han recorrido sus ciclos vitales y han explotado, sembrando además el material interestelar con elementos de distintos tipos, la onda expansiva ejerce presión sobre las nubes interestelares cercanas y hace que éstas comiencen a contraerse.

En las explosiones Supernovas se forman ondas que, a veces, construyen figuras tan hermosas como esta. Gracias al Gran Telescopio (VLT) del Observatorio Eiuropeo Austral los astrónomos consiguieron  por primera vez un modelo en 3D de la explosión de una supernova. Se trata de 1987 A, en la Gran Nebulosa de Magallanes, a unos 180.000 años luz de la Tierra.

Las ondas procedentes de distintas supernovas, al entrecruzarse unas con otras, actúan mutuamente para barrer el material interestelar y formar nuevas nubes de gas y polvo que se contraen produciendo más estrellas y supernovas, en un ejemplo clásico de interacción que se mantiene por sí sola en la que intervienen una absorción de energía (procedentes de las supernovas) y una retroalimentación.

Región DR21 de formación de estrellas masivas en infrarrojos

                      Región DR21 de formación de estrellas masivas tomada en infrarrojo

Si la nube es demasiado densa, su parte interna se contraerá gravitatoriamente de manera rápida, formando unas pocas estrellas grandes que recorren sus ciclos vitales rápidamente y revientan la nube en pedazos antes de que puedan formarse muchas estrellas. Esto significa que la generación siguiente de estrellas nace de una nube más delgada, porque ha habido pocas supernovas que barrieran material formando pedazos densos. Si la nube es tan delgada que su densidad queda por debajo de la densidad óptima, nacerán muchas estrellas, y habrá gran cantidad de explosiones supernovas, lo cual producirá gran número de ondas de choque que barrerán el material interestelar, acumulándolo en nubes más densas.

De esta manera, por ambas partes, las retroalimentaciones operan para mantener un equilibrio aproximadamente constante entre la densidad de las nubes y el número de supernovas (y estrellas de tipo Sol) que se producen en cada generación. La propia pauta espiral resulta del hecho de que la galaxia realiza movimiento de rotación y está sometida al tirón gravitatorio que crea la fuerza de marea proveniente de esa materia no luminosa.

Archivo:Nubes-moleculares.jpg

                                                   Los pilares de la Creación son nubes moleculares gigantes

Claro que, la materia interestelar es variada. Existen nubes de gas y polvo fríos, que son ricas en interesantes moléculas y se llaman nubes moleculares gigantes; a partir de estas nubes se forman nuevas estrellas (y planetas). Hay nubes de lo que consideraríamos gas “normal”, formadas por átomos y moléculas de sustancias tales como el hidrógeno, y quizá tan caliente como una habitación cerrada durante toda la noche y con la temperatura de dos cuerpos dormidos y emitiendo calor. Además, hay regiones que se han calentado hasta temperaturas extremas mediante la energía procedente de explosiones estelares, de tal modo que los electrones han sido arrancados de sus átomos para formar un plasma cargado de electricidad.

Vacíos cósmicos

“Cuando miramos al cielo, ya sea a ojo desnudo o con el más potente de los telescopios, vemos ahí arriba millones de estrellas y de galaxias que parecen, pero solo parecen, distribuirse uniformemente por el espacio. Sin embargo, a gran escala las cosas no funcionan así. La materia, la que se agrupa en estrellas y galaxias, tiende a concentrarse en determinados puntos, en detrimento de otros. Podríamos decir que la materia forma largos filamentos alrededor de grandes espacios vacíos. Pero algunos de de esos vacíos han desconcertado por completo a los científicos. Se trata de un inmenso espacio de mil millones de años luz de diámetro, el mayor jamas encontrado en todo el Universo, y para el cual los Cosmólogos no han encontrado respuesta. En su interior no hay estrellas, ni galaxias, ni planetas, ni siquiere el más leve signo de radiación…En otras palabras, allí no hay nada. Como un inmenso desierto cósmico, simplemente está ahí, desafiando con su sola presencia todos nuestros conocimientos. ¿Podría ser un agujero negro supergigante, con la masa de cientos de millones de galaxias? ¿O quizá la primera prueba de la existencia de un universo paralelo? Por ahora no lo sabemos…”

Arriba tenéis uno de esos espacios “vacíos” que existen en el Universo. Este es el conocido como vacío de Boötes que fue detectado en 1981 y tiene un radio de unos 180 millones de años-luz y, su centro, se encuentra aproximadamente a unos 500  milones de años-luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente dado que, las galaxias, llevadas por la fuerza de la Gravedad, tienden a estar situadas en grandes cúmulos y supercúmulos a escalas muy grandes.

