Ago
9
El Universo, la Diversidad, la Belleza, la Vida
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (2)

La galaxia anular de Hoag (A1515+2146) es un anillo de materia con estrellas jóvenes y azuladas que rodea a una galaxia esferoidal central sin traza de ninguna barra que conecte ambas, aunque como tienen el mismo corrimiento al rojo, deben estar a la misma distancia y deben estar relacionados entre sí. Las teorías actuales de formación galáctica permiten la formación de una galaxia anular siempre y cuando tenga una barra central. Se ha propuesto en el caso del objeto de Hoag que dicha barra se ha disuelto. Hay muchas galaxias anulares con anillos polares como NGC 6028 (que sí tiene una barra central) y UGC 6614 (ver más abajo, aunque no son imágenes tan detalladas como la del Telescopio Espacial Hubble).
Las azuladas estrellas orbitan alrededor del núcleo central de la Galaxia como si de un carrusel cósmico se tratara. En esa imagen que vemos las estrellas jóvenes emiten radiación ultravioleta que ioniza el material circundante de las nebulosas de las que surgieron, allá en la lejanía y ocultos por la inmensa imfinitud de mundos y otros exóticos objetos que en la imagen captada por el Hubble no podemos ver.

Remanente de Supernova

Imagen de la galaxia compacta azul con formación estelar IIZw71 y espectro de la región central con la identificación de las lineas de emisión de neón y argón.
Existen Galaxias con bajo brillo superficial (LSB): Tipo de galaxia cuya densidad de estrellas es tan baja que es difícil detectarla frente al fondo del cielo. Se desconoce la proporción de galaxias con bajo brillo superficial en relación a las galaxias normales, pudiendo representar una parte significativa del universo. Muchas de estas débiles galaxias son enanas, situadas particularmente en cúmulos de galaxias; algunas son tan masivas como las grandes espirales, por ejemplo, Malin-1.
Galaxia con envoltura: Galaxia espiral rodeada por débiles arcos o capas de estrellas, situados a ángulos rectos con respecto a su eje mayor. Pueden observarse entre una y veinte capas casi concéntricas, aunque incompletas. Se disponen de manera que capas sucesivas puedan aparecer normalmente en lados opuestos de la galaxia. Alrededor del 10% de las elípticas brillantes presentan envolturas, la mayoría de ellas en regiones de baja intensidad o densidad de galaxias. No se conoce ninguna espiral con una estructura de capas de ese tipo. Podrían ser el resultado de una elíptica gigante que se come una compañera.

Esta burbuja, fotografiada y examinada conjuntamente por la NASA y la ESA, entre 2006 y 2010, parece flotar sin actividad, pero lo cierto es que vivió un pasado convulso. Dicha envoltura gaseosa se formó después de una explosión estelar. Se conoce por el nombre de SNR B0509-67.5 y tiene un diámetro de 23 años luz (cuatro veces la distancia que nos separa de la estrella más cercana: Próxima Centaury).
Galaxia de anillo polar: Raro tipo de galaxia, casi siempre una galaxia lenticular, que tiene un anillo luminoso de estrellas, gas y polvo orbitando sobre los polos de su disco. Por tanto, los ejes de rotación del anillo y del disco forman casi un ángulo recto. Dicho sistema puede ser el resultado de una colisión, una captura de por maneras, o la unión de una galaxia rica en gas con la galaxia lenticular.

Hay un artículo muy interesante que propone analiza en detalle una galaxia con anillo polar y presenta una explicación bastante coherente y que a mí me parece bastante natural. Se trataría de galaxias tipo SBa(R) en la que los dos brazos espirales se han unido hasta confundirse en un anillo y el bulbo y la gran barra central han evolucionado hasta formar una galaxia de tipo S0 central. La explicación me gusta porque no alude a colisiones galácticas, para las que uno esperaría un resultado mucho menos simétrico, ni a dinámicas gravitatorias exóticas. Por supuesto, queda por clarificar por qué la conexión entre la barra central y el anillo se ha perdido.
Hay Galaxias de disco: Tipo de galaxia cuya estructura principal es un delgado disco de estrellas con órbitas aproximadamente circulares alrededor de su centro, y cuya emisión de luz típicamente disminuye exponencialmente con el radio. El término se aplica a todos los tipos de galaxias que no sean elípticas, esferoidales enanas o algunas galaxias peculiares. El disco de las galaxias lenticulares contiene muy poco material interestelar, mientras que los discos de las galaxias espirales e irregulares contienen cantidades considerables de gas y polvo además de estrellas.

La brillante galaxia NGC 3621
Galaxia de tipo tardío: Galaxia espiral o irregular. El nombre proviene de la posición convencional de estas galaxias en el diagrama diapasón de los tipos de galaxias. Por razones similares, una galaxia espiral Sc o Sd pueden ser denominadas espiral del tipo tardío, en contraposición a una espiral Sa o Sb de tipo temprano.
Galaxia de tipo temprano: Galaxia elíptica o lenticular: una sin brazos espirales. El hombre proviene de la posición de las galaxias en el diagrama diapasón de las formas de las galaxias. Por razones similares, una galaxia Sa podría ser referida como una espiral de tipo temprano, en contraposición a una espiral Sc o Sd de tipo tardío.
Se podría continuar explicando lo que es una galaxia elíptica, enana, compacta azul, esferoidal enana, espiral (como la Vía Láctea), espiral enésima, espiral barrada, interaccionante, irregular, lenticular, peculiar, starburst, primordiales… etc, sin embargo, creo que ya se ha dejado constancia aquí de los datos necesarios para el que lector tenga una idea de lo que es una galaxia. Así que decido finalizar el apartado de galaxias, reflejando un cuadro del Grupo Local de galaxias en el que está situada la nuestra.

En todas estas galaxias que arriba podemos contemplar, existen estrellas binarias de cuyo estudio obtenemos datos fascinantes y podemos llegar a conocer mejor la denámica del Universo. Ejemplo de una estrella binaria, donde dos cuerpos con masa similar orbitan alrededor de un centro de masa en órbitas elípticas.

Ejemplo de una estrella binaria, en donde dos cuerpos con una pequeña diferencia de masa orbitan alrededor de un centro de masa.

Binarias astrométricas: En este tipo de sistemas dobles sólo es visible un componente de la estrella. Se detectan que son binarias gracias al “tirón” gravitatorio ejercido por su compañera invisible. Esto produce un movimiento oscilatorio respecto al fondo de estrellas fijas que puede ser medido por técnicas de paralaje si está lo suficientemente cerca, ya que este tipo de cálculos se realiza en estrellas aproximadamente entre los 10 parsecs, a distancias menores el ángulo de paralaje no existe o es tan pequeño, que los cálculos no se pueden realizar. Como las binarias visuales, las astrométricas requieren prolongados períodos de observación.

Hemos creado modelos del origen del Universo que están muy extendidos al coincidir sus predicciones con la observación. Así de momento hemos aceptado que en su inicio el Universo era algo extremadamente denso y de infinita energía que, al explosionar, se expandió y de la radiación intensa se paso la era de las partículas y más tarde, al enfriarse paulatinamente, a la de la materia para que comenzara, millones de años más tarde, a formarse las primeras estrellas. Se liberaron los fotones y el Universo se hizo transparente, es decri, se hizo la luz.
La Radiación del fondo de microondas ha venido a corrobarar tal teoría del Big Bang. la densidad y temperatura de la materia y la radiación en el Universo decrecieron continuamente a medida que el Universo se expandía. Esta expansión puede continuar para siempre o puede un día invertirse en un estado de contracción, volviendo a pasar por condiciones de densidad y temperaturas cada vez mayores hasta llegar al Big Crunch en un tiempo finito de nuestro futuro. Este escenario evolutivo tiene la característica clave de que las condiciones físicas en el pasado del Universo no eran las mismas que las actuales o las futuras. Hubo épocas en que la vida no podía existir porque había demasiado calor para los átomos; hubo épocas previas a las estrellas y habrá un tiempo en el que todas las estrellas hayan muerto. En este escenario hay un intervalo preferido de la historia cósmica durante el que es más probable que los observadores evolucionen por primera vez y hagan sus observaciones del Universo.

Todo eso, si es que realmente fue así, ambién implicaba que hubo un comienzo para Universo, un tiempo pasado antes del cuál éste (el propio tiempo) no existía, pero no decía nada al respecto de el por qué o al dónde de este comienzo. Todo quedaba oculto en el más profundo de los misterios y, nadie ha podido llegar a ese tiempo que marca la frontera que está situada en esa fracción de segundo, más allá del tiempo de Planck, en el cual los cosmólogos, para tapar su ignorancia, han puesto una singularidad lo mismo que ahora han colocado la materia oscura para explicar la expansión.

El Universo estacionario sostiene que el Universo nunca tuvo un origen, sino que siempre existió de la misma manera como lo conocemos hoy.
El escenario alternativo creado por Bondi, Gold y Hoyle estaba motivado en parte por un deseo de evitar la necesidad de un principio (o un posible final) del Universo. Su otro objetivo era crear un escenario cosmológico que pareciera de promedio siempre el mismo, de modo que no hubiera instantes privilegiados en la historia cósmica.
El gráfico de abajo indica la velocidad de alejamiento de las galaxias en función de sus distancias. La pendiente de la recta de “La constante de Hubble”

Horizontalmente: la medida de la distancia es proporcionada por la luminosidad de las galaxias más brillantes de diferentes grupos. Verticalmente: velocidades en Km. por segundo. Las diferentes curvas describen la relación velocidad distancia en función de la densidad supuesta del universo (en unidades de densidad crítica). Cuanto más denso es el universo, tanto más a la izquierda se sitúa la curva en el dibujo. La comparación con los puntos observados muestra que la densidad real es tres veces inferior a la densidad crítica. La cuirva más baja es la esperada en un universo estacionario.
Claro que dicho escenario, al principio parece imposible de conseguir. Después de todo, el Universo se está expandiendo. Está cambiando, de modo que, ¿cómo puede hacerse invariable? La visión de Hoyle era la de un río que fluye constantemente, siempre en movimiento pero siempre igual. Para que el universo presente la misma densidad media de materia y el mismo ritmo de expansión, independientemente de cuándo sea observado, la densidad debería ser constante.