También existe una amplia variedad de densidades dentro del medio interestelar. En la modalidad más ligera, la materia que está entre las estrellas es tan escasa que sólo hay un átomo por cada mil centímetros cúbicos de espacio: en la modalidad más densa, las nubes que están a punto de producir nuevas estrellas y nuevos planetas contienen un millón de átomos por centímetro cúbico. Sin embargo, esto es algo muy diluido si se compara con el aire que respiramos, donde cada centímetro cúbico contiene más de diez trillones de moléculas, pero incluso una diferencia de mil millones de veces  en densidad sigue siendo un contraste espectacular.

La cuestión es que, unos pocos investigadores destacaron allá por 1.990 en que todos estos aspectos -composición, temperatura y densidad- en el medio interestelar dista mucho de ser uniforme. Por decirlo de otra manera más firme, no está en equilibrio, y parece que lo que lo mantiene lejos del equilibrio son unos pocos de procesos asociados con la generación de las pautas espirales.

Esto significa que la Vía Láctea como otras galaxias espirales) es una zona de reducción de la entropía. Es un sistema auto-organizador al que mantienen lejos del equilibrio, por una parte, un flujo de energía que atraviesa el sistema y, por otra, como ya se va viendo, la retroalimentación. En este sentido, nuestra Galaxia supera el test de Lovelock para la vida, y además prestigiosos astrofísicos han argumentado que las galaxias deben ser consideradas como sistemas vivos.

El Universo parecía saber que ibamos a venir.

 emilio silvera.

¿La Vida? Creo que está presente por todo el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                              En muchos mundos, como en el nuestro… ¡La Vida estará presente!
La lógica nos dice, según las observaciones y comprobaciones, estudios y misiones realizadas hacia el espacio, lo que hemos podido captar de las regiones más profundas con los magnificos telescopios de los que disponermos, los mismos experimentos realizados con los aceleradores de partículas y otros muchas misiones y Proyectos y también, complejos experimentos que, nos llevan a pensar que, el Universo, es igual en todas partes y en todos los lugares del Cosmos están presentes las mismas leyes fundamentales y, si eso es así (que lo es), en cualquier planeta bien situado y que reúna la condiciones necesarias, la vida habrá surgido como lo hizo en la Tierra

Vida inteligente fuera de la Tierra, ¿podríamos contactar con ella?

             Todos recordamos escena de la película de Spielberg “Encuentros en la Tercera Fase”

“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

Así se expresaba Fred Hoyle.

En la luna Europa, un satélite de Júpiter, los científicos han encontrado la mejor prueba hasta de la existencia de una gran masa de agua líquida justo bajo la helada superficie de esta intrigantes luna. Los análisis indican que se trata de agua tan  caliente, como para fracturar la gruesa piel de hielo que recubre Europa. Y que ese agua está a menos de 3 km. bajo la corteza del satélite. Los resultados, que se publicaron en Nature, fueron anunciados por la NASA. Las numerosas fracturas en el hielo superficial de Europa, perfectamente visibles desde el espacio, llevan más de una década intrigando a los astrónomos.

Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

                             Y pensar que un día, lejano ya en el pasado, Marte pudo ser la Tierra…

Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).

Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.

veenenbos-europa_20061119new_1

Referencia: Chyba, C. F. (2000). Energy for microbial life on Europa. Nature. Las observaciones de Sodio (Na) en la atmósfera de Europa (M. E. Brown and R. E. Hill 1996, Nature 380, 229–231), y un modelo analítico se utilizó determinar la tasa de perdida de Na en Europa.  El resultado final nos indica que la tasa de perdida es mayor que la tasa de implantación, lo que determina, que como la Luna,Europa ser una fuente neta de Sodio (Na). Recordar que el Na es uno de los elementos más presentes en un océano líquido…

Europa y Titán, esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.

Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

                  ¿Quién decir lo que hay o no hay en aquel pequeño mundo?

En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

                     Lo que podemos encontrar de que termine el siglo es… ¡Impredecible!

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad la vida en el Sistema Solar después de la Tierra.

Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.

La química de la vida puede estar presente en cualquiera de esos pequeños mundos que nos rodean y, conforme a los estudios realizados y los que continúan en marcha actualmente, en cualquier momento dentro de este mismo siglo en el que nos ha vivir, se podría dar la noticia sorprendente de que han detectado ¡al fin!, formas de vida extraterrestres.

Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.

Del extraordinario emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

          Esta imagen sorprendente nos debería maravillar y, sin embargo, la vemos como algo cotidiano

No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.

Io nos muestra su furia volcánica y Tritón que es una bola de roca y hielo de 2.700 Km. de diámetro, una superficie bastante suave y con pocos cráteres, y está envuelta por una finísima atmósfera de nitrógeno.

Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.

Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió. De ahí que la NASA, pusiera su a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.

La Cassini dejó caer en Titán a la sonda Huygens para que nos hablara de aquel pequeño mundo. Las maniobras llevadas a cabo por esos ingenios, son verdaderamente increibles para poder conseguir imágenes y contarnos algo de lo que por aquellas regiones está pasando. Pequeños mundos que estando en nuestro propio “barrio” eran un misterio y que , gracias al ingenio del hombre, comenzamos a desvelar.

La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.

La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir océanos de agua? Científicamente nada lo impide.

¡Ya veremos!

emilio silvera

La Vida fuera de la Tierra

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ABC – Ciencia

Proponen la existencia de vida alienígena alimentada por rayos cósmicos

 

Una investigación sugiere la posibilidad de que en planetas lejanos a estrellas la radiación espacial fuera usada como fuente de energía por microbios similares a algunos encontrados en la Tierra, y que viven gracias a la descomposición del uranio.

Representación de una luna de Júpiter. Los rayos cósmicos tienen mayor intensidad en la superficie de cuerpos con una atmósfera y una magnestofera más débiles

Representación de una luna de Júpiter. Los rayos cósmicos tienen mayor intensidad en la superficie de cuerpos con una atmósfera y una magnestofera más débiles – NASA/JPL

Si hubiera que resumir mucho cómo funciona la vida, se podría decir que hay seres vivos consumidores, que obtienen la materia orgánica y los nutrientes de otros organismos, y seres vivos productores primarios, que son aquellos que sintetizan su materia orgánica por sí mismos. Entre estos, están por ejemplo las bacterias y las plantas que son capaces de hacer la fotosíntesis y de obtener energía de la luz del Sol, y también los microorganismos que pueden obtener la energía de algunos productos químicos. Por ejemplo, hay bacterias capaces de respirar metales (en vez de oxígeno) y usar como fuente de energía el hierro, el sulfuro de hidrógeno, el hidrógeno molecular o el amoniaco.

bacterias

la bacteria Mariprofundus ferrooxydans PV-1, la cual tiene la singular característica de “comer” electricidad y, como resultado, producir combustible.

Muchos de estos microbios «extraños» que viven de estas moléculas viven allí donde no llega la luz, o sea, en el subsuelo y en las profundidades de los océanos y los lagos. Suelen ser microbios adaptados a condiciones extremas y muy particulares, y muchas veces no crecen tan rápido como los afortunados que hacen la fotosíntesis.