“El valor de la constante de Hubble, cuyo símbolo es H0, se estima en unos 71 kilómetros por segundo y por megapársec. Esto quiere decir que la expansión del universo hace que los cúmulos de galaxias se alejen unos de otros, y lo hacen a un ritmo tal que por cada megapársec de distancia (o sea, cada 3 millones de años-luz) la velocidad de alejamiento se incrementa en 71 kilómetros por segundo.”
Hoyle propuso que, en lugar de nacer en un instante pasado, la materia del universo se creaba continuamente a un ritmo que compensaba exactamente la tendencia a que la densidad sea diluida por la expansión. Este mecanismo de “creación continua” sólo tenía que ocurrir muy lentamente para conseguir una densidad constante; sólo se requería aproximadamente un átomo por metro cúbico cada diez mil millones de años y ningún experimento ni observación astronómica sería capaz de detectar un efecto tan pequeño.
Esta teoría del “estado estacionario” del Universo hacía predicciones muy precisas. El Universo parecía el mismo de promedio en todo momento. No había hitos especiales en la historia cósmica: Ningún “principio”, ningún “final”, ningún momento en que empezaran a formarse las estrellas o en el que la vida se hiciera posible por primera vez en el Universo. Claro que, finalmente, esta teoría quedó descartada por una serie de observaciones iniciadas a mediados de la década de 1950 que mostraba en primer lugar que la población de galaxias que eran emisores profusos de radioondas variaba significativamente a medida que el Universo envejecía.
La culminación de todo aquello llegó cuando en el año 1965 se descubrió la radiación térmica residual del comienzo caliente predicho por los modelos del Big Bang. Esta radiación de fondo de microondas no tenía lugar en el Universo en estado estacionario. Durante veinte años los astrónomos trataron de encontrar pruebas que dijeran si realmente el universo estaba realmente en el estado estacionario que propusieron Bondi, Gold y Hoyle.
Un sencillo argumento antrópico podría haber demostrado lo poco posible que sería ese estado de cosas. Si uno mide el ritmo de expansión del Universo, da un tiempo durante el que el Universo parece haber estado expandiéndose. En un Universo Big Bang éste es realmente el tiempo transcurrido desde que empezó la expansión: la edad del Universo. En la teoría del estado estacionario no hay principio y el ritmo de expansión es tan sólo el ritmo de expansión y nada más.

La simulación por ordenador pone ante nuestros ojos la formación de aquellas primeras estrellas que, no comenzaron a brillar en la secuencia principal hasta pasados 400 millones de años después del comienzo del Tiempo.
Las primeras estrellas se formaron millones de años después del (supuesto) big bang. Eran enormes, pesadas, y muy calientes. Brillaron con furia, vivieron rápido y murieron jóvenes. Fueron las responsables de la creación de los primeros agujeros negros en el Universo y también, de la creación de los primeros elementos pesados y más complejos que el hidrógeno y el Helio.
En una teoría del Big Bang, el hecho de que la edad de expansión sea sólo ligeramente mayor que la edad de las estrellas es una situación natural. Las estrellas se formaron en nuestro pasado y por ello deberíamos esperar encontrarnos en la escena cósmica una vez formadas, dado que, los elementos necesarios para la vida, se forjaron en los hornos nucleares de las estrellas calientes que fusionaron aquella primera materia más simple en otras más complejas.

Se necesita mucho tiempo para que las estrellas fabriquen Carbono a partir de gases inertes como el Hidrógeno y el Helio. Pero no basta con el tiempo. La reacción nuclear específica que se necesita para hacer Carbono es una reacción bastante improbable. Requiere que se junten tres núcleos de Helio para fusionarse en un único núcleo de Carbono. Los núcleos de Helio se llaman partículas alfa, y esta reacción clave para formar Carbono ha sido bautizada como el proceso “triple alfa”.
![]()
Precisamente fue Fred Hoyle el que descubrió todo aquel complejo proceso de fabricación de Carbono en las estrellas. Él se unió a un grupo de investigadoresque estaban trabajando sobre la cuestión de la relativa abundancia de elementos en las superficies de las estrellas. En conjunto, estructuraron un exhaustivo estudio de los elementos que se acumulan en los núcleos estelares. En un denso trabajo que publicaron en Octubre de 1957 en Review of Modem Physics, bajo el título de “Síntesis de los elementos de las estrellas”, lograron explicar la abundancia de practicamente todos los sótopos de los elementos desde el Hidrógeno hasta el Uranio.

Descubrieron que las estrellas, en la medida que van gastando su combustible nuclear, transmutan el Hidrógeno en Helio; el Helio a Carbono y Oxígeno; y así sucesivamente, subiendo hasta llegar hasta los más pesados de la Tabla Periódica. En las explosiones de las supernovas se crean mucho de los elementos más pesados, incluidos el platino, el oro y el uranio. El trabajo que fue un inmenso logro científico, no sólo explicó la síntesis de todos los elementos más allá del Hidrógeno, sino que predijo su formación exactamente en las mismas proporciones que ocurrían en el Universo. Pero quedó por explicar la cuestión del Hidrógeno: Cómo se genera el combustible inicial de las estrellas.

Así, en las estrellas podemos encontrar muchas respuestas de cómo se forman los elementos que conocemos. Primero fue en el hipotético big bang donde se formaron los elementos más simples: El Hidrógeno (que nunca hemos podido llegar a saber cómo se formó), Helio y Litio. Pasados muchos millones de años se formaron las primeras estrellas y, en ellas, se formaron elementos más complejos como el Carbono, Nitrógeno y Oxígeno. Los elementos más pesados se tuvieron que formar en temperaturas mucho más altas, en presencia de energías inmensas como las explosiones de las estrellas moribundas que, a medida que se van acercando a su final forman materiales como: Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Niquel, Cobre, Cinc, Plomo, Torio…Uranio. La evolución cósmica de los elementos supone la formación de núcleos simples ¿en el big bang? y la posterior fusión de estos núcleos ligeros para formar núcleos más pesados y complejos en el interior de las estrellas y en la transición de fase de las explosiones supernovas. Abjo un gráfico de la Necleosíntesis estelar.

Estaba explicando el proceso triple alfa que es el proceso por el cual tres núcleos de helio (partículas alfa) se transforman en un núcleo de carbono. Esta reacción nuclear de fusión sólo ocurre a velocidades apreciables a temperaturas por encima de 100 000 000 kelvin y en núcleos estelares con una gran abundancia de helio. Por tanto, este proceso sólo es posible en las estrllas más viejas, donde el helio producido por las cadenas protón–protón y el ciclo CNO se ha acumulado en el núcleo. Cuando todo el hidrógeno presente se ha consumido, el núcleo se colapsa hasta que se alcanzan las temperaturas necesarias para iniciar la fusión de helio.
![]()
8Be + 4He ↔ 12C
Las estrellas que son unas ocho veces más masivas que el Sol representan sólo una fracción muy pequeña de las estrellas en una galaxia espiral típica. A pesar de su escasez, estas estrellas juegan un papel importante en la creación de átomos complejos y su dispersión en el espacio.

Elementos necesarios como carbono, oxígeno, nitrógeno, y otros útiles, como el hierro y el aluminio. Elementos como este último, que se cocinan en estas estrellas masivas en la profundidad de sus núcleos estelares, puede ser gradualmente dragado hasta la superficie estelar y hacia el exterior a través de los vientos estelares que soplan impulsando los fotones. O este material enriquecido puede ser tirado hacia afuera cuando la estrella agota su combustible termonuclear y explota. Este proceso de dispersión, vital para la existencia del Universo material y la vida misma, puede ser efectivamente estudiado mediante la medición de las peculiares emisiones radiactivas que produce este material. Las líneas de emisión de rayos gamma del aluminio, que son especialmente de larga duración, son particularmente apreciadas por los astrónomos como un indicador de todo este proceso. El gráfico anterior muestra el cambio predicho en la cantidad de un isótopo particular de aluminio, Al26, para una región de la Vía Láctea, que es particularmente rica en estrellas masivas. La franja amarilla es la abundancia de Al26 para esta región según lo determinado por el laboratorio de rayos gamma INTEGRAL. La coincidencia entre la abundancia observada y la predicha por el modelo re-asegura a los astrónomos de nuestra comprensión de los delicados lazos entre la evolución estelar y la evolución química galáctica.

Pero sigamos con la historia recorrida por Hoyle y sus amigos. Felizmente, la naturaleza proporcionó una piedra Rosetta con la cual Hoyle y sus colaboradores podían someter a prueba sus ideas, en la forma de curva cósmica de la abundancia. Ésta era un gráfico del peso de los diversos átomos -unas ciento veinte especies de núcleos, cuando se tomaban en cuanta los isótopos- en función de su abundancia relativa en el universo, establecido por el estudio de las rocas de la Tierra, meteoritos que han caido en la Tierra desde el espacio exterior y los espectros del Sol y las estrellas.
Hablar del Universo, algo tan grande que se escapa a nuestra comprensión, nos llevaria tanto tiempo que finalizar el trabajo sería casi imposible, así que, habiendo dado una sencilla vuelta por algunos de los sucesos y objetos que en él están presentes, aquí lo dejamos. Sin embargo, de todo estos sucesos se derivan objetos múltiples de diversidad muy rica que adorna y embellece todo el espacio interestelar con la inmensa cantidad de objetos que lo adornan a lo largo de millones y milones de año luz de espacio.
Un rico abanico de Nebulosas que se configuran en función de la masa inicial de la estrella que las formó al eyectar material al final de sus vidas. Estrellas masivas supergigantes que, comparadas con nuestro Sol son enermes objetos que lo contienen más de cien veces y consumen hidrógeno a velocidad de vértigo como si quisiera convertirse en agujero negro en el menor tiempo posible. Diversidad de mundos, explosiones supernovas, sistemas planetarios, cúmulos y siupercúmulos de galaxias…

Crédito NASA/ESA
que se fusionan por la fuerza de la gravedad que hace que se atraigan las unas hacia las otras como vemos en el conocido “aglomerado de galáxias Quinteto Stefan“, de cuya imagen podemos deducir de manera fácil las transiciones de fase que se producen en esta clase de fusiones de grandes galaxias, de donde surgen miles de millones de estrellas nuevas, se destruyen y nacen nuevos mundos y, finalmente, el complejo nuevo creado se convierte en una galaxia mayor, supergigante.

Explosiones de estrellas que finalizan sus vidas convirtiendose en estrellas de neutrones o púlsares. Los Púlsares son fuentes de ondas de radio que vibran con periodos regulares. Se detectan mediante radiotelescopios. Los estudios indican que un púlsar es una estrella de neutrones pequeña que gira a gran velocidad. El más conocido está en la nebulosa de Cangrejo. Su densidad es tan grande que, en ellos, la materia de la medida de una bola de bolígrafo tiene una masa de cerca de 100.000 toneladas. Emiten una gran cantidad de energía. El campo magnético, muy intenso, se concentra en un espacio reducido. Esto lo acelera y lo hace emitir un haz de radiaciones que aquí recibimos como ondas de radio.
Las pulsares fueron descubiertas en 1967 por Anthony Hewish y Jocelyn Bell en el observatorio de radio astronomía en Cambridge. Se conocen más de 300, pero sólo dos, la Pulsar del Cangrejo, y la Pulsar de la Vela, emiten pulsos visibles detectables. Se sabe que estas dos también emiten pulsos de rayos gamma, y una, la del Cangrejo, también emite pulsos de rayos-X.

“El 16 de marzo de 2013 se cumplió medio siglo del descubrimiento de que los cuásares eran objetos extragalácticos muy brillantes y a enormes distancias de nosotros. Este descubrimiento fue consecuencia del desarrollo pionero de la Radioastronomía y del estudio cuidadoso de los espectros ópticos de unas misteriosas “fuentes casi-estelares”. En la actualidad sabemos que el proceso que genera un cuásar es un agujero negro súper-masivo en el centro de una galaxia.”
La medida de sus desplazamientos al rojo espectroscópico, indicaban que estaban a grandes distancias de la Tierra. El primer cuásar estudiado, 3C 273 está a 1.500 millones de años luz de la Tierra y se han descubierto cuásares a 12.000 millones de años luz de la Tierra, es decir, cuásares que son casi tan viejos como el mismo universo.

Y, pasados los diez mil primeros millones de años, cuando las estrellas habían crwado los materiales necesarios para que eso fuese posible, surgieron los primeros indicios de la presencia de vida en el Universo, Se asentaron en mundos como la Tierra y, en moléculas que se juntaron para formar células vivas surgidas de un protoplasma primordial… ¡Dio comienzo la aventura de la vida que, tantos secretos esconde y que tratamos de desvelar!

Muchas veces hemos opido hablar de la datación del Carbono y, el sistema de datación radiométrica más conocido es el proporcionado por el 14C, o Carbono 14, un esótopo raro de Carbono que se produce en natural por acción de los rayos cósmicos y antropogénicamente por bombas nucleares. Se desintegra en Nitrogeno (14N) con una vida media de 5.730 años. Como el Carbono 14 es tan poco común (menos de uno de mil átomos de Carbono) y su vida media es tan corta, la datación con radio carbono queda limitada a los últimos cien mil años, aproximadamente.
Las trazas de vida primitiva han sido borradas por la geología, el fluir de las aguas, los UV y por la propia evolución de la vida, los cambios…del Oxígeno, de la atmósfera, etc.
En los materiales más antiguos simplemente no queda suficiente 14C que pueda medirse con precisión. Por consiguiente, el 14C proporciona una herramienta de datación valiosa para egiptólogos o para paleontólogos interesados en Mamuts lanudos, pero no sirve para desentrañar la historia profunda de la Tierra que sus secretos muy bien guardados en lo más profundo de los tiempos.
El grupo Warrawoona
En el Cinturón de Pilgangoora el Grupo Coonterunah de 3.517 millones de años y las granulitas de Carlindi (3.484-3.468 millones de años son la razón fundamental del Grupo Warrawoona bajo un desajuste de erosión, aportando así pruebas de la antigua corteza continental . La Cúpula del Polo Norte (NPD) se encuentra a 10 kilómetros del Grupo Warrawoona.

Son celulas que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares calidos y son el resultado de la union de seres uni- celulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.
En el Grupo Warrawoona (3.400-3.500 millones de años) se encontraron estructuras sedimentarias que se identificaron como producidas por la actividad de organismos por William Schopf. Debido a identificación, se consideraron esos restos como la huella de vida más antigua de la que se tiene constancia. Son poco comunes (sólo se han encontrado, además de en Warrawoona, en el Supergrupo Pongola , de 2.700-2.500 millones de años, y en el Grupo de Bulawayan de Rhodesia, de 2.800 millones de años), por lo que no se puede estar seguro de que los organismos que los formaran fueran fotosintéticos y tampoco se pueden sacar conclusiones claras acerca de los ambientes en que se formaron. Ciertas bacterias no fotosintéticas forman estructuras similares a estromatolitos en fuentes termales de Yellowstone, por lo que existe la posibilidad de que bacterias similares formaran las estructuras estromatolíticas arcaicas.
Estos restos de Warrawoona incluyen microfósiles filamentosos y cocoides muy parecidos a cianobacterias, lo que ha inducido a pensar en la existencia de organismos fotosintéticos aeróbicos.

Son muchas las teorías científicas que, a lo largo de la historia han tratado de explicar el origen de la vida en la Tierra. Ya Aristóteles (384 – 322 aC), en la antigua Grecia, propuso una hipótesis: que la vida surgió por generación espontánea. Esta idea sería rebatida por los experimentos científicos de Louis Pasteur (1822 – 1895). Ahora sabemos que de donde no hay nada puede surgir, sabemos que los elementos se crearon en las estrellas que, en explosiones supernovas son expandidos por todo el universo. Sabemos que esos elementos depositados en mundos bien situados en las zonas habitables de sus estrellas, pueden llegar a constituirde en estructuras complejas de las que pueden surgir, formas de vida poco evolucionadas que, con el tiempo, se transforman en complejas y, en algunos casos, en miles de millones de años de evolución, pasando por fases que las hace ser una vez una cosa y más tarde otra… ¡Pueden llegar hasta la consciewncia de Ser!

Sí, muchas son las cosas que no sabemos
Son muchas las cosas que no sabemos y, palabras que empleamos de manera cotidiana de cosas que sabemos para que sirven, como por ejemplo la energía, no sabríamos explicar lo que es. Tampoco sabemos a ciencia cierta y en toda su extensión lo que la materia es, y, si nos referimos al Tiempo… ¿Qué es el Tiempo? ¿Existe en realidad o es una simple ilusión de la mente?
Mientras continuamos tratando se desvelar todos esos secretos, disfrutemos del El Universo, de su rica Diversidad, de la Belleza que nos ofrece por todas part y, desde luego…, ¡de la Vida! Que no hemos llegado a comprender.
emilio silvera
Ago
8
El Tiempo transcurre inexorable
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)

En la tumba de David Hilbert (1862-1943), en el cementerio de Gotinga (Alemania), dice:
“Debemos saber. Sabremos”.
Estoy totalmente de acuerdo con ello. El ser humano está dotado de un resorte interior, algo en su mente que llamamos curiosidad y que nos empuja (sin que en muchas ocasiones pensemos en el enorme esfuerzo y en el alto precio que pagamos) a buscar respuestas, a querer saber el por qué de las cosas, a saber por qué la naturaleza se comporta de una u otra manera y, sobre todo, siempre nos llamó la atención aquellos problemas que nos llevan a buscar nuestro origen en el origen mismo del universo y, como nuestra ambición de saber no tiene límites, antes de saber de dónde venimos, ya nos estamos preguntando hacia dónde vamos. Nuestra osadía no tiene barreras y, desde luego, nuestro pensamiento tampoco las tiene, gracias a lo cual, estamos en un estadio de conocimiento que a principios del siglo XXI, se podría calificar de bastante aceptable para dar el salto hacia objetivos más valiosos.
Es mucho lo que hemos avanzado en los últimos ciento cincuenta años. El adelanto en todos los campos del saber es enorme. Las matemáticas, la física, la astronomía, la química, la biología genética, y otras muchas disciplinas científicas que, en el último siglo, han dado un cambio radical a nuestras vidas.
El crecimiento es exponencial; cuanto más sabemos más rápidamente avanzamos. Compramos ordenadores, teléfonos móviles, telescopios y microscopios electrónicos y cualesquiera otros ingenios e instrumentos que, a los pocos meses, se han quedado anticuados, otros nuevos ingenios mucho más avanzados y más pequeños y con muchas más prestaciones vienen a destituirlos.
¿Hasta dónde podremos llegar?
Con el tiempo suficiente por delante… no tenemos límite. Todo lo que la mente humana pueda idear… podrá hacerlo realidad. A excepción, claro está, de las imposibilidades físicas que, en este momento, no tenemos la capacidad intelectual para enumerar. La verdad es que nuestra especie es inmortal. Sí, lo sé, a nivel individual morimos pero…, debemos tener un horizonte más amplio y evaluar una realidad más global y, sobre todo, a más largo plazo. Todos dejamos aquí nuestro granito de arena, lo que conseguimos no se pierde y nuestras antorchas son tomadas por aquellos que nos siguen para continuar el trabajo emprendido, ampliar los conocimientos, perfeccionar nuestros logros y pasar a la fase siguiente.