Resultado de imagen de desulforudis audaxviatorResultado de imagen de desulforudis audaxviator

Se llama Desulforudis audaxviator y es capaz de vivir en aislamiento, sin oxígeno y en completa oscuridad. Todas las formas de vida conocidas necesitan …

Desulforudis audaxviator sobrevive en un hábitat donde obtiene su energía no de la luz solar sino del hidrógeno y del sulfato producidos por la desintegración radioactiva del uranio. Al vivir en soledad, D. audaxviator debe construir sus moléculas orgánicas por sí misma a partir del agua, del carbono inorgánico, y del nitrógeno proveniente del amoníaco liberado por las rocas y disuelto en el fluido del entorno. Durante su largo viaje a las profundidades extremas, la evolución ha equipado a la versátil bacteria con genes –muchos de ellos compartidos con las arqueas, miembros de uno de los tres dominios de la vida no relacionado a las bacterias– que le permiten hacer frente a un rango de diferentes condiciones, incluyendo la habilidad de fijar el nitrógeno directamente del nitrógeno elemental del ambiente.

Resultado de imagen de desulforudis audaxviator

3,3 km bajo la superficie de la tierra. Temperatura: 62°C. No hay oxigeno. No hay luz. Sin embargo, en las aguas de las grietas de una mina de oro …

Recientemente, los investigadores se han fijado en uno de estos extraños microbios. Se trata de Desulforudis audaxviator, una bacteria descubierta a 3 kilómetros de profundidad en una mina de oro de Sudáfrica y que parece vivir de la energía que obtiene de la descomposición radiactiva del uranio. Tal como explicó en «Science»Dimitra Atri, un astrobiólogo del «Blue Marble Space Institute of Science» en Seattle (Estados Unidos), este microorganismo amante de la radiactividad podría ser una prueba de que el espacio está poblado por microorganismos similares.

Rayos cósmicos

 

 

NASA: encuentran fuente de rayos cósmicos radioactivos

Muchas son las fuentes de rayos cósmicos radiactivos que llegan a los planetas y lunas de los sistemas planetarios que orbitan estrellas como el Sol o parecidas. Algunas formas de vida habrían aprendido a vivir teniéndolos a ellos como fuente de alimentación.

 

Tal como ha propuesto Atri en una simulación por odenador, podría ser que la vida hubiera aprendido a aprovechar una fuente de radiación muy abundante en el espacio. Se trata de los rayos cósmicos (GCRs, en inglés), una radiación de muy alta energía que se origina más allá del Sistema Solar, probablemente en explosiones de supernovas y en núcleos activos de galaxias, o sea, en agujeros negros supermasivos. Lo interesante es que esta radiación llega a los planetas, y que en aquellos donde la atmósfera y el campo magnético son débiles, se internan en las profundidades del subsuelo, donde quizás podrían ser la fuente de energía de extravagantes formas de vida.

Simulación por ordenador de una cascada de reacciones nucleares en la atmósfera provocadas por la llegada de rayos cósmicos
Simulación por ordenador de una cascada de reacciones nucleares en la atmósfera provocadas por la llegada de rayos cósmicos

Aunque el término de rayos cósmicos recuerda al título de una novela de ciencia ficción, en realidad no tienen nada de ficticios. Actualmente se sabe que bombardean constantemente las capas más altas de la atmósfera terrestre, y que allí transforman la química de la ionosfera. Además influyen en la formación de nubes (en la troposfera) y forman parte de las dosis naturales de radiación a las que están expuestas las personas y los seres vivos en general.

Extraños alienígenas

 

 

Bacterias y estreptococos.

Respiran gracias al sulfato presente en su entorno, y han logrado formar un yacimiento mineral “inédito en el mundo”

 

Según Dimitra Atri, este constante flujo de radiación podría ser aprovechado por algún tipo de forma de vida alienígena, pero solo en planetas con atmósferas más tenues y con campos magnéticos débiles, puesto que ambos escudos frenan los rayos cósmicos. Así, la importancia de estos rayos sería mayor en satélites y pequeños mundos como Plutón, la Luna, Europa, Encélado y un número desconocido de otros cuerpos más allá del Sistema Solar.

Además, dado que este flujo de energía es relativamente bajo, y no es comparable a la radiación proveniente de las estrellas, las formas de vida que alimentaría serían más pequeñas y simples, y además crecerían más despacio.