Este es un punto de vista que nos hace inmortales e invencibles, nada podrá parar el avance de nuestra especie, a excepción de nuestra especie misma.
Ninguna duda podemos albergar sobre el hecho irrefutable de que venimos de las estrellas* y de que nuestro destino, también está en las estrellas.
La humanidad necesita más energía para continuar avanzando. Los recursos naturales fósiles, como el petróleo, el gas o el carbón, son cada vez más escasos y difíciles de conseguir. Se ha llegado a un punto en el que se deben conseguir otras energías.


Dentro de unos treinta años estaremos en el camino correcto. La energía de fusión sería una realidad que estará en plena expansión de un comenzar floreciente. Sin residuos nocivos peligrosos como las radiaciones de la fisión nuclear, la fusión nos dará energía limpia y barata en base a una materia prima muy abundante en el planeta Tierra.
Nuestro Sol fusiona hidrogeno en helio a razón de 4.654.000 toneladas por segundo. De esta enorme cantidad de hidrógeno, 4.650.000 toneladas se convierten en helio. Las 4.000 toneladas restantes son lanzadas al espacio en forma de luz y calor, energía termonuclear de la que, una parte, llega al planeta Tierra y hace posible la vida.
Resulta pues que el combustible nuclear de las estrellas es el hidrógeno que mediante su fusión hace posible que genere tal enormidad de energía. Así lleva el Sol unos 4.500 millones de años y se espera que al menos durante un período similar nos esté regalando su luz y su calor.

Pero ¿tenemos hidrógeno en el planeta Tierra para tal empresa de fusión nuclear?
La verdad es que sí. La fuente de suministro de hidrógeno con la que podemos contar es prácticamente inagotable…
¡El agua de los mares y de los océanos!
Todos sabemos que el hidrógeno es el elemento más ligero y abundante del universo. Está presente en el agua y en todos los compuestos orgánicos. Químicamente, el hidrógeno reacciona con la mayoría de los elementos. Fue descubierto por Henry Cavendisch en 1.776. El hidrógeno se utiliza en muchos procesos industriales, como la reducción de óxidos minerales, el refinado del petróleo, la producción de hidrocarburos a partir de carbón y la hidrogenación de los aceites vegetales y, actualmente, es un candidato muy firme para su uso potencial en la economía de los combustibles de hidrógeno en la que se usan fuentes primarias distintas a las energías derivadas de combustibles fósiles (por ejemplo, energía nuclear, solar o geotérmica) para producir electricidad, que se emplea en la electrólisis del agua. El hidrógeno formado se almacena como hidrógeno líquido o como hidruros de metal.

Bueno, tantas explicaciones sólo tienen como objeto hacer notar la enorme importancia del hidrógeno. Es la materia prima del universo, sin él no habría estrellas, no existiría el agua y, lógicamente, tampoco nosotros podríamos estar aquí sin ese preciado elemento.
Cuando dos moléculas de hidrógeno se junta con una de oxígeno (H2O), tenemos el preciado líquido que llamamos agua y sin el cual la vida no sería posible.
Así las cosas, parece lógico pensar que conforme a todo lo antes dicho, los seres humanos deberán fijarse en los procesos naturales (en este caso el Sol y su producción de energía) y, teniendo como tiene a su disposición la materia prima (el hidrógeno de los océanos), procurar investigar y construir las máquinas que sean necesarias para conseguir la fusión, la energía del Sol.
Esa empresa está ya en marcha y, como he dicho al principio de este comentario, posiblemente en unos treinta años sería una realidad que nos dará nuevas perspectivas para continuar el imparable avance en el que estamos inmersos.
Pero no me gustaría cerrar este comentario sobre la fusión sin contestar a una importante pregunta…
¿Y por qué la fusión?
Porque tiene una serie de ventajas muy significativas en seguridad, funcionamiento, medio ambiente, facilidad en conseguir su materia prima, ausencia de residuos peligrosos, posibilidad de reciclar los escasos residuos que genere, etc.

Esquema de un reactor nuclear de fusión tipo tokamak, como ITER
- Los recursos combustibles básicos (deuterio y litio) para la fusión son abundantes y fáciles de obtener.
- Los residuos son de helio, no radiactivos.
- El combustible intermedio, tritio, se produce del litio.
- Las centrales eléctricas de fusión no estarán expuestas a peligrosos accidentes como las centrales nucleares de fisión.
- Con una elección adecuada de los materiales para el propio dispositivo de fusión, sus residuos no serán ninguna carga para las generaciones futuras.
- La fuente de energía de fusión es sostenible, inagotable e independiente de las condiciones climáticas.
![]()
Para producir la energía de fusión sólo tenemos que copiar lo que hace el Sol. Tenemos que hacer chocar átomos ligeros de hidrógeno para que se fusionen entre sí a una temperatura de 15 millones de grados Celsius, lo que, en condiciones de altas presiones (como ocurre en el núcleo del Sol) produce enormes energías según la formula E = mc2 que nos legó Einstein demostrando la igualdad de la masa y la energía.
Ese estado de la materia que se consigue a tan altas temperaturas, es el plasma, y sólo en ese estado se puede conseguir la fusión.
Aunque en Europa la aventura ya ha comenzado, y para ello se han unido los esfuerzos económicos de varias naciones, la empresa de dominar la fusión no es nada fácil, pero…, démosle…

Siempre será la Naturaleza la que nos indique el camino a seguir. En las estrellas se “fabrican” los elementos mediante la fusión nuclear, los elementos sencillos se han cada vez más complejos a medida que avanza el proceso y, finalmente, son las explosiones supernovas las que nos traen los elementos más complejos como el Uranio, el nº 92 de la Tabla Periódica.
¡TIEMPO!
Sí, es el tiempo el factor que juega a nuestro favor para conseguir nuestros logros más difíciles, para poder responder preguntas de las que hoy no tenemos respuesta, y es precisamente la sabiduría que adquirimos con el paso del tiempo la que nos posibilita para hacer nuevas preguntas, más profundas que las anteriores y que antes, por ignorancia, no podíamos plantear. Cada nuevo conocimiento nos abre una puerta que nos invita a entrar en una nueva región donde encontramos otras puertas cerradas que tendremos que abrir para continuar nuestro camino. Sin embargo, hasta ahora, con el “tiempo” suficiente para ello, hemos podido franquearlas hasta llegar al momento presente en el que estamos ante puertas cerradas con letreros en los que se puede leer: fusión, teoría M, viajes espaciales tripulados, nuevas formas de materia, el gravitón, la “materia oscura”, las ondas de energía de los agujeros negros (ya encontradas), hiperespacio, otros universos, ¿otras dimensiones?

Siempre estaremos delante de puertas cerradas
Todas esas puertas y muchas más nos quedan por abrir. Además, tenemos ante nuestras narices puertas cerradas que llevan puesto el nombre de: genética, nanotecnología, nuevos fármacos, alargamiento de la vida media, y muchas más en otras ramas de la ciencia y del saber humano.
Aunque es mucho lo que se ha especulado sobre el tema, en realidad, el tiempo sólo transcurre (que sepamos) en una dirección, hacia delante. Nunca ha ocurrido que unos hechos, que unos sucesos, se pudieran borrar, ya que para ello habría que volver en el tiempo anterior al suceso para evitar que sucedieran. Está claro que en nuestro universo, el tiempo sólo transcurre hacia lo que llamamos futuro.

Siempre encontramos las huellas del paso del tiempo, aparecen sutiles efectos que delata el sentido del paso del tiempo, aunque es algo que no se puede ver ni tocar, su paso se deja sentir, lo nuevo lo va convirtiendo en viejo, con su transcurrir, las cosas cambian. La misma Tierra, debido a las fuerzas de marea, con el paso del tiempo va disminuyendo muy lentamente su rotación alrededor de su eje (el día se alarga) y la distancia media entre la Tierra y la Luna crece. El movimiento de un péndulo, con el tiempo disminuye lentamente en su amplitud por las fuerzas de rozamiento. Siempre está presente ese fino efecto delator del sentido del paso del tiempo que va creando entropía destructora de los sistemas que ven desaparecer su energía y cómo el caos lo invade todo.
Nos podríamos hacer tantas preguntas sobre las múltiples vertientes en que se ramifica el tiempo que, seguramente, este libro sería insuficiente para poder contestarlas todas (de muchas no sabríamos la respuesta).

El Tiempo pasa, o, ¿En realidad pasamos nosotros?
- ¿Por qué consideramos que el tiempo rige nuestras vidas?
- ¿Cómo explicarías “qué es el tiempo”?
- ¿Por qué unas veces te parece que el tiempo “pasa rápido” y otras veces “muy lento”?
- ¿Crees que el tiempo estaba antes del Big Bang? ¿Por qué?
- ¿En algún momento se acabará el tiempo?
- ¿Cómo el ser humano “fue consciente” de la existencia del tiempo?
- ¿Qué cosa es el tiempo?
- ¿Por qué no lo vemos ni tocamos pero notamos sus efectos?
- ¿Por qué la velocidad relativista puede ralentizar el transcurrir del tiempo?
En realidad, si nos detenemos a pensar detenidamente y en profundidad en el entorno en que nos encontramos, una colonia de seres insignificantes, pobladores de un insignificante planeta, de un sistema solar dependiente de una estrella mediana, amarilla, del tipo G-2 V, nada especial y situada en un extremo de un brazo espiral de la Galaxia, en la periferia galáctica. es decir, de una de entre miles de millones de galaxias… si pensamos en esa inmensidad, entonces caeremos en la cuenta de que no somos tan importantes, y el tiempo que se nos permite estar aquí es un auténtico regalo. Ese tiempo, corto en relación al tiempo que fue y que será, es por cierto un espacio suficiente para nacer, crecer, aprender, dejar huella de nuestro paso por este mundo a través de nuestros hijos y a veces (si somos elegidos) por nuestro trabajo, nuestras ideas, nuestra obra en fin, tendremos la oportunidad (casi siempre breve) de ser felices y muchas oportunidades para el sacrificio y el sufrimiento, y así irán pasando nuestras vidas para dejar paso a otras que, al igual que nosotros, continuaran el camino iniciado en aquellas cuevas remotas del pasado, cuando huyendo del frío y de los animales salvajes, nos refugiábamos en las montañas buscando cobijo y calor.