Pero Atri no se ha limitado a lanzar su imaginación al cosmos. En vez de eso, ha usado simulaciones por ordenador para estimar cuál sería el flujo de energía de los rayos cósmicos en varios mundos. Y, tal como ha publicado en «Royal Society Interface», en teoría la energía resultante dentro del subsuelo sería suficiente para alimentar a pequeñas formas de vida. Por eso, en su opinión, «no puede descartarse que existieran formas de vida así».

¿Yermos u oasis?

 

Uno de los lugares más prometedores para encontrar estas formas de vida basadas en rayos cósmicos sería Marte, una roca reseca pero que tiene agua en el subsuelo y una abundante variedad mineral. «Es gracioso, porque cuando buscamos formas de vida extraterrestres normalmente buscamos lugares con atmósferas gruesas, pero aquí deberíamos buscar justo lo contrario», ha dicho Atri.

Fotografía de miscroscopio electrónico de Desulforudis audaxviator
Fotografía de miscroscopio electrónico de Desulforudis audaxviator- NASA

Tal como ha opinado en «Science» el astrobiólogo Duncan Forgan, es cierto que las condiciones del subsuelo en las que vive D. audaxviator pueden ser similares a las de Marte (de hecho los investigadores trabajan en investigar el subsuelo de la Tierra para entender cómo sería la vida en Marte y en otros lugares), pero a la vez ha sido menos optimista que Atri.

El motivo es que aquellos planetas bombardeados por rayos cósmicos y no calentados por estrellas estarían en principio tan fríos como para que el hielo dejara a la vida literalmente congelada. Además, Forgan ha recordado que el flujo de esta radiación puede alimentar a los seres vivos, pero que en exceso puede ser letal: La radiación de alta energía es capaz de dañar el material genético de los microbios y acabar con su existencia.

Monhystrella parvella

¿Qué es lo más profundo de la corteza terrestre que un animal puede sobrevivir? En la oscuridad, en lo más profundo de varias minas de oro de Sudáfrica, viven unos diminutos gusanos que pueden tener la clave para responder esta pregunta. Estas criaturas son los animales que más profundo viven que jamás se haya conocido. Nadie sabe cómo llegaron hasta ahí, pero es posible que estén viviendo en las minas desde hace miles de años. Su sola existencia sugiere que vidas complejas pueden sobrevivir mucho más hondo de lo que se pensó que fuera posible.

Pero quizás el subsuelo, donde la actividad interior de los planetas podría elevar las temperaturas y fundir el agua, podría ser el hogar perfecto para que estos rayos alimentaran la vida. Después del descubrimiento de indicios de un océano en Europa, y de evidencias de que Encélado, Titán y Marte son planetas potencialmente habitables, extender la búsqueda de vida aún más allá, a los planetas bombardeados por rayos cósmicos, promete con ampliar aún más los horizontes de la imaginación. ¿Cómo será la vida extraterrestre?

Todo lo que existe está en el Universo: Los pensamientos también

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Constituido por innumerables galaxias de estrellas que se erigen en el centro de sistemas planetarios, multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas y mundos, multitud de objetos exóticos como los la variedad que encierran las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, rodeados de los objetos y las cosas cotidianas, no se paran a pensar en esas inmensas verdades que están ahí, en la lejanía del espacio-tiempo inconmensurable.

La Humanidad, nuestra especie, siempre miró hacia los confines del cielo estrellado y se hacía preguntas que no podía contestar. En muchos de los trabajos que aquí se han expuesto quedaron reflejadas aquellas Civilizaciones antiguas que nos hablaban, con sus gravaciones en la piedra de  los lejanos confines del cosmos que ellos imaginaban. Hemos podido llegar un nivel de tecnología que nos permite otear horizontes muy lejanos y captar, con nuestros ingenios, galaxias que se podría decir, sin temor a equivocarnos, que están situados en los confines del Universo.

Podemos examinar la radiación que emiten las estrellas jóvenes, estudiar nebulosas lejanas y captar los extraños átomos y moléculas que las conforman y, al mismo tiempo, observar como se van creando las condiciones precisas de gravitación, vientos estelares y otros fenómenos cósmicos para que, los nuevos mundos y las nuevas estrellas surjan a la vida. Somos testigos de un carrusel cosmológico que gira y gira “eternamente” envuelto en ciclos de destrucción y creación que se suceden en presencia de energías inimaginables, para que todo siga igual al mismo tiempo que todo cambia.

                     Lo cierto es que hemos encontrado mundos muy parecidos a la Tierra

       Nuestro Universo ofrece las mejores condiciones para que la Vida, hiciera acto presencia en él. Sin embargo, siempre habrá dos bandos que discrepan en ese sentido: Por un lado están aquellos que creen en la presencia de la vida en múltiples mundos en las galaxias que pueblan el espacio del universo inmenso, y, por la otra parte, están aquellos que niegan tal posibilidad y se aferran a que, para que surgiera la vida en la Tierra, se tuvieron que dar tal cúmulos de condiciones que es imposible que se vuelvan a repetir en ningún otro lugar.

También es cierto que otros muchos mundos no podrían albergar la vida ni en el extremo de las posibilidades conocidas por nosotros y que denominamos extremófila por estar presente en condiciones que nunca, antes de ser descubierta, pudimos imaginar que pudiera existir. Existen regiones del Universo que son extremadamente peligrosas donde la radiación y las energías extremas están presentes y, ningún mundo que pudiera existir por sus alrededores tendría la posibilidad de albergar ninguna clase de vida.

Somos conscientes de que no podemos vivir aislados y desde siempre hemos tratado de saber qué ocurría más allá, en la lejanía de las estrellas donde algunos imaginativos pensaban que otras criaturas habitaban un sin fín de mundos que, como la Tierra, tendrían las condiciones necesarias para ello. Para ellos, el Universo ofrecía todas las posibilidades a favor y en contra, su diversidad era tanta que mundos llenos de vida pululaban alrededor de estrellas situadas a decenas, cientos, miles o millones de años-luz de nosotros y, también, había mundos imposibles donde nada podía surgir a la vida.

Ni afirmar ni negar podemos. En lo referente a la vida en otros mundos, todo podría ser posible y la vida tanto inteligente como vegetativa en múltiples formas y con distintos metabolismos, como ocurre aquí en nuestro planeta, es posible que esté presente en aquellos mundos que como el nuestro tengan aquellos requisitos necesarios para su sustento. Atmósfera calentada por una estrella benigna que caliente el planeta, océanos y bosques, y, en defintiiva, todo aquellos que es necesario para mantener latente formas de vida que como la nuestra, parecida o totalmente diferentes, se desarrollen en un ambiente adecuado a las condiciones que cada especie pudiera requerir.

Foto

Charles Darwin con la imagen de Io, la luna de Júpiter misteriosa. Creo que hasta el los lugares más inhóspitos, la vida podría estar presente, su actividad volcánica y la presencia de agua, así lo posibilitan.

La vida más resistente que se conoce es la vida invisible: los microoganismos y las bacterias. Los seres vivos capaces de sobrevivir en condiciones extremas se llaman extremófilos. Sobreviven en condiciones que serían letales para cualquier otra forma de vida. Resisten temperaturas extremas, por encima del grado de ebullición del agua y por debajo del de congelación, condiciones de acidez, de falta de luz solar y de oxígeno, de presión, de salinidad… Pueden permanecer en estado de letargo durante miles de años y volver a reanimarse al contacto con el agua.

Lo único que necesitan los extremófilos es: materia orgánica, agua y una fuente de energía. La materia orgánica abunda por todo el Cosmos. Pueden emplear una fuente de energía distinta a la luz solar. De hecho, a comienzos de los 90, se descubrió una bacteria que vivía en el subsuelo, a 7 kms de profundidad, y se alimentaba a base de petróleo. Lo que sí necesita la vida extremófila es agua en estado líquido. O, al menos, así lo creemos. Hasta hoy, no hay pruebas de que ninguna forma de vida pueda sobrevivir sin agua líquida. Pero podemos estar equivocados.

Hasta ahora, la Tierra es el único lugar del universo donde está confirmada la existencia de agua en estado líquido. Pero en el propio Sistema Solar hay planetas y satélites con agua helada. Si se demostrara que los extremófilos pueden sobrevivir con agua helada, se abrirían nuevas posibilidades en la búsqueda de vida extraterrestre.