El 97% del material del que estamos constituidos se fraguó en las estrellas
* El material de que estamos hechos se formó hace miles de millones de años en estrellas lejanas que explotaron en supernovas y dejaron el espacio regado de la materia que ahora nos constituye.
** El final del Sol, dentro de 4.000 millones de años, nos obligará a que antes tengamos que emigrar a otros mundos lejanos.
emilio silvera
Ago
6
Sí, el Universo es… ¡Asombroso!
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (0)
El complejo binario Wolf-Rayet BATT99-49, nos muestra como sus energías producen coloridos tonos en la espesas nubes de gas hidrógeno que ocultan las estrellas nuevas de potente radiación que ionizan el lugar. Aquí podemos contemplar la bonita imagen conseguida por la unidad Melipal del telescopio VLT, del Observatorio Europeo del Sur , resuelve con espléndido detalle el complejo BAT99-49 de esta nebulosa. La luz emitida por los átomos de helio se registra en azules, la del oxígeno en verdes y la del hidrógeno en rojos. Una de las estrellas de esta dupla es del tipo enigmático Wolf-Rayet , mientras que la otra es una estrella O masiva. Esta pareja estelar y su nebulosa se encuentran en la Gran Nube de Magallanes , la más grande de las galaxias-satélite de nuestra Vía Láctea . Las estrellas Wolf-Rayet constituyen uno de los objetos más calientes del universo, mientras que las O son las más energéticas y masivas de la secuencia principal de evolución estelar.

Vientos solares que crean burbujas en la Nebulosa
Las estrellas de Wolf-Rayet o estrellas Wolf-Rayet (abreviadas frecuentemente como WR) son estrellas masivas (con más de 20-30 masas solares), calientes y evolucionadas que sufren grandes pérdidas de masa debido a intensos vientos solares.

Este tipo de estrellas tiene temperaturas superficiales de entre de 25.000 – 50.000 K (en algunos casos incluso más), elevadas luminosidades, y son muy azules, con su pico de emisión situado en el ultravioleta. Sus espectros muestran bandas de emisión brillantes correspondientes a hidrógeno o helio ionizado -los cuales son relativamente escasos-. La superficie estelar también presenta líneas de emisión anchas de carbono, nitrógeno y oxígeno. Constituyen el tipo espectral W, el cual se divide a su vez en tres tipos: WN (si abunda el nitrógeno, que se explica por la presencia en la superficie estelar de elementos que han intervenido en el ciclo CNO), y WC y WO (si abunda el carbono y si abunda el oxígeno respectivamente; el segundo es mucho más raro y en ambos casos, la presencia de dichos elementos se interpreta como la presencia en la fotosfera de productos del proceso triple alfa). Las estrellas Wolf-Rayet más brillantes son del primer tipo.
![]()
Mediante el proceso Triple Alfa, las estrellas crean Carbono
A menudo suelen formar parte de sistemas binarios en los cuales la otra estrella suele ser también una estrella masiva de tipo espectral O y B, o bien, en unos pocos casos, un objeto colapsado como una estrella de neutrones o un agujero negro.

Estas estrellas masivas tienen una vida más corta que las estrellas como nuestro Sol o las enanas rojas que, llegan a alcanzar edades más largas que la que tiene actualmente nuestro Universo. Lo normal es que una estrella muy masiva, que consume gas hidrógeno en cantidades asombrosas, es decir, que fusiona los materiales más sencillos en otros más complejos, viven unos pocos millones de años hasta que, no puede seguir fusionando material y queda a merced de la Gravedad que la comprime más y más, explota como Supernova para convertirse en un aestrella de neutrones o agujero negro y, las capas exteriores, son eyectadas al espacio interestelar para formar una Nebulosa.

Los agujeros negros, aunque nadie ha podido visitar ninguno hasta el momento, se cree son los objetos más densos del universo y, hasta tal punto es así que el material que los conforma se contrae tanto que, llega a desaparecer de nuestra vista y, estrellas de más de 80 0 100 masas solares, quedan así, convertidas en puntos, o, singularidades de inmensa densidad y energía. Hasta tal punto es así que la gravedad que genera no deja escapar ni a la luz que, como sabéis, camina a 300.000 Km/s.
El Universo amigos míos, como siempre digo: ¡Es asombroso!
emilio silvera
Jul
30
Las estrellas masivas y su destino
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (2)
Si preguntamos por el significado del Big Bang, la expansión del universo, cómo nacen y mueren las estrellas, qué es una singularidad, a qué se refiere la libertad asintótica de los quarks, qué son los nucleones, qué significan las constantes universales, qué es la mecánica quántica, el modelo estándar, la relatividad general, el significado de E = mc2, el principio de incertidumbre, la función de onda de Schrödinger, el Principio de exclusión de Pauli, el cuanto de acción, h, o el límite, la energía o tiempo de Planck…, cualquiera de estas cuestiones, todas tan importantes, serán desconocidas para el 99’99% de los encuestados. ¡Una auténtica calamidad!

En todas las escuelas del Mundo se debería exigir que al finalizar los estudios, todos los que pasaron por ellas pudieran tener una noción básica de lo que es el “mundo” en el que viven, el Universo que nos acoge. Saber lo que es un átomo, una galaxia, una estrella… ¡cómo funciona nuestro mundo! Qué son los exóticos objetos que pueblan el universo y cómo se forman…

Esa es la penosa realidad en la que estamos inmersos. Esas personas desconocedoras de las preguntas que antes enumeramos, sí podrían contestar, en cambio, sobre cualquier tema que se les plantee sobre cuestiones mundanas e intrascendentes, de los “famosos” que siempre andan en la TV y las revistas de chismes (una autñéntica lástima que deja al descubierto la ignorancia de esas mayorías). Ninguna pregunta contestarán sobre, por ejemplo, una estrella supermasiva.

“Las estrellas súper-masivas, de muchas veces la masa del Sol (pueden sobrepasar las 150 masas), -si son muy masivas su propia radiación las destruye-, acaban su vida bien mediante una explosión como supernova o directamente mediante un colapso gravitatorio. Ambos procesos conducen teóricamente a la formación de agujeros negros, pero hasta hace relativamente bien poco tiempo no se tenían pruebas de ninguno de ellos. En el artículo que se publicó en Nature (“Evidence of a Supernova Origin for the Black Hole in GRO J1655-40”), astrónomos del IAC y de la Universidad de California, en Berkeley, presentaron los resultados de un estudio sobre la composición química de la estrella que orbita en torno al agujero negro del sistema GRO J1655-44 (Nova Scorpii 1994). Esta estrella muestra un alto contenido atmosférico de oxígeno, magnesio, silicio y azufre, diez veces superior al del Sol. Estos elementos químicos se originan en reacciones nucleares que tienen lugar en el interior de estrellas muy masivas al alcanzar temperaturas de miles de millones de grados y se expulsan al medio circundante si la estrella termina su vida explotando como supernova. En este proceso, además de enriquecer el entorno con nuevos productos químicos, se espera que tenga lugar la formación de una estrella de neutrones o de un agujero negro.”
![]()
Eta Carinae, escondida en el material que suelta para no morir
Ahí podemos observar a una estrella muy joven, de dos o tres millones de años que, en un futuro lejano será una gran Supernova. Los procesos que podríamos observar al final de la vida de una estrella gigante… ¡Son fascinantes!
En esta imagen del telescopio espacial Hubble se pueden apreciar a la estrella Eta Carinæ y los restos de erupciones antiguas que forman la nebulosa del Homúnculo alrededor de la estrella. La nebulosa fue creada por una erupción de η Car cuya luz alcanzó la Tierra en 1843. Eta Carinae aparece como un parche blanco en el centro de la imagen, donde los dos lóbulos de la nebulosa Homúnculo convergen.

Eta Carinae (abreviado: η Carinae o η Car) es una estrella del tipo variable luminosa azul hipermasiva, situada en la constelación de la Quilla. Su masa oscila entre 100 y 150 veces la masa del Sol, lo que la convierte en una de las estrellas más masivas conocidas en nuestra Galaxia y sólo tiene una edad de unos tres millones de años. Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol; debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99 % de su luminosidad en la parte infrarroja del espectro, lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de onda entre 10 y 20 μm.

Cuando agotan su combustible nuclear de fusión implosionan
Lo cierto es que para las estrellas supermasivas, cuando llegan al final de su ciclo y dejan de brillar por agotamiento de su combustible nuclear de fusión, en ese preciso instante, el tiempo se agota para ella. Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella) y la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo el peso de su propia masa. Queda comprimida hasta tal nivel que llega un momento que desaparece, para convertirse en un agujero negro, una singularidad, donde dejan de existir el “tiempo” y el espacio. A su alrededor nace un horizonte de sucesos, que si se traspasa se es engullido por la enorme gravedad del agujero negro.