 L

   Líquenes, hongos y bacterias que pueden estar presentes en cualquier lugar inhóspito de alguna “luna”

   Arquea productora de metano. Se han encontrado microorganismos productores de metano en dos ambientes extremos en la Tierra: enterrados bajo kilómetros de hielo en Groenlandia y en los suelos cálidos del desierto. Estos descubrimientos hacen más plausible la esperanza que tenemos sobre la existencia de vida en Marte.

Han pasado más de 150 años desde que Darwin publicara su famosa obra El origen de las especies. Sus ideas han prevalecido en el transcurrir del tiempo y ni los nuevos descubrimientos ni los muchos avances logrados han podido dejar de lado la idea de la evolución. Más de doscientos años después de su nacimiento, sus ideas siguen en el candelero de la Biología y nos habla de que, la vida, como el decía, puede surgir en cualquier charca embarrada y caliente.  Sus ideas han sido profundamente analizadas por los mejores especialistas en biología que han tenido que reconocer su influencia en el mundo científico de los distintos campos de la biología, en general, y de la biología evolutiva, en particular.

Pero es interesante ejemplarizar su capacidad sintetizadora y premonitoria en el por aquel entonces, campo novedoso de la biología, la extremofilia, a partir de la exploración de los lagos salobres del río negro en Argentina. A finales de 1831, Darwin se embarcó en el Beagle (ya contamos aquí aquella historia), tardaron meses en atravesar el Atlántico. Desembarcaron el Maldonado y recorrieron las costas de Uruguay y Argentina realizando numerosas observaciones geológicas, botánicas, zoológicas y antropológicas. Ciertamente, aquella “excursión” investigadora por méritos propios pasó a los anales de la Historia.

                                                La imagen está referida a la Misión Planck de la ESA

En cada tiempo hemos hecho las cosas como hemos posido, siempre en busca del saber y queriendo descubrir los secretos que la Naturaleza esconde. Darwin partió en el Beagle hacia lo desconocido en un viaje peligroso y aventurero en busca de lo desconocido. Ahora, nosotros mucho más adelantados, buscamos lo mismo: Saber. Sin emnbargo, utilizamos otros medios que, como la Misión Planck de la Esa, por ejemplo, vamos a la búsqueda del origen del Universo.

La misión que data de 2.009, no es algo improvisado que se hizo a la ligera, estuvo planificándose y preparándose durante dos décadas de manera muy cuidadosa y con exquisito esmero para cuidar hasta el último detalle dentro de las más avanzadas técnicas que la ciencia actual podía permitirse. El telescopio espacial Planck nos ha ayudado a comprender mejor la historia del Universo, desde una fracción de segundo después del Big Bang a la evolución de las estrellas y de las galaxias a lo largo de estos 13.700 millones de años. Aunque la fase de observaciones científicas ya haya terminado, el legado de esta misión sigue vivo. Planck se lanzó en el año 2009 y pasó 4.5 años observando el firmamento para estudiar cómo evolucionó la materia cósmica con el paso del tiempo.

  Planck y la radiación cósmica de microondas

Los científicos que trabajan con los datos de Planck presentaron la imagen más precisa de la radiación cósmica de microondas (CMB, por sus siglas en inglés), los restos de la radiación del Big Bang que quedaron grabados en el firmamento cuando el Universo tenía apenas 380.000 años.

La señal CMB es la imagen más precisa de la distribución de masa en el Universo primitivo. En ella se pueden detectar minúsculas fluctuaciones de temperatura que se corresponden con regiones que, en un principio, presentaban densidades ligeramente diferentes, y que constituyen las semillas de todas las estructuras, estrellas y galaxias que podemos ver hoy en día. Jan Tauber, científico del proyecto Planck para la ESA, declaraba:

“Planck nos ha proporcionado la imagen a cielo completo de la señal CMB más precisa de la historia, con la que podremos poner a prueba una gran variedad de modelos sobre el origen y la evolución del cosmos”

 

 

http://universodoppler.files.wordpress.com/2013/06/gaia_mapping_the_stars_of_the_milky_way_node_full_image.jpg

El objetivo principal de Gaia es crear un mapa en 3D de alta precisión de nuestra galaxia, la Vía Láctea, observando repetidamente mil millones de estrellas para determinar su posición precisa en el espacio y sus movimientos a través de él. La sonda espacial Gaia es otro de los muchos proyectos que tratan de investigar dónmde estamos situados en el contexto de nuestra Galaxia, la Vía Láctea.