En la escena que antes explicabamos, por mucho tiempo que nos quedemos esperando y comtemplando el suceso, si uno está en reposo fuera de la estrella (es decir, en reposo en el sistema de referencia externo estático), uno nunca podrá ver que la estrella implosiona a través de la circunferencia crítica. Ese fue el mensaje inequívoco que Oppenheimer y Snyder nos enviaron. Para poder ver eso, habría que estar dentro de la estrella, instalado en la materia que está sufriendo la contracción y, no sabemos porque eso es así.

El tiempo, de esta manera, deja de existir en estas regiones del universo que conocemos como singularidad. El mismo Big Bang surgió (dicen) de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Estructura a gran escala de la distribución de luz en el universo.
El universo es inimaginablemente inmenso. Y buena parte de él es vacío, o vacíos, para ser más precisos. Efectivamente, cuando se considera el universo a gran escala, en la que unas decenas de millones de años luz no son nada, se observa que las galaxias se agrupan formando murallas, como la Gran Muralla de Hércules-Corona Boreal (la estructura más grande del universo que sepamos), filamentos y supercúmulos separados entre sí por vastísimas regiones llenas de prácticamente nada, conocidas como vacíos cósmicos.
Vacíos cósmicos

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y agujeros negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala. Estas regiones son a menudo esféricas. El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

El Gran Vacío, Vacío Boötes o Vacío del Boyero es una región enorme y casi esférica del espacio, que contiene muy pocas galaxias. Se encuentra ubicado en las inmediaciones de la Constelación del Boyero o Boötes. Tiene unos 250 millones de años luz de diámetro. El centro del Vacío Boötes esta a aproximadamente 700 millones de años luz de la Tierra.

El telescopio XMM-Newtton de la Agencia Espacial Europea (ESA) ha captado la imagen de dos estrellas de neutrones completamente diferentes, en etapas diferentes de sus vidas.
Mientras que en estas regiones (como el vacío de Boötes) la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble. Su densidad es de 1017 Kg/m3; los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del universo (si no existen estrellas de Quarks, en cuyo caso, serían las segundas más densas).

EL ESPACIO LIBRE DE RIEMANN Riemann se ocupó de los espacios curvos, cuyas características se muestran en la figura inferior.

UNA VIDA CORTA PERO PROVECHOSA
Bernhard Riemann, al igual que su maestro, llegó a ser director del Observatorio de Göttingen desde el año 1859 al 1866, fecha en que murió. Hizo importantes contribuciones en muchos campos, incluyendo la topología, la teoría de las funciones, y la física matemática
Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del universo. Pasando por Arquímedes, Pitágoras, Tales de Mileto, Empédocles, Demócrito de Abdera, Anaximandro, Galileo, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.
La respuesta tan esperada en astronomía es el que alguien responda a la pregunta siguiente: ¿Qué es y donde está la energía y la materia oscura?

Sí, sabemos que su presencia puede ser inferida por sus efectos sobre los movimientos de las estrellas y galaxias, aunque no puede ser observada directamente debido a que emite poca o ninguna radiación. Se piensa que algo más del 90% de la masa del universo se encuentra en alguna forma de materia oscura. Existen evidencias de materia oscura en las galaxias espirales en sus curvas de rotación. La existencia de materia oscura en los cúmulos ricos de galaxias puede ser deducida por el movimiento de las galaxias constituyentes.

Una parte de esta materia oscura puede encontrarse en forma de estrellas poco masivas u objetos con masa del orden de la de Júpiter; dicha materia normal se describe como bariónica (los bariones son los protones, neutrones y otras partículas formadoras de materia que podemos ver). Por otra parte, también puede existir materia oscura en el espacio entre galaxias, ese espacio que llamamos vacío y que en realidad está abarrotado de partículas virtuales que aparecen sin saber de dónde y en manos de una millonésima de segundo desaparece sin que sepamos a dónde, y que podría hacer aumentar la densidad media del universo hasta la densidad crítica requerida para invertir la expansión actual.

Si la teoría del Big Bang es correcta, como parece que lo es, debe de existir una gran proporción de materia oscura en forma no bariónica (que no podemos ver), quizás axiones, fotinos o neutrinos masivos, supervivientes de las etapas tempranas del Big Bang y, ¿por qué no?, también podríamos suponer que la materia oscura que tanto nos preocupa pudiera estar encerrada dentro de las singularidades de tantos y tantos agujeros negros que se han debido formar a lo largo de los 13.500 millones de años que es la edad del universo.

Los agujeros negros, cuya existencia se dedujo por Schwarzschild en 1.916 a partir de las ecuaciones de campo de Einstein de la relatividad general, son objetos supermasivos, invisibles a nuestra vista (de ahí su nombre) del que no escapa ni la luz; tal es la fuerza gravitatoria que generan que incluso engullen la materia de sus vecinas, objetos estelares como estrellas que osan traspasar el cinturón de seguridad que llamamos horizonte de sucesos.
Pues bien, si en el universo existen innumerables agujeros negros, ¿”por qué no creer que sean uno de los candidatos más firmes para que sea la buscada “materia oscura”?.

Para mí particularmente, sin descartar absolutamente nada de lo anterior (cualquier teoría podría ser la cierta), la denominada materia oscura podría estar situada en la quinta dimensión, y nos llegan sus efectos a través de fluctuaciones del “vacío”, que de alguna manera deja pasar a los gravitones que transportan la fuerza gravitacional que emite dicha materia y sus efectos se dejan sentir en nuestro universo, haciendo que las galaxias se alejen las unas de las otras a mayor velocidad de la que tendrían si el universo estuviera poblado sólo de la materia bariónica que nos rodea. Por otra parte, no hay que descartar como candidato a lo que tomamos como “Materia oscura” , la fuerza gravitatoria que proviene de un universo vecino que está tirtando del nuestro.
![]()
No sabemos tanto como para descartar la existencia de universos vecinos
Claro que mi pensamiento es eso, una teoría más de las muchas que circulan. No se puede dogmatizar hablando de estas cuestiones sobre las que no se tienen la menor certeza. La cuestión es que, si atendemos a la expansión de Hubble, tampoco podemos explicar las formación de las galaxias, ya que, dicha expansión lo habría impedido, a no ser que, allí, existiera una fuerza invisible que sujetó a la materia el tiempo necesario para que se formaran las estrellas y las galaxias: la materia oscura. Si fue así, quiere eso decir que, la materia oscura fue la primera que hizo acto de presencia en nuestro Universo.
De todas las maneras, incluso la denominación dada: “materia oscura”, delata nuestra ignorancia.
Mientras tanto, dejamos que el “tiempo” transcurra y como en todo lo demás, finalmente, alguien nos dará la respuesta.

¡Poder aprovechar las inmensas energías de los agujeros negros!
Para que tengamos todas las respuestas que necesitamos para viajar a las estrellas, tener energía infinita obtenida de agujeros negros, lograr el traslado de materia viva a lugares distantes, dominar toda una galaxia, etc, tendrán que transcurrir algunos eones* de tiempo.
Hace menos de un siglo no existían televisores, teléfonos móviles, faxes, ni aceleradores de partículas. En los últimos cien años hemos avanzado de una manera que sería el asombro de nuestros antepasados.
¿Qué maravillas tendremos dentro de cincuenta años? ¿Qué adelantos científicos se habrán alcanzado?
Dejando a un lado, a los primeros descubridores, como Ptolomeo, Copérnico, Galileo, Kepler y otros muchos de tiempos pasados, tenemos que atender a lo siguiente:

La primera revolución de la física se produjo en 1.905, cuando Albert Einstein con su relatividad especial nos ayudo en nuestra comprensión de las leyes que gobiernan el universo. Esa primera revolución nos fue dada en dos pasos: 1905 la teoría de la relatividad especial y en 1.915, diez años después, la teoría de la relatividad general. Al final de su trabajo relativista, Einstein concluyó que el espacio y el tiempo están distorsionados por la materia y la energía, y que esta distorsión es la responsable de la gravedad que nos mantiene en la superficie de la Tierra, la misma que mantiene unidos los planetas del Sistema Solar girando alrededor del Sol y también la que hace posible la existencia de las galaxias.
Nos dio un conjunto de ecuaciones a partir de los cuales se puede deducir la distorsión del tiempo y del espacio alrededor de objetos cósmicos que pueblan el universo y que crean esta distorsión en función de su masa. Se han cumplido 100 años desde entonces y miles de físicos han tratado de extraer las predicciones encerradas en las ecuaciones de Einstein (sin olvidar a Riemann) sobre la distorsión del espaciotiempo.
Un agujero negro es lo definitivo en distorsión espaciotemporal, según las ecuaciones de Einstein: está hecho única y exclusivamente a partir de dicha distorsión. Su enorme distorsión está causada por una inmensa cantidad de energía compactada: energía que reside no en la materia, sino en la propia distorsión. La distorsión genera más distorsión sin la ayuda de la materia. Esta es la esencia del agujero negro.

Si tuviéramos un agujero negro del tamaño de la calabaza más grande del mundo, de unos 10 metros de circunferencia, entonces conociendo las leyes de la geometría de Euclides se podría esperar que su diámetro fuera de 10 m / π = 3’14159…, o aproximadamente 3 metros. Pero el diámetro del agujero es mucho mayor que 3 metros, quizá algo más próximo a 300 metros. ¿Cómo puede ser esto? Muy simple: las leyes de Euclides fallan en espacios muy distorsionados.
emilio silvera
* Eón: periodo de 109 años, es decir, 1.000 millones de años.
Jul
28
Sí, algún día… ¡Sabremos!
por Emilio Silvera ~
Clasificado en El Universo asombroso ~
Comments (6)

De alguna manera, llevamos dentro de nosotros aquel camino de Hoz. Pero será la Ciencia la que nos indique la manera de crear nuevos caminos que nos lleven hacia esa armonía que buscamos en un universo del que formamos parte y que no hemos llegado a comprender. Son muchas las cosas que no sabemos.
Desde que Einstein en 1.905 nos dijo que el Tiempo no es un reloj universal que marcha al mismo ritmo para todos, y que un gemelo que parte en un viaje al espacio a gran velocidad no envejecerá tanto como el otro que se queda en casa, nada ha sido lo mismo. Esa paradoja la entendemos y nos parece escandalosamente increíble, y pese a todo es correcta. Cosas así despiertan la imaginación de las personas curiosas que, de alguna manera, despiertan a otra realidad y constatan que sus conceptos del “mundo” estaban equivocados.