Recreación artística de la nave Euclides. | ESA

La Agencia Espacial Europea (ESA)  ha dado luz verde a la misión Euclides, que se lanzará en 2020 con el objetivo de estudiar la misteriosa energía oscura que compone el 73% del Universo. La misión Euclides contará con un telescopio de 1,2 metros de diámetro que nutrirá una cámara de 576 millones de píxeles con imágenes en muy alta resolución de 2.000 millones de galaxias, equivalente a las del Telescopio Espacial Hubble. Con esos datos, y mediante tecnología de infrarrojos, los científicos desarrollarán una cartografía de las grandes estructuras del Universo y medirán la distancia entre las galaxias captadas por la cámara.

El telescopio WISE ha llegó al final de su fase de mapear en infrarrojo, pero continuó con la misión de realizar el siguimiento de los más cercanos cometas y asteroides, además de enanas marrones. Se ideó un telescopio infrarrojo que orbitara la Tierra y que ha sido empleado para mapear objetos fríos, polvorientos o lejanos que los telescopios de luz visible no pueden observar. Durante 2010 ha tomó más de 1,8 millones de fotografías utilizando su telescopio de 16 pulgadas y cuatro detectores de longitudes de onda infrarrojas, observando el cielo una vez y media, descubriendo estrellas, cometas y más de 33.500 asteroides en el proceso.

[Img #13113]

“Un sistema de cinco planetas, de los cuales dos tienen un radio 1,41 y 1,61 veces superior al de la Tierra y están en la zona habitable”. Este es el título de un estudio que investigadores internacionales publican esta semana en Science. El hallazgo ha sido posible gracias a las observaciones del telescopio espacial Kepler de la NASA. La estrella anfitriona es Kepler-62 y los dos planetas protagonistas se han bautizado como Kepler-62 e y f, orbitando más lejos que sus compañeros b, c y d. A Kepler-62 e y f llega un flujo solar desde su estrella parecido al que reciben Venus y Marte por parte de nuestro Sol. Respectivamente, los dos exoplanetas reciben alrededor de 1,2 y 0,41 veces la radiación solar que alcanza la Tierra. Basándose en modelos y simulaciones computacionales, los científicos consideran que el tamaño de estos dos nuevos planetas sugiere que podrían ser rocosos, como la Tierra, o estar compuestos de agua sólida.

Ante tal inmensidad nos podemos sentir insignbificantes pero… ¡No lo somos!

Si miramos al cielo en una noche oscura y estamos en el lugar adecuado, podremos contemplar, la inemnsidad en la que estamos inmersos y situados en un pequeño planeta apto para albergar la vida, podemos admirar parte de nuestra Galaxia, la Vía Láctea que nunca hemos podido contemplar en su totalidad al estar confinados en el planeta y no tener los medios para salir fuera y poder tomar una imagen completa del lugar en el que vivimos. Podemos hacerlo con otras galaxias lejanas y, de la nuestra, sólo la conocemos por datos parciales que podemos ir juntando en los diversos estudios que para ello hemos llevado a cabo y seguimos llevando con misiones que, como las que más arriba se reseñan, nos facilitan datos precisos para que podamos saber, de nuestro lugar en el Universo desde esta Galaxía que es sólo una de entre cien mil millones.

Desde un lugar minúsculo, un pequeño terrón de roca y agua que orbita una estrella mediana que le suministra la luz y el calor necesario para que podamos estar aquí, sin pararnos a pensar en nuestra ínfima medida en el contexto del Universo, lo cierto es que lo queremos conquistar.

¡Ilusos!

emilio silvera