No todos lo que vemos es cierto
Estar equivocados nos sorprende y, al mismo tiempo, nos enseña algo sobre nosotros mismos. No solo hay cosas que no sabemos, sino que las cosas que creemos saber pueden no ser ciertas. Como nos dice la filosofía, nada es como se ve a primera vista, todo depende bajo el punto de vista desde el que miremos las cosas y, si es el correcto, estaremos en esa verdad que incansables buscamos.
No resulta nada fácil descubrir los caminos por los que deambula la Naturaleza y las razones que ésta tiene para recorrerlosa de la manera que lo hace y no de otra. Una cosa es cierta, la Naturaleza siempre trata de conseguir sus fines con el menor esfuerzo posible y, cuestiones que nos parece muy complicadas, cuando profundizamos en ellas como la ciencia nos exige, llegan a parecernos más sencillas y comprensibles. Todas las respuestas están ahí, en la Naturaleza.

¿Qué duda nos puede caber?, sentirse bien con uno mismo ayuda a sentirse bien.
Alguna vez me he preguntado si el conocimiento nos puede traer la felicidad y, la respuesta no es nada sencilla. Muchas veces he podido sentir cómo al adquirir un nuevo conocimiento he sentido dolor por comprender lo que hay detrás de ese conocimiento. Otras veces, el dolor lo he sentido al ver a tantas criaturas faltas de conocimiento, no le dieron ninguna oportunidad. ¿Otra paradoja? ¿Como se puede sentir lo mismo, en este caso dolor, por una cosa y la contraria? ¡Qué compleja es nuestra mente!
Algún pensador ha dicho:

“La paradoja de nuestro tiempo en la historia es que tenemos edificios más altos pero temperamentos más cortos, autopistas más anchas, pero puntos de vista más estrechos. Gastamos más pero tenemos menos, compramos más, pero gozamos menos. Tenemos casas más grandes y familias más pequeñas, más conveniencias, pero menos tiempo. Tenemos más grados y títulos pero menos sentido, más conocimiento, pero menos juicio, más expertos, sin embargo más problemas, más medicina, pero menos . “
¿No será que no hemos aprendido a determinar lo que realmente tiene algún valor?

Bueno, para no variar comencé un viaje hacia el “universo de Einstein” y llegué a un extraño mundo que no estaba en el mapa de mis pensamientos primeros, así que regreso sobre mis pasos y retomo el sendero que dejé para continuar comentándoles a ustedes algunas cuestiones.
Como algunos recordaréis, Albert Einstein fue escogido por la Revista Time (el nombre resulta irónico en ese caso concreto) como la personalidad del siglo XX. Precisamente comenzó ese siglo de manera impresionante en su año milagroso de 1.905. En ese año, inspirado en el trabajo de Planck del cuanto y yendo un poco más allá, dio la demostración estadística de la naturaleza atómica de la materia y, con su explicación de los fotones que inciden en superficies metálicas, que le valió el Nobel de Física , ayudó a poner en marcha la revolución cuántica con la que nunca se sintió cómodo. Claro que, no fue aquello lo que le llevó a la popularidad. La fama de Einstein le vino de la mano de la “relatividad”, la teoría de la estructura del espacio-tiempo, la geometría del Universo.

El espacio-tiempo de Einstein situó al ser humano en lugar más cercano al Universo. Le hizo comprender que era una parte de la Naturaleza, la que piensa. Y, pensando, llegamos a saber lo que el espacio-tiempo es, que los átomos son demasiado pequeños, los fotones demasiados y que, en realidad, no podemos tener opiniones firmes sobre estas cosas. Cuando recibimos noticias sobre ellas, las aceptamos como parte del progreso periódico y metódico de la ciencia. La materia está hecha (de tipos de) unidades indivisibles; la luz tiene una naturaleza de onda y partícula a la vez. Quien no es científico no tiene pruebas para contradecir el primer enunciado y ninguna comprensión clara sobre lo que se entiende sobre el segundo. Pero en 1.905 Einstein nos dijo también que el Tiempo es distitno para cada uno de nosotros dependiendo de un ritmo que lo hace relativo.

La relatividad, o la física del espaciotiempo, con su aura de los agujeros negros y un universo en expansiòn, capta nuestra atención porque es la materia de la vida diaria – espacio y tiempo- hecha exótica, como si el Asesor Fiscal consujera un Ferrari vestido con una túnica indonesia. Esto explica (de alguna mnanera) la constancia y fijación, la constante fascinación que ejerce sobre los legos con algunos conocimientos científicos.
También explica la importancia de la relatividad para aquellos con demasiada poca paciencia y quizá demasiado autoconfianza. Cualquier físico relativista ha pasado por la experiencia de recibir, varias veces al año, una nueva teoría de la relatividad remitida por un pensador no-tradicional con inclinaciones técnicas que no ha “leído todos los libros” pero donde estaba equivocado Einstein.
Es curioso como otros (que sí han leído todos los libros) que trabajan cada día con los detalles finos de las matemáticas aplicadas, haciendo un trabajo honesto y dirigiendo todos los esfuerzos a lo que podría ocurrir en una colisión de dos agujeros negros masivos, el asombro que al principio pudiera sentir con los resultados, quedan diluidos con la familiariadad del trabajo cotidiano que nos lleva a entender aquellos “asombrosos” resultados como más cercanos y menos extraño. El conocimiento aleja el asombro.

Sí, desempolvaló y vuelve a mirar lo que en sus páginas te dicen para saber del mundo
Este pequeño librito es una buena introducción a la Relatividad Especial y el ideal para consultas, escrito por Edwon Taylor y Jhon Wheeler nos lleva a dar un paseo por las intrincadas carreteras del espacio-tiempo, por la verdadera naturaleza del espacio y el tiempo que no siempre podemos llegar a comprender. El espacio y el tiempo son tan viejos (más) como el pensamiento humano. Los pensadores clásicos ya tuvieron mucho que decir sobre el tema. Algo de ello parece ahora curiosamente ingenuo, y algo de ello sigue siendo impresionante profundo (fijaos en Zenón, ¿no os parece que ha sabido envejer de la manera más adecuada).
Claro que, las ideas modernas han necesitado miles de años para evolucionar y que encuentran su ubicación precisa en las matemáticas, el lenguaje del que finalmente, se vale la ciencia para explicar lo que las palabras no pueden. Por otra parte, es una sorpresa agradable que las claves de una discusión tan moderna de conceptos científicos incluídos en la relatividad, sean accesibles a quiénes no teniendo una formación matemática y física, asimile cuestiones algunas veces complejas pero, si se explican bien…

El libro de Taylor y Wheeler comienza con la historia de una persona que cruza un pequeño puenta que cruza un río recto y estrecho que corre por un paisaje llano. Aquella persona mira directamente río arriba y quiere dar una descripción cuantitativa de la localización de los lugares de interés, como el campanario de la Iglesia.

Podría hacerlo de muchas formas diferentes. Podría decir que el campario está a 024 metras de ella, y en una dirección a un ángulo de 30 grados a la izquierda. Alternativamwente podría advertir que la camapa está a 800 metros “hacia delante” (en dirección río arriba) y 462 metros “a la izquierda” (lo que signiofica 462 metros a la izquierda del río. Lo que es común a ambos métodos de descripción (y a cualquier otro método) es que debe especificar dos números. Por esa razón decimos que el conjunto de localizaciones en el paisaje es un mundo bidemensional. En física se suele decir que las medidas están hechas por un “observador” y el método de localizar puntos en un “sistema de referencia” asociado al observador. Los números concretos a los que llega el observador (tales como 800 metros y 462 metros) se denominan “coordenadas” de una localización.
La existencia y la importancia de estos términos especiales sugiere correctamente que puede haber otros observadores y otros sistemas de referencia. De hecho, de esto es de lo que trata la relatividad: de relación entre medidas (es decir, coordenadas) en diferentes sistemas de referencia. Es crucial, entonces, que tengamos otro observador y que nuestros observadores discrepen en las medidas.

El espaciotiempo de Minkouski
Provistos de una jerga bastante especial podemos ahora meter la punta del lápiz en el espaciotiempo. (Igual que las localizaciones son los lugares de un paisaje, los “sucesos” son los lugares en el espaciotiempo. Un suceso en cierto lugar y cierto tiempo. Es una posición en el tiempo tanto como en el espacio. Evidentemente el mundo de tales sucesos -el mundo que llamaremos espaciotiempo- es tetradimensional. Se necesitan tres coordenadas para especificar el “donde” de un suceso, y una coordenada para especificar el “cuando”.

En eso de que todo es relativo, acordaos de aquel Jefe de Estación que miraba pasar el tren y veía, como desde una de las ventanillas, un niño arrojaba una pelota de goma a una velocidad de 20 Km/h. en el sentido de la marcha del tren. El tren marchaba a 100 Km/h., y, resulta que el padre del niño, sentado junto a él, llevaba una máquina que media la velocidad a la que corría la pelota y, el Jefe de Estación, parado en el Anden, tenía otra igual que también la media. El resultado de ambas mediciones era discrepante. Al padre del niño le daba una medida de 20 Km/h, mientras que al Jede de Estación le dio una medida de 120 IKm/h. ¿cómo podía ser eso? Lo cierto es que, el padre del niño que portaba la máquina, también estaba en movimiento a 100 Km/h que la máquina no media, ya que, también ella, estaba en movimiento a esa velocidad y sólo media la velocidad de la pelota. El Jefe de Estación parado en el Anden, midió que la pelota corría hacia adelante a 120 Km/h,. es decir, la máquina había sumado los 20 Km/h con los que el niño impulso a la pelota más los 100 Km/h a los que marchaba el tren.
Así, el mismo suceso, medido por dos observadores diferentes y con sistemas de referencias diferentes, no podían dar el mismo resultado. Claro que, ejemplos de la realtividad especial podríamos dar muchos que han sido confirmados y que, al no estar familiarizados con ellos, nos llevarían hacia el asombro que todo ignorante siente ante hechos incomprensibles pero, maravillosos.

La relatividad tanto especial como general, nos trajeron muchas cosas y, sobre todo, muchas promesas que no todas se han cumplido (aún). En relación a una de ellas, alguien ha pronosticó que entre 2,.010 y 2.015, un detector de ondas gravitatorias en vuelo espacial llamado LISA nos revelerá la distorsión del espacio-tiempo alrededor de muchos agujeros negros masivos en el universo lejano, y cartografiará dicha distorsión con exquisito detalle -los tres aspectos de la distorsión: la curvatura del espacio, la distorsión del tiempo y el torbellino del espacio-tiempo alrededor del horizonte.

En nuestro Universo ocurren sucesos que no hemos sabido detectar y que, de alguna manera, nos mostrarían otra clase de Universo, es decir, el Universo sería el mismo pero, lo veríamos de otra manera. Hasta el momento el Universo que conocemos es ese que nos han posibilidado los fotones. Las ondas de luz captadas por los potentes telescopios que nos traen hasta nosotros a las más lejanas galaxias, los cúmulos y a las más bellas Nebulosas. Sin embargo, ahí fuera, ocurren otras muchas cosas que no podemos ver. ¿Qué pasará realmente con el espacio-tiempo en presencia de esas inmensas densidades de materia que viven dentro de los agujeros negros gigantes y, que pasará, cuando dos ellos chocan?

Es cierto, como nos dicen los del Instituto de Astrofíca de Andalucía:
“CASI TODO LO QUE SABEMOS DEL COSMOS LO HEMOS APRENDIDO mediante el análisis de la luz que nos llega de él. Con mayor generalidad deberíamos referirnos a la observación de la radiación electromagnética, de la que la luz visible es solo una parte. Y decimos “casi todo” porque los rayos cósmicos y los neutrinos nos aportan también importantes claves. En cualquier caso, nuestro modelo del universo más allá de la Tierra es, en buena medida, una imagen tallada con herramientas electromagnéticas. Un modelo muy rico, sin duda alguna. Pero quizá, por estar esencialmente construido a partir de estas proyecciones sobre nuestros muros de luces y sombras solo electromagnéticas, podría ser también un modelo sesgado. ¿Cómo saberlo? ¿Disponemos de alguna manera independiente para evaluar, y en su caso enriquecer, este modelo de génesis electromagnética? La respuesta es sí: las denominadas ondas gravitatorias nos proporcionan lo que podemos considerar como otra luz con la que observar el cosmos, complementaria e independiente a la luz electromagnética.”

Montserrat Villar, a la que tuve el honor de saludar cuando fue la coordinadora del Año Internacional de la Astronomía 2009, y se inauguró en España aquellas memorables jornadas en la que pude prestar mi humilde colaboración. Ella es investigadora del Instituto de Astrofísica de Andalucía (CSIC).

Recuerdo que Montserrat, estando juntos en la celebración del Año Internacional de la Astronomía me dijo: ”La auténtica revolución para el ser humano sería encontrar vida fuera de la Tierra” Y, desde luego, ese es el sueño de muchos Astrónomos y Astrofísicos que piensan en la inmensa posibilidad que existe de que la Vida, pulule por todo el Universo. Sin embargo, son las distancias por una parte y el tiempo por la otra, las que nos ponen muros por delante que, al menos de momento, no podemos franquear.
En cuanto a las Ondas gravitacionales (OG) es una de las predicciones más importantes de la Teoría de la Relatividad General de Einstein. A nivel mundial, se está realizando un gran esfuerzo para descubrir la radiación gravitacional, ya que su detección será la prueba contundente para verificar la teoría de Einstein. El estudio de las OG se realiza desde el punto de vista teórico, numérico y experimental. Se espera que pronto tengamos algunos resultados muy fiables que vengan a confirmar (como ya pasó con otros aspectos de la teoría) que lo que nos dicen las ecuaciones de campo de la relatividad general, es un fiel reflejo de lo que el Universo es.

Una onda gravitacional es una pequeña fluctuación en la curvatura de la tela del espacio-tiempo, la cual se propaga en forma de ola, viajando hacia a fuera a partir de un objeto o un sistema de objetos en movimiento. Fue predicha por Einstein, y su estudio podría contestar el gran interrogante sobre cuál es la naturaleza de la gravedad. Aunque la radiación gravitacional no habñia sido medida directamente, su existencia se ha demostrado indirectamente, y se pensaba que podría estar ligada a violentos fenómenos cósmicos. Una sofisticada antena interferométrica espacial llamada LISA, que fue puesta en órbita en su momento, para detectar y analizar las ondas gravitacionales, y, también el Proyecto LIGO, bien conocido de ustedes trabajó en la misma dirección, y, de hecho, ya han dado en la diana.

¿Qué son las ondas gravitacionales?
Una onda gravitacional es una pequeña fluctuación en la curvatura de la tela del espacio-tiempo, la cual se propaga en forma de ola, viajando hacia a fuera a partir de un objeto o un sistema de objetos en movimiento. Fue predicha por Einstein, y su estudio podría contestar el gran interrogante sobre cuál es la naturaleza de la gravedad. Aunque la radiación gravitacional no ha sido medida directamente, su existencia se ha demostrado indirectamente, y se piensa que podría estar ligada a violentos fenómenos cósmicos. Una sofisticada antena interferométrica espacial llamada LISA, se dedicará a detectar y analizar las ondas gravitacionales.

¿Qué pasa cuando chocan dos agujeros negros?
Cuando dos galaxias se unen, sus agujeros negros supermasivos (miles de millones el tamaño del sol) eventualmente tienen que interactuar, ya sea en un violento impacto directo o acercándose hacia el centro hasta tocarse uno con otro. Y es ahí donde las cosas se ponen interesantes. En vez de acercase de buena manera, las fuerzas de ambos monstruos son tan extremas que uno de ellos es pateado fuera de la galaxia recién unida a una velocidad tan tremenda que nunca puede regresar. Por su parte, el agujero que da la patada recibe una enorme cantidad de energía, que inyecta en el disco de gas y polvo que lo rodea. Y entonces este disco emite un suave resplandor de rayos X que dura miles de años. El choque de dos agujeros negros es un suceso rarísimo y, como de manera directa nunca lo hemos podido observar, aquí dejamos una referencia de lo que creemos que podría ser.
No son pocos los sucesos que están presentes en el Universo y de los que no tenemos ni idea y otros, que sabemos que están ahí pero, son también unos completos desconocidos. Es mucho lo que nos queda por andar en este inmenso campo que, no está precisamente llano y, en el largo camino de la ciencia, nos encontramos con grandes inconvenientes que sirven de freno a nuestras ánsias de saber.

¿Qué pasa cuando chocan dos galaxias?
Es muy común que las galaxias choquen e interactúen unas con otras. De hecho, se cree que las colisiones y uniones entre galaxias son uno de los principales procesos en su evolución. La mayoría de las galaxias han interactuado desde que se formaron. Y lo interesante es que en esas colisiones no hay choques entre estrellas. La razón es que el tamaño de las estrellas es muy pequeño comparado con la distancia entre ellas. En cambio, el gas y el polvo sí interactúan de tal manera que incluso llegan a modificar la forma de la galaxia. La fricción entre el gas y las galaxias que chocan produce ondas de choque que pueden a su vez iniciar la formación de estrellas en una región dada de la galaxia.
El texto de arriba es algo contradictorio como muchos otros que sobre el Universo podemos leer. Si resulta que el choque de galaxias es de lo más normal en el Universo (como de hecho sabemos), ¿cómo pueden decirnos más arriba que el choque de agujeros negros es muy raro, si resulta que en “casi” todas las galaxias, en sus núcleos, residen grandes agujeros negros, al colisonar éstas es lógico pensar que, sus agujeros negros, también lo hagan.

El Universo de Einstein…, al menos hasta el momento, ha resultado ser cierto y, aunque los científicos del Proyecto OPERA se empeñaran en hacer correr a los neutrinos algo más que a los fotones (el límite marcado por Einstein para la velocidad que se puede alcanzar en el Universo, es decir, la Luz, c, que en el vacío alcanza los 299.792.458 metros por segundo), lo cierto es, que todo fue un equívoco y, el fotón, sigue firme como el Peñón de Gibratar como diría Dirac.

Lo cierto es que, saber, lo que se dice saber…sabemos algo pero muy poco como para poder sacar pecho y pasear por ahí pavoneándonos de los listos que somos. Es mejor admitir nuestra gran ignorancia y, siendo conscientes de ello, luchar con más fuerza por erradicarla. ¡Ah! Pero una cosa que estamos repitiendo una y otra vez, resulta ser falsa: El saber si ocupa lugar. Lugar en el espacio (tengo la librweria a doble hilera y me cuesta encontrar lo que necesito), de tiempo, buscar información sobre los temas tratados se lleva un gran período de tiempo al tener que hacer los apartados más convenientes para el trabajo que se desea presentar y, por último, algún que otro dinero que, se nos va cuando podemos ver este o aquel nuevo libro que nos promete emociones nuevas.
emilio silvera
















Totales: 81.942.589
Conectados: 115






